D型丝氨酸调节大鼠海马稳态可塑性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长久以来,D型氨基酸被认为在高级进化的生物体中没有功能性作用,而只是通过整合进蛋白质多糖在低级进化的有机体中(如细菌中)发挥作用。然而,在过去的十年,随着胶质细胞和神经元的三突触结构的神经传递模型被大家认可,关于胶质细胞的高级功能无论是在健康的脑内还是在疾病模型上都得到了很大的关注。胶质细胞通过释放活性神经因子不仅可以倾听神经元活动而且可以和神经元对话。在此信号通路中,非典型的氨基酸D-丝氨酸(D-serine)的作用得到了广泛的关注。众所周知,D-丝氨酸是哺乳动物脑内NMDA型谷氨酸受体(NR1/NR2型)的辅助激动剂,在动物的大脑中一生都维持着很高的浓度:脑内的神经元和胶质细胞都含有D-丝氨酸并且具有特异的生物合成、胞外释放、摄取和降解途径。此外,选择性地清除D-丝氨酸可以降低NMDA受体(NMDAR)胞内信号和突触的长时程增强(LTP)。鉴于D-丝氨酸抗精神病的特征和其与NDMAR的作用对脑高级功能的意义,以前的研究都支持的观点是,D型氨基酸在不同的神经或精神医学上及其病理学条件下都是NMDAR的内源性激动剂。
     最近的研究报导了D-丝氨酸参与了LTP以及学习和记忆。并且,活动依赖的神经突触可塑性被认为是学习和记忆的细胞机制。因此,我们感兴趣的是,D-丝氨酸在突触可塑性和学习与记忆的高级脑功能中起到了什么调控作用呢?
     通过联合应用急性制备的海马脑片电生理记录、生物化学和行为学等方法,我们研究了以下几个问题:1,D-丝氨酸如何影响大鼠海马组织CA1区长时程可塑性?2,内源性的D-丝氨酸如何调控神经网络的长时程可塑性?3,D-丝氨酸如何影响动物的学习和记忆?
     实验结果如下:
     一)外源性的D-丝氨酸浓度依赖地影响海马CA1区的长时程抑制(LTD)和LTP
     在急性制备的海马脑片标本上,低浓度的D-丝氨酸(5微摩尔)提高了LTD的幅度而更高浓度的D-丝氨酸(100微摩尔)却不影响LTD的幅度,总体呈现“钟”形趋势。其对LTP作用亦如此。然而,在NMDAR的特异性拮抗剂7-chlorokynurenic或AP5都可以阻断D-丝氨酸对LTP和LTD的作用。这些结果表明,D-丝氨酸通过激活NMDAR影响LTP或LTD的幅度。
     二)胶质细胞通过感受突触前神经元活动释放相应浓度D-丝氨酸影响LTD
     应用不同的诱导强度产生的LTD幅度有显著的差别,我们的假设是不同诱导强度可以诱导不同水平的D-丝氨酸释放。应用D型氨基酸氧化酶特异性地清除生理条件下的D-丝氨酸后,LTD几乎完全被抑制;此外,特异性损伤胶质细胞,LTD和LTP均被阻断。然而,外源性D-丝氨酸的施加可以不同程度地修复胶质细胞破坏所损伤的LTD;有趣的是,增加诱导强度同样可以部分修复损伤的LTD;此外,这些条件下诱导的LTD均可被AP5所阻断。应用酶联免疫吸附实验检测(Enzyme-Linked Immunosorbent Assay)D-丝氨酸的水平发现,在不同的诱导强度下,D-丝氨酸的水平有明显的变化。这些数据表明胶质细胞可以通过感应神经元的活动而释放相应浓度的D-丝氨酸来调控长时程突触可塑性。
     三)D-丝氨酸影响大鼠的空间记忆提取并且呈剂量依赖性
     既然D-丝氨酸可以活动依赖地调控长时程突触可塑性,那么它在动物学习和记忆上的功能意义是什么?腹腔注射1000mg/kg D-丝氨酸明显提高了大鼠的水迷宫记忆提取水平;然而,腹腔注射100mg/kg或3000/mg/kg D-丝氨酸都不影响水迷宫的成绩。有趣地是,腹腔注射特异性损伤胶质细胞的药物sodimfluoroacetate明显抑制了大鼠的记忆能力,并且这种抑制效应可以被D-丝氨酸部分逆转。这些结果表明,D-丝氨酸不仅仅调控了长时程的突触可塑性并且影响着动物的记忆能力。
     总而言之,我们的研究表明,胶质细胞通过感应突触前神经元的活动模式,活动依赖地释放相应水平的D-丝氨酸从而浓度依赖地调控神经园长时程突触可塑性,这直接贡献于神经网络的平衡和记忆存储。
Until the last decade,it was widely accepted that Damino acids had no functional role in higher organisms,but that they were restricted to lower organisms,such as bacteria, where they are integrated into the proteoglycans of the cell wall.Over the past decade, a growing body of evidence has emerged on the existence in the brain of a close bidirectional communication system between neurons and astrocytes,which is called tripartite synapse structure.Thus,the cases that glia not only listens but also talks to neurons through the release of neuroactive substances have been gained increasing attention as key players of higher functions in healthy brain,but also in diseases.In the signaling pathway,the nontypical amino acid,D-serine,is widely concerned.It has now been well established that D-serine,a coagonist for the N-methyl-Daspartate (NMDA)glutamate receptors(NR1/NR2 type),is maintained at a high concentration in mammalian brains for life.D-serine in the brain is contained in both the glia and neurons and has specific processes of biosynthesis,extracellular release,uptake,and degradation.Together with the anti-psychotic and anti-ataxic property of D-serine and the pivotal roles of the NMDA receptor in divergent higher brain functions,these observations support the view that the Damino acid may be involved as an endogenous modulator for the NMDA receptor in various neuropsychiatric functions and their pathological conditions.
     Recently reports show that D-serine participates not only in LTP but also in learning and memory.Generally,it is believed that activity-dependent synaptic plasticity serves as a cellular mechanism underlying learning and memory.Thus,we are interested that how D-serine regulates the higher brain functions,such as synaptic plasticity and learning and memory?
     Using acute prepared hippocampal slices,electrophysiological recording, biochemistry and behavioural testing methods,we investigated the following 3 questions:1.How dose D-serine affect hippocampal long-term synaptic plasticity? 2. How dose endogenous D-serine regulate the homeostasis of neural network? 3.How dose D-serine affect animal learning and memory?
     1.Exogenous D-serine affects hippocampal CA1 regional LTD and LTP in a concentration-dependent manner
     In slices incubated in 5μM D-serine,the magnitude of LTD was enhanced significantly compared with that in the control group.However,in slices incubated in 100μM D-serine,the expression of LTD was not affected.According to these results,we wondered whether D-serine regulated LTD in a concentration-dependent manner.Thus,LTD was induced in the slices incubated by D-serine at different concentrations(3μM,5μM,10μM,50μM,100μM). The magnitudes of LTD had a bell-shape:5μM D-serine enhanced the magnitude of LTD to maximum;with the concentration of D-serine increasing,LTD returned to control level in the slices incubated in 100μM D-serine.Having established these data,we further revealed that the LTD was NMDAR dependent,being blocked by AP5 or 7-chlorokynurenic,both are special antagonists of NMDAR.It is the case to LTP.The data presented so far indicate that D-serine regulates long-term synaptic plasticity via NMDAR activation in a concentration-dependent manner.
     2.Gila release D-serine through sensing presynaptic activities to regulate LTD
     Since different magnitudes of LTD were induced by different stimulus protocol,we hypothesized that different stimulus intensities during LFS induced the release of corresponding D-serine.After Damino acid oxidase(DAAO,the enzyme which degrades D-serine)eliminated the physiological D-serine,LTD induction was blocked. However,exogenous D-serine rescued the DAAO-inhibited LTD to different degrees. Furthermore,a strong stimulus intensity during rescued the glial impairment-inhibited LTD.in addition,the LTD induced under these condition was blocked by AP5. Interestingly,Enzyme-Linked Immunosorbent Assay(ELISA)showed that the D-serine level altered significantly after LFS compared with that during baseline recording.
     3.D-serine affected memory in dose-dependent manner
     It is widely believed that long-term synaptic plasticity serves as a cellular mechanism underlying learning and memory[1-3].Thus,we investigated the effects of glial cell impairment and exogenous D-serine on spatial memory retrieval in Morris water maze.Intraperitoneal injection with D-serine(1000 mg/kg) increased memory retrieval significantly compared with the control group while injection with a lower(100 mg/kg)or higher(3000 mg/kg)dose of D-serine did not affect memory retrieval.In contrast,injection with NaFAC(3 mg/kg)impaired memory retrieval and D-serine(1000 mg/kg)restored it partially(Fig.4B).This result provides strong evidence that glial cells are crucial to memory retrieval through releasing D-serine.
     In brief,these findings suggest that the patterns of presynaptic activity can be sensed by glia leading to corresponding concentrations of D-serine release.And then,as a crucial neuromodulator,D-serine may modify activity-dependent long-term synaptic plasticity and thus maintain neural network homeostasis and memory storage.
引文
1. Bliss,T.V. and Collingridge,G.L., A synaptic model of memory: long-term potentiation in the hippocampus, Nature, 361 (1993) 31-39.
    2. Malenka,R.C. and Nicoll,R.A., Long-term potentiation-a decade of progress?, Science, 285 (1999) 1870-1874.
    3. Martin,S.J., Grimwood,P.D., and Morris,R.G., Synaptic plasticity and memory: an evaluation of the hypothesis, Annu. Rev. Neurosci., 23 (2000) 649-711.
    4. Dingledine,R., Borges,K., Bowie,D., and Traynelis,S.F., The glutamate receptor ion channels, Pharmacol. Rev., 51 (1999) 7-61.
    5. Kemp,J.A. and McKernan,R.M., NMDA receptor pathways as drug targets, Nat. Neurosci., 5 Suppl (2002) 1039-1042.
    6. Perez-Otano,I. and Ehlers,M.D., Homeostatic plasticity and NMDA receptor trafficking, Trends Neurosci, 28 (2005) 229-238.
    7. Lee,L.J., Lo,F.S., and Erzurumlu,R.S., NMDA receptor-dependent regulation of axonal and dendritic branching, J. Neurosci, 25 (2005) 2304-2311.
    8. Panatier,A., Theodosis,D.T., Mothet,J.P., Touquet,B., Pollegioni,L., Poulain,D.A., and Oliet,S.H., Glia-derived D-serine controls NMDA receptor activity and synaptic memory, Cell, 125 (2006) 775-784.
    9. Mohn,A.R., Gainetdinov,R.R., Caron,M.G., and Koller,B.H., Mice with reduced NMDA receptor expression display behaviors related to schizophrenia, Cell, 98 (1999) 427-436.
    10. Shleper,M., Kartvelishvily,E., and Wolosker,H., D-serine is the dominant endogenous coagonist for NMDA receptor neurotoxicity in organotypic hippocampal slices, J. Neurosci, 25 (2005) 9413-9417.
    11. Takano,T., Lin,J.H., Arcuino,G., Gao,Q., Yang,J., and Nedergaard,M., Glutamate release promotes growth of malignant gliomas, Nat. Med, 7 (2001) 1010-1015.
    12. Hashimoto,A., Oka,T., and Nishikawa,T., Anatomical distribution and postnatal changes in endogenous free Daspartate and D-serine in rat brain and periphery, Eur. J. Neurosci., 7 (1995) 1657-1663.
    13. Miller,R.F., D-serine as a glial modulator of nerve cells, Glia, 47 (2004) 275-283.
    14. Schell,M.J., Molliver,M.E., and Snyder,S.H., D-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release, Proc. Natl. Acad. Sci. U. S. A, 92 (1995) 3948-3952.
    15. Schell,M.J., Brady,R.O., Jr., Molliver,M.E., and Snyder,S.H., D-serine as a neuromodulator: regional and developmental localizations in rat brain glia resemble NMDA receptors, J. Neurosci., 17(1997) 1604-1615.
    16. Stevens,E.R., Esguerra,M., Kim,P.M., Newman,E.A., Snyder,S.H., Zahs,K.R., and Miller,R.F., D-serine and serine racemase are present in the vertebrate retina and contribute to the physiological activation of NMDA receptors, Proc. Natl. Acad. Sci. U. S. A, 100 (2003) 6789-6794.
    17. Yasuda,E., Ma,N., and Semba,R., Immunohistochemical evidences for localization and production of D-serine in some neurons in the rat brain, Neurosci. Lett., 299 (2001) 162-164.
    18. De Miranda,J., Santoro,A., Engelender,S., and Wolosker,H., Human serine racemase: moleular cloning, genomic organization and functional analysis, Gene, 256 (2000) 183-188.
    19. Konno,R., Rat cerebral serine racemase: amino acid deletion and truncation at carboxy terminus, Neurosci. Lett., 349 (2003) 111-114.
    20. Wolosker,H., Blackshaw,S., and Snyder,S.H., Serine racemase: a glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-Daspartate neurotransmission, Proc. Natl. Acad. Sci. U. S. A, 96 (1999) 13409-13414.
    21. Xia,M., Liu,Y., Figueroa,D.J., Chiu,C.S., Wei,N., Lawlor,A.M., Lu,P., Sur,C., Koblan,K.S., and Connolly,T.M., Characterization and localization of a human serine racemase, Brain Res. Mol. Brain Res., 125 (2004) 96-104.
    22. Foltyn,V.N., Bendikov,I., De Miranda,J., Panizzutti,R., Dumin,E., Shleper,M., Li,P., Toney,M.D., Kartvelishvily,E., and Wolosker,H., Serine . racemase modulates intracellular D-serine levels through an alpha,beta-elimination activity, J. Biol. Chem., 280 (2005) 1754-1763.
    23. Wu,S.Z., Jiang,S., Sims,T.J., and Barger,S.W., Schwann cells exhibit excitotoxicity consistent with release of NMDA receptor agonists, J. Neurosci. Res., 79 (2005) 638-643.
    24. Cook,S.P., Galve-Roperh,I., Martinez,d.P., and Rodriguez-Crespo,I., Direct calcium binding results in activation of brain serine racemase, J. Biol. Chem., 277 (2002) 27782-27792.
    25. De Miranda,J., Panizzutti,R., Foltyn,V.N., and Wolosker,H., Cofactors of serine racemase that physiologically stimulate the synthesis of the N-methyl-Daspartate (NMDA) receptor coagonist D-serine, Proc. Natl. Acad. Sci. U. S. A, 99 (2002) 14542-14547.
    26. Strisovsky,K., Jiraskova,J., Barinka,C., Majer,P., Rojas,C., Slusher,B,S., and Konvalinka, J., Mouse brain serine racemase catalyzes specific elimination of L-serine to pyruvate, FEBS Lett., 535 (2003) 44-48.
    27. Kim,P.M., Aizawa,H., Kim,P.S., Huang,A.S., Wickramasinghe,S.R., Kashani,A.H., Barrow,R.K., Huganir.R.L., Ghosh,A., and Snyder,S.H., Serine racemase: activation by glutamate neurotransmission via glutamate receptor interacting protein and mediation of neuronal migration, Proc. Natl. Acad. Sci. U. S. A, 102 (2005) 2105-2110.
    28. Mothet,J.P., Pollegioni,L., Ouanounou,G., Martineau,M., Fossier,P., and Baux,G., Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter D-serine, Proc. Natl. Acad. Sci. U. S. A, 102 (2005) 5606-5611.
    29. Ribeiro,C.S., Reis,M., Panizzutti,R., de Miranda,J., and Wolosker,H., Glial transport of the neuromodulator D-serine, Brain Res., 929 (2002) 202-209.
    30. Pilone,M.S., DAmino acid oxidase: new findings, Cell Mol. Life Sci., 57 (2000) 1732-1747.
    31. Urai,Y., Jinnouchi,O., Kwak,K.T., Suzue,A., Nagahiro,S., and Fukui,K., Gene expression of Damino acid oxidase in cultured rat astrocytes: regional and cell type specific expression, Neurosci. Lett., 324 (2002) 101-104.
    32. Morikawa,A., Hamase,K., Inoue,T., Konno,R., Niwa,A., and Zaitsu,K., Determination of free Daspartic acid, D-serine and Dalanine in the brain of mutant mice lacking Damino acid oxidase activity, J. Chromatogr. B Biomed. Sci. Appl, 757 (2001) 119-125.
    33. Cristiano,L., Bernardo,A., and Ceru,M.P., Peroxisome proliferator-activated receptors (PPARs) and peroxisomes in rat cortical and cerebellar astrocytes, J. Neurocytol., 30 (2001) 671-683.
    34. Horiike,K., Tojo,H., Arai,R., Nozaki,M., and Maeda,T., Damino-acid oxidase is confined to the lower brain stem and cerebellum in rat brain: regional differentiation of astrocytes, Brain Res., 652 (1994) 297-303.
    35. Takahashi,K., Hayashi,F., and Nishikawa,T., In vivo evidence for the link between L- and D-serine metabolism in rat cerebral cortex, J. Neurochem., 69(1997)1286-1290.
    36. Danysz,W. and Parsons,A.C., Glycine and N-methyl-Daspartate receptors: physiological significance and possible therapeutic applications, Pharmacol. Rev., 50 (1998) 597-664.
    37. Matsui,T., Sekiguchi,M., Hashimoto,A., Tomita,U., Nishikawa,T., and Wada,K., Functional comparison of D-serine and glycine in rodents: the effect on cloned NMD A receptors and the extracellular concentration, J. Neurochem, 65 (1995) 454-458.
    38. Berger,A.J., Dieudonne,S., and Ascher,P., Glycine uptake governs glycine site occupancy at NMDA receptors of excitatory synapses, J. Neurophysiol., 80(1998)3336-3340.
    39. Mothet,J.P., Parent,A.T., Wolosker,H., Brady,R.O., Jr., Linden,D.J., Ferris,C.D., Rogawski,M.A., and Snyder,S.H., D-serine is an endogenous ligand for the glycine site of the N-methyl-Daspartate receptor, Proc. Natl. Acad. Sci. U. S. A, 97 (2000) 4926-4931.
    40. Yang,Y., Ge,W., Chen,Y., Zhang,Z., Shen,W., Wu,C., Poo,M., and Duan,S., Contribution of astrocytes to hippocampal long-term potentiation through release of D-serine, Proc. Natl. Acad. Sci. U. S. A, 100 (2003) 15194-15199.
    41. Hashimoto,A., Yoshikawa,M., Niwa,A., and Konno,R., Mice lacking Damino acid oxidase activity display marked attenuation of stereotypy and ataxia induced by MK-801, Brain Res., 1033 (2005) 210-215.
    42. Yacubova,E. and Komuro,H., Cellular and molecular mechanisms of cerebellar granule cell migration, Cell Biochem. Biophys, 37 (2003) 213-234.
    43. Katsuki,H., Nonaka,M., Shirakawa,H., Kume,T., and Akaike,A., Endogenous D-serine is involved in induction of neuronal death by N-methyl-Daspartate and simulated ischemia in rat cerebrocortical slices, J. Pharmacol. Exp. Then, 311 (2004) 836-844.
    44. Wu,S. and Barger,S.W., Induction of serine racemase by inflammatory stimuli is dependent on AP-1, Ann. N. Y. Acad. Sci., 1035 (2004) 133-146.
    45. Nong,Y., Huang,Y.Q., Ju,W., Kalia,L.V., Ahmadian,G., Wang,Y.T., and Salter,M.W., Glycine binding primes NMDA receptor internalization, Nature, 422 (2003) 302-307.
    46. Hashimoto,A., Oka,T., and Nishikawa,T., Extracellular concentration of endogenous free D-serine in the rat brain as revealed by in vivo microdialysis, Neuroscience, 66 (1995) 635-643.
    47. Hayashi,F., Takahashi,K., and Nishikawa,T., Uptake of D and L-serine in C6 glioma cells, Neurosci. Lett, 239 (1997) 85-88.
    48. Javitt,D.C., Balla,A., and Sershen,H., A novel alanine-insensitive D-serine transporter in rat brain synaptosomal membranes, Brain Res., 941 (2002) 146-149.
    49. O'Brien,K.B., Miller,R.F., and Bowser,M.T., D-serine uptake by isolated retinas is consistent with ASCT-mediated transport, Neurosci. Lett., 385 (2005)58-63.
    50. Xie,X., Dumas,T., Tang,L., Brennan,T., Reeder.T., Thomas,W., Klein,R.D., Flores,J., O'Hara,B.F., Heller,H.C., and Franken,P., Lack of the alanine-serine-cysteine transporter 1 causes tremors, seizures, and early postnatal death in mice, Brain Res., 1052 (2005) 212-221.
    51. Yamamoto,N., Tomita,U., Umino,A., and Nishikawa,T., Uptake of D-serine by synaptosomal P2 fraction isolated from rat brain, Synapse, 42 (2001) 84-86.
    52. Jahn,R. and Sudhof,T.C., Membrane fusion and exocytosis, Annu. Rev. Biochem, 68(1999)863-911.
    53. Volterra,A. and Meldolesi,J., Astrocytes, from brain glue to communication elements: the revolution continues, Nat. Rev. Neurosci., 6 (2005) 626-640.
    54. Araque,A., Li,N., Doyle,R.T., and Haydon,P.G., SNARE protein-dependent glutamate release from astrocytes, J. Neurosci., 20 (2000) 666-673.
    55. Bezzi,R., Gundersen,V., Galbete,J.L., Seifert,G., Steinhauser,C., Pilati,E., and Volterra,A., Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate, Nat. Neurosci., 7 (2004) 613-620.
    56. Kartvelishvily,E., Shleper,M., Balan,L., Dumin,E., and Wolosker,H., Neuron-derived D-serine release provides a novel means to activate N-methyl-Daspartate receptors, J. Biol. Chem., 281 (2006) 14151-14162.
    57. Williams,S.M., Diaz,C.M., Macnab,L.T., Sullivan,R.K., and Pow,D.V., Immunocytochemical analysis of D-serine distribution in the mammalian brain reveals novel anatomical compartmentalizations in glia and neurons, Glia, 53 (2006) 401-411.
    58. Helboe,L., Egebjerg,J., Moller,M., and Thomsen,C., Distribution and pharmacology of alanine-serine-cysteine transporter 1 (asc-1) in rodent brain, Eur. J. Neurosci., 18 (2003) 2227-2238.
    59. Puyal,J., Martineau,M., Mothet,J.P., Nicolas,M.T., and Raymond,J., Changes in D-serine levels and localization during postnatal development of the rat vestibular nuclei, J. Comp Neurol., 497 (2006) 610-621.
    60. Wolosker,H., D-serine regulation of NMD A receptor activity, Sci. STKE., 2006 (2006)e41.
    61. Wako,K., Ma,N., Shiroyama,T., and Semba,R., Glial uptake of intracerebroventricularly injected D-serine in the rat brain: an immunocytochemical study, Neurosci. Lett., 185 (1995) 171-174.
    62. Johnson, J. W. and Ascher,R., Glycine potentiates the NMDA response in cultured mouse brain neurons, Nature, 325 (1987) 529-531.
    63. Nicoll,R.A. and Malenka,R.C., Expression mechanisms underlying NMDA receptor-dependent long-term potentiation, Ann. N. Y. Acad. Sci., 868 (1999) 515-525.
    64. Bredt,D.S. and Nicoll,R.A., AMPA receptor trafficking at excitatory synapses, Neuron, 40 (2003) 361-379.
    65. Malinow,R. and Malenka,R.C., AMPA receptor trafficking and synaptic plasticity, Annu. Rev. Neurosci., 25 (2002) 103-126.
    66. Song,I. and Huganir,R.L., Regulation of AMPA receptors during synaptic plasticity, Trends Neurosci., 25 (2002) 578-588.
    67. Benke,T.A., Luthi,A., lsaac,J.T., and Collingridge,G.L., Modulation of AMPA receptor unitary conductance by synaptic activity, Nature, 393 (1998) 793-797.
    68. Lee,H.K., Takamiya,K., Han,J.S., Man,H., Kim,C.H., Rumbaugh,G., Yu,S., Ding,L., He,C., Petralia,R.S., Wenthold,R.J., Gallagher,M., and Huganir,R.L., Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory, Cell, 112 (2003)631-643.
    69. Soderling,T.R. and Derkach,V.A., Postsynaptic protein phosphorylation and LTP, Trends Neurosci., 23 (2000) 75-80.
    70. Hayashi,Y., Shi,S.H., Esteban,J.A., Piccini,A., Poncer,J.C., and Malinow.R., Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction, Science, 287 (2000) 2262-2267.
    71. Zamanillo,D., Sprengel,R., Hvalby,O., Jensen,V., Buraashev,N., Rozov,A., Kaiser,K.M., Koster,H.J., Borchardt,T., Worley,P., Lubke,J., Frotscher,M., Kelly,P.H., Sommer,B., Andersen,P., Seeburg,RH., and Sakmann,B., Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning, Science, 284 (1999) 1805-1811.
    72. Sheng,M. and Hyoung,L.S., AMPA receptor trafficking and synaptic plasticity: major unanswered questions, Neurosci. Res., 46 (2003) 127-134.
    73. Choi,S., Klingauf,J., and Tsien,R.W., Postfusional regulation of cleft glutamate concentration during LTP at 'silent synapses', Nat. Neurosci., 3 (2000) 330-336.
    74. Emptage,N.J., Reid,C.A., Fine,A., and Bliss,T.V., Optical quantal analysis reveals a presynaptic component of LTP at hippocampal Schaffer-associational synapses, Neuron, 38 (2003) 797-804.
    75. Zakharenko,S.S., Patterson,S.L., Dragatsis,I., Zeitlin,S.O., Siegelbaum,S.A., Kandel,E.R., and Morozov,A., Presynaptic BDNF required for a presynaptic but not postsynaptic component of LTP at hippocampal CA1-CA3 synapses, Neuron, 39 (2003) 975-990.
    76. Williams,J.H., Jr., Patel,S.K., Hatakeyama,D., Arian,R., Guo,K., Hickey,T.J., Liao,S.Y., and Ulich,T.R., Activated pulmonary vascular neutrophils as early mediators of endotoxin-induced lung inflammation, Am. J. Respir. Cell Mol. Biol., 8 (1993) 134-144.
    77. Lohof,A.M., Ip,N.Y., and Poo,M.M., Potentiation of developing neuromuscular synapses by the neurotrophins NT-3 and BDNF, Nature, 363 (1993)350-353.
    78. Sudhof,T.C., alpha-Latrotoxin and its receptors: neurexins and CIRL/latrophilins, Annu. Rev. Neurosci., 24 (2001) 933-962.
    79. Abraham,W.C. and Williams,J.M., Properties and mechanisms of LTP maintenance, Neuroscientist, 9 (2003) 463-474.
    80. Pittenger,C. and Kandel,E.R., In search of general mechanisms for long-lasting plasticity: Aplysia and the hippocampus, Philos. Trans. R. Soc. Lond B Biol. Sci., 358 (2003) 757-763.
    81. Lynch,M.A., Long-term potentiation and memory, Physiol Rev., 84 (2004) 87-136.
    82. Silva,A.J., Kogan,J.H., Frankland,P.W., and Kida,S., CREB and memory, Annu. Rev. Neurosci., 21 (1998) 127-148.
    83. Frey,U. and Morris,R.G., Synaptic tagging: implications for late maintenance of hippocampal long-term potentiation, Trends Neurosci., 21 (1998)181-188.
    84. Yuste,R. and Bonhoeffer,T., Morphological changes in dendritic spines associated with long-term synaptic plasticity, Annu. Rev. Neurosci., 24 (2001) 1071-1089.
    85. Matsuzaki,M., Honkura,N., Ellis-Davies,G.C., and Kasai,H., Structural basis of long-term potentiation in single dendritic spines, Nature, 429 (2004) 761-766.
    86. Matus,A., Actin-based plasticity in dendritic spines, Science, 290 (2000) 754-758.
    87. Kim,C.H. and Lisman,J.E., A role of actin filament in synaptic transmission and long-term potentiation, J. Neurosci., 19 (1999) 4314-4324.
    88. Fukazawa,Y., Saitoh,Y., Ozawa,F., Ohta,Y, Mizuno,K., and Inokuchi,K., Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo, Neuron, 38 (2003) 447-460.
    89. Hering,H. and Sheng,M., Dendritic spines: structure, dynamics and regulation, Nat. Rev. Neurosci., 2 (2001) 880-888.
    90. Lisman,J.E. and Zhabotinsky,A.M., A model of synaptic memory: a CaMKII/PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly, Neuron, 31 (2001) 191-201.
    91. Luscher,C., Nicoll,R.A., Malenka,R.C., and Muller,D., Synaptic plasticity and dynamic modulation of the postsynaptic membrane, Nat. Neurosci., 3 (2000) 545-550.
    92. Lisman,J.E. and Harris,K.M., Quantal analysis and synaptic anatomy—integrating two views of hippocampal plasticity, Trends Neurosci., 16(1993)141-147.
    93. Shi,S., Hayashi,Y., Esteban,J.A., and Malinow,R., Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons, Cell, 105 (2001) 331-343.
    94. Ju,W., Morishita,W., Tsui,J., Gaietta,G., Deerinck,T.J., Adams,S.R., Garner,C.C., Tsien,R.Y., Ellisman,M.H., and Malenka,R.C., Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors, Nat. Neurosci., 7 (2004) 244-253.
    95. Steward,O. and Schuman,E.M., Protein synthesis at synaptic sites on dendrites, Annu. Rev. Neurosci, 24 (2001) 299-325.
    96. Castro-Alamancos,M.A. and Calcagnotto,M.E., Presynaptic long-term potentiation in corticothalamic synapses, J. Neurosci, 19 (1999) 9090-9097.
    97. Linden,D.J., Long-term potentiation of glial synaptic currents in cerebellar culture, Neuron, 18 (1997) 983-994.
    98. Salin,P.A., Malenka,R.C., and Nicoll,R.A., Cyclic AMP mediates a presynaptic form of LTP at cerebellar parallel fiber synapses, Neuron, 16 (1996) 797-803.
    99. Harris,E.W. and Cotman,C. W., Long-term potentiation of guinea pig mossy fiber responses is not blocked by N-methyl Daspartate antagonists, Neurosci. Lett, 70 (1986) 132-137.
    100. Zalutsky,R.A. and Nicoll,R.A., Comparison of two forms of long-term potentiation in single hippocampal neurons, Science, 248 (1990) 1619-1624.
    101. Castillo,P.E., Weisskopf,M.G., and Nicoll,R.A., The role of Ca2+ channels in hippocampal mossy fiber synaptic transmission and long-term potentiation, Neuron, 12 (1994) 261-269.
    102. Henze,D.A., Urban,N.N., and Barrionuevo,G., The multifarious hippocampal mossy fiber pathway: a review, Neuroscience, 98 (2000) 407-427.
    103. Yeckel,M.F., Kapur,A., and Johnston,D., Multiple forms of LTP in hippocampal CA3 neurons use a common postsynaptic mechanism, Nat. Neurosci, 2 (1999) 625-633.
    104. Lauri,S.E., Delany,C., VR,J.C., Bortolotto,Z.A., Ornstein,P.L., Isaac,T.R., and Collingridge,G.L., Synaptic activation of a presynaptic kainate receptor facilitates AMPA receptor-mediated synaptic transmission at hippocampal mossy fibre synapses, Neuropharmacology, 41 (2001) 907-915.
    105. Lauri,S.E., Bortolotto,Z.A., Bleakman,D., Ornstein,P.L., Lodge,D., Isaac,J.T., and Collingridge,G.L., A critical role of a facilitatory presynaptic kainate receptor in mossy fiber LTP, Neuron, 32 (2001) 697-709.
    106. Schmitz,D., Mellor,J., Breustedt,J., and Nicoll,R.A., Presynaptic kainate receptors impart an associative property to hippocampal mossy fiber long-term potentiation, Nat. Neurosci., 6 (2003) 1058-1063.
    107. Villacres,E.C., Wong,S.T., Chavkin,C., and Storm,D.R., Type I adenylyl cyclase mutant mice have impaired mossy fiber long-term potentiation, J. Neurosci., 18(1998)3186-3194.
    108. Wang,Y.T. and Linden,D.J., Expression of cerebellar long-term depression requires postsynaptic clathrin-mediated endocytosis, Neuron, 25 (2000) 635-647.
    109. Reid,C.A., Dixon,D.B., Takahashi,M., Bliss,T.V., and Fine,A., Optical quantal analysis indicates that long-term potentiation at single hippocampal mossy fiber synapses is expressed through increased release probability, recruitment of new release sites, and activation of silent synapses, J. Neurosci., 24 (2004) 3618-3626.
    110. Tong,G., Malenka,R.C., and Nicoll,R.A., Long-term potentiation in cultures of single hippocampal granule cells: a presynaptic form of plasticity, Neuron, 16(1996)1147-1157.
    111. Weisskopf,M.G. and Nicoll,R.A., Presynaptic changes during mossy fibre LTP revealed by NMDA receptor-mediated synaptic responses, Nature, 376 (1995)256-259.
    112. Spillane,D.M., Rosahl,T.W., Sudhof,T.C., and Malenka,R.C., Long-term potentiation in mice lacking synapsins, Neuropharmacology, 34 (1995) 1573-1579.
    113. Castillo,P.E., Janz,R., Sudhof,T.C., Tzounopoulos,T., Malenka,R.C., and Nicoll,R.A., Rab3A is essential for mossy fibre long-term potentiation in the hippocampus, Nature, 388 (1997) 590-593.
    114. Contractor,A., Rogers,C., Maron,C., Henkemeyer,M., Swanson,G.T., and Heinemann,S.F., Trans-synaptic Eph receptor-ephrin signaling in hippocampal mossy fiber LTP, Science, 296 (2002) 1864-1869.
    115. Mellor,J., Nicoll,R.A., and Schmitz,D., Mediation of hippocampal mossy fiber long-term potentiation by presynaptic Ih channels, Science, 295 (2002) 143-147.
    116. Regehr, W.G. and Tank,D. W., The maintenance of LTP at hippocampal mossy fiber synapses is independent of sustained presynaptic calcium, Neuron, 7 (1991) 451-459.
    117. Kamiya,H., Umeda,K., Ozawa,S., and Manabe,T., Presynaptic Ca2+ entry is unchanged during hippocampal mossy fiber long-term potentiation, J. Neurosci, 22 (2002) 10524-10528.
    118. Otto,C., Kovalchuk,Y., Wolfer,D.P., Gass,P., Martin,M., Zuschratter,W., Grone,H.J., Kellendonk,C., Tronche,F., Maldonado,R., Lipp,H.P., Konnerth,A., and Schutz,G., Impairment of mossy fiber long-term potentiation and associative learning in pituitary adenylate cyclase activating polypeptide type I receptor-deficient mice, J. Neurosci., 21 (2001) 5520-5527.
    119. Li, Y., Hough,C J., Frederickson,C. J., and Sarvey,J.M., Induction of mossy fiber → Ca3 long-term potentiation requires translocation of synaptically released Zn2+, J. Neurosci., 21 (2001) 8015-8025.
    120. Calixto,E., Thiels,E., Klann,E., and Barrionuevo,G., Early maintenance of hippocampal mossy fiber-long-term potentiation depends on protein and RNA synthesis and presynaptic granule cell integrity, J. Neurosci., 23 (2003) 4842-4849.
    121. Huang, Y. Y. and Kandel,E.R., Recruitment of long-lasting and protein kinase A-dependent long-term potentiation in the CA1 region of hippocampus requires repeated tetanization, Learn. Mem., 1 (1994) 74 82.
    122. Dudek,S.M. and Bear,M.F., Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-Daspartate receptor blockade, Proc. Natl. Acad. Sci. U. S. A, 89 (1992) 4363-4367.
    123. Selig,D.K., Hjelmstad,G.O., Herron,C., Nicoll,R.A., and Malenka,R.C., Independent mechanisms for long-term depression of AMPA and NMDA responses, Neuron, 15 (1995) 417-426.
    124. Kirkwood,A. and Bear,M.F., Homosynaptic long-term depression in the visual cortex, J. Neurosci., 14 (1994) 3404-3412.
    125. Scheiderer,C.L., Dobrunz,L.E., and McMahon,L.L., Novel form of long-term synaptic depression in rat hippocampus induced by activation of alpha 1 adrenergic receptors, J. Neurophysiol., 91 (2004) 1071-1077.
    126. Kemp,N., McQueen,J., Faulkes,S., and Bashir,Z.I., Different forms of LTD in the CA1 region of the hippocampus: role of age and stimulus protocol, Eur. J. Neurosci., 12 (2000) 360-366.
    127. Thiels,E., Xie,X., Yeckel,M.F., Barrionuevo,G., and Berger,T.W., NMDA receptor-dependent LTD in different subfields of hippocampus in vivo and in vitro, Hippocampus, 6 (1996) 43-51.
    128. Ngezahayo,A., Schachner,M., and Artola,A., Synaptic activity modulates the induction of bidirectional synaptic changes in adult mouse hippocampus, J. Neurosci, 20 (2000) 2451-2458.
    129. Abraham, W.C. and Bear,M.F., Metaplasticity: the plasticity of synaptic plasticity, Trends Neurosci., 19(1996) 126-130.
    130. Mockett,B., Coussens,C., and Abraham,W.C., NMDA receptor-mediated metaplasticity during the induction of long-term depression by low-frequency stimulation, Eur. J. Neurosci., 15 (2002) 1819-1826.
    131. Mizuno,T., Kanazawa,I., and Sakurai,M., Differential induction of LTP and LTD is not determined solely by instantaneous calcium concentration: an essential involvement of a temporal factor, Eur. J. Neurosci., 14 (2001) 701-708.
    132. Mulkey,R.M., Endo,S., Shenolikar,S., and Malenka,R.C., Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression, Nature, 369 (1994) 486-488.
    133. Cummings,J.A., Mulkey,R.M., Nicoll,R.A., and Malenka,R.C., Ca2+ signaling requirements for long-term depression in the hippocampus, Neuron, 16(1996)825-833.
    134. Kamal,A., Ramakers,G.M., Urban,I.J., De Graan,P.N., and Gispen,W.H., Chemical LTD in the CA1 field of the hippocampus from young and mature rats, Eur. J. Neurosci, 11 (1999) 3512-3516.
    135. Kandler,K., Katz,L.C., and Kauer,J.A., Focal photolysis of caged glutamate produces long-term depression of hippocampal glutamate receptors, Nat. Neurosci., 1(1998)119-123.
    136. Mulkey,R.M. and Malenka,R.C., Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus, Neuron, 9 (1992) 967-975.
    137. Yang,S.N., Tang,Y.G., and Zucker,R.S., Selective induction of LTP and LTD by postsynaptic [Ca2+]i elevation, J. Neurophysiol., 81 (1999) 781-787.
    138. Hrabetova,S., Serrano,P., Blace,N., Tse,H.W., Skifter,D.A., Jane,D.E., Monaghan,D.T., and Sacktor,T.C., Distinct NMDA receptor subpopulations contribute to long-term potentiation and long-term depression induction, J. Neurosci., 20 (2000) RC81.
    139. Hendricson,A.W., Miao,C.L., Lippmann,M.J., and Morrisett,R.A., Ifenprodil and ethanol enhance NMDA receptor-dependent long-term depression, J. Pharmacol. Exp. Then, 301 (2002) 938-944.
    140. Liu,L., Wong,T.P., Pozza,M.F., Lingenhoehl,K., Wang,Y., Sheng,M., Auberson,Y.P., and Wang,Y.T., Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity, Science, 304 (2004) 1021-1024.
    141. Monyer,H., Sprengel,R., Schoepfer,R., Herb,A., Higuchi,M., Lomeli,H., Burnashev,N., Sakmann,B., and Seeburg,P.H., Heteromeric NMDA receptors: molecular and functional distinction of subtypes, Science, 256 (1992)1217-1221.
    142. Logan,S.M., Rivera,F.E., and Leonard,J.P., Protein kinase C modulation of recombinant NMDA receptor currents: roles for the C-terminal C1 exon and calcium ions, J. Neurosci., 19 (1999) 974-986.
    143. Barria,A. and Malinow,R., Subunit-specific NMDA receptor trafficking to synapses, Neuron, 35 (2002) 345-353.
    144. Quinlan,E.M., Philpot,B.D., Huganir,R.L., and Bear,M.F., Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo, Nat. Neurosci., 2 (1999) 352-357.
    145. Williams,J.M., Guevremont,D., Kennard,J.T., Mason-Parker,S.E., Tate,W.P., and Abraham,W.C., Long-term regulation of N-methyl-Daspartate receptor subunits and associated synaptic proteins following hippocampal synaptic plasticity, Neuroscience, 118 (2003) 1003-1013.
    146. Nakano,M., Yamada,S., Udagawa,R., and Kato,N., Frequency-dependent requirement for calcium store-operated mechanisms in induction of homosynaptic long-term depression at hippocampus CA1 synapses, Eur. J. Neurosci., 19(2004)2881-2887.
    147. Nishiyama,M., Hong,K., Mikoshiba,K., Poo,M.M., and Kato,K., Calcium stores regulate the polarity and input specificity of synaptic modification, Nature, 408 (2000) 584-588.
    148. Daw,M.I., Bortolotto,Z.A., Saulle,E., Zaman,S., Collingridge,G.L., and Isaac,J.T., Phosphatidylinositol 3 kinase regulates synapse specificity of hippocampal long-term depression, Nat. Neurosci., 5 (2002) 835-836.
    149. Hrabetova,S. and Sacktor,T.C., Transient translocation of conventional protein kinase C isoforms and persistent downregulation of atypical protein kinase Mzeta in long-term depression, Brain Res. Mol. Brain Res., 95 (2001) 146-152.
    150. van Dam,E.J., Ruiter,B., Kamal,A., Ramakers,G.M., Gispen,W.H., and de Graan,P.N., N-methyl-Daspartate-induced long-term depression is associated with a decrease in postsynaptic protein kinase C substrate phosphorylation in rat hippocampal slices, Neurosci. Lett., 320 (2002) 129-132.
    151. Kameyama,K., Lee,H.K., Bear,M.F., and Huganir,R.L., Involvement of a postsynaptic protein kinase A substrate in the expression of homosynaptic long-term depression, Neuron, 21 (1998) 1163-1175.
    152. Morishita,W., Connor,J.H., Xia,H., Quinlan,E.M., Shenolikar,S., and Malenka,R.C., Regulation of synaptic strength by protein phosphatase 1, Neuron, 32 (2001) 1133-1148.
    153. Lee,H.K., Barbarosie,M., Kameyama,K., Bear,M.F., and Huganir,R.L., Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity, Nature, 405 (2000) 955-959.
    154. Lee,H.K., Kameyama,K., Huganir,R.L., and Bear,M.F., NMDA induces long-term synaptic depression and dephosphorylation of the GluR1 subunit of AMPA receptors in hippocampus, Neuron, 21 (1998) 1151-1162.
    155. Banke,T.G., Bowie,D., Lee,H., Huganir,R.L., Schousboe,A., and Traynelis,S.F., Control of GluR1 AMPA receptor function by cAMP-dependent protein kinase, J. Neurosci., 20 (2000) 89-102.
    156. Man,H.Y., Lin,J.W., Ju,W.H., Ahmadian,G., Liu,L., Becker,L.E., Sheng,M., and Wang,Y.T., Regulation of AMPA receptor-mediated synaptic transmission by clathrin-dependent receptor internalization, Neuron, 25 (2000) 649-662.
    157. Ehlers,M.D., Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting, Neuron, 28 (2000) 511-525.
    158. Lai,M.M., Hong,J.J., Ruggiero,A.M., Burnett,P.E., Slepnev,V.I., De Camilli,P., and Snyder,S.H., The calcineurin-dynamin 1 complex as a calcium sensor for synaptic vesicle endocytosis, J. Biol. Chem., 274 (1999) 25963-25966.
    159. Slepnev,V.I., Ochoa,G.C., Butler,M.H., Grabs,D., and De Camilli,P., Role of phosphorylation in regulation of the assembly of endocytic coat complexes, Science, 281(1998)821-824.
    160. Lee,S.H., Liu,L., Wang,Y.T., and Sheng,M., Clathrin adaptor AP2 and NSF interact with overlapping sites of GluR2 and play distinct roles in AMPA receptor trafficking and hippocampal LTD, Neuron, 36 (2002) 661-674.
    161. Heynen,A.J., Quinlan,E.M., Bae,D.C., and Bear,M.F., Bidirectional, activity-dependent regulation of glutamate receptors in the adult hippocampus in vivo, Neuron, 28 (2000) 527-536.
    162. Meng,Y., Zhang,Y., and Jia,Z., Synaptic transmission and plasticity in the absence of AMPA glutamate receptor GluR2 and GluR3, Neuron, 39 (2003) 163-176.
    163. Schnell,E., Sizemore,M., Karimzadegan,S., Chen,L., Bredt,D.S., and Nicoll,R.A., Direct interactions between PSD95 and stargazin control synaptic AMPA receptor number, Proc. Natl. Acad. Sci. U. S. A, 99 (2002) 13902-13907.
    164. Colledge,M., Snyder,E.M., Crozier,R.A., Soderling,J.A., Jin,Y., Langeberg,L.K., Lu,H., Bear,M.F., and Scott,J.D., Ubiquitination regulates PSD95 degradation and AMPA receptor surface expression, Neuron, 40 (2003) 595-607.
    165. Patrick,G.N., Bingol,B., Weld,H.A., and Schuman,E.M., Ubiquitin-mediated proteasome activity is required for agonist-induced endocytosis of GluRs, Curr. Biol., 13 (2003) 2073-2081.
    166. Hegde,A.N. and DiAntonio,A., Ubiquitin and the synapse, Nat. Rev. Neurosci., 3(2002)854-861.
    167. Burbea,M., Dreier,L, Dittman,J.S., Grunwald,M.E., and Kaplan,J.M., Ubiquitin and AP180 regulate the abundance of GLR-1 glutamate receptors at postsynaptic elements in C. elegans, Neuron, 35 (2002) 107-120.
    168. Kauderer,B.S. and Kandel,E.R., Capture of a protein synthesis-dependent component of long-term depression, Proc. Natl. Acad. Sci. U. S. A, 97 (2000) 13342-13347.
    169. Gean,P.W., Chang,F.C., Huang,C.C., Lin,J.H., and Way,L.J., Long-term enhancement of EPSP and NMDA receptor-mediated synaptic transmission in the amygdala, Brain Res. Bull, 31 (1993) 7-11.
    170. Xiao,M.Y., Wigstrom,H., and Gustafsson,B., Long-term depression in the hippocampal CA1 region is associated with equal changes in AMPA and NMDA receptor-mediated synaptic potentials, Eur. J. Neurosci., 6 (1994) 1055-1057.
    171. Montgomery,J.M. and Madison,D.V., State-dependent heterogeneity in synaptic depression between pyramidal cell pairs, Neuron, 33 (2002) 765-777.
    172. Philpot,B.D. and Bear,M.F., Synaptic plasticity in an altered state, Neuron, 33 (2002) 665-667.
    173. Dodt,H., Eder,M., Frick,A., and Zieglgansberger,W., Precisely localized LTD in the neocortex revealed by infrareDguided laser stimulation, Science, 286(1999)110-113.
    174. Sjostrom,P.J., Turrigiano,G.G., and Nelson,S.B., Neocortical LTD via coincident activation of presynaptic NMD A and cannabinoid receptors, Neuron, 39 (2003) 641-654.
    175. Bolshakov,V.Y. and Siegelbaum,S.A., Postsynaptic induction and presynaptic expression of hippocampal long-term depression, Science, 264 (1994)1148-1152.
    176. Oliet,S.H., Malenka,R.C., and Nicoll,R.A., Two distinct forms of long-term depression coexist in CA1 hippocampal pyramidal cells, Neuron, 18 (1997) 969-982.
    177. Ito,M., Long-term depression, Annu. Rev. Neurosci., 12 (1989) 85-102.
    178. Linden,D.J., Dickinson,M.H., Smeyne,M., and Connor,J.A., A long-term depression of AMPA currents in cultured cerebellar Purkinje neurons, Neuron, 7 (1991) 81-89.
    179. Chung,H.J., Steinberg,J.P., Huganir,R.L., and Linden,D.J., Requirement of AMPA receptor GluR2 phosphorylation for cerebellar long-term depression, Science, 300 (2003) 1751-1755.
    180. Snyder.E.M., Philpot,B.D., Huber,K.M., Dong,X., Fallon,J.R., and Bear,M.F., Internalization of ionotropic glutamate receptors in response to mGluR activation, Nat. Neurosci., 4 (2001) 1079-1085.
    181. Xiao,M.Y., Zhou,Q., and Nicoll,R.A., Metabotropic glutamate receptor activation causes a rapid redistribution of AMPA receptors, Neuropharmacology, 41 (2001) 664-671.
    182. Palmer,M.J., Irving,A.J., Seabrook,G.R., Jane,D.E., and Collingridge,G.L., The group I mGlu receptor agonist DHPG induces a novel form of LTD in the CA1 region of the hippocampus, Neuropharmacology, 36 (1997) 1517-1532.
    183. Fitzjohn,S.M., Palmer,M.J., May,J.E., Neeson,A., Morris,S.A., and Collingridge,G.L., A characterisation of long-term depression induced by metabotropic glutamate receptor activation in the rat hippocampus in vitro, J. Physiol, 537 (2001) 421-430.
    184. Faas,G.C., Adwanikar,H., Gereau,R.W., and Saggau,P., Modulation of presynaptic calcium transients by metabotropic glutamate receptor activation: a differential role in acute depression of synaptic transmission and long-term depression, J. Neurosci., 22 (2002) 6885-6890.
    185. Femmark,S.J., Begum,R., Tsvetkov,E., Goussakov,I., Funk,C.D., Siegelbaum,S.A., and Bolshakov,V.Y., 12-lipoxygenase metabolites of arachidonic acid mediate metabotropic glutamate receptor-dependent long-term depression at hippocampal CA3-CA1 synapses, J. Neurosci., 23 (2003)11427-11435.
    186. Rammes,G., Palmer,M., Eder,M., Dodt,H.U., Zieglgansberger,W., and Collingridge,G.L., Activation of mGlu receptors induces LTD without affecting postsynaptic sensitivity of CA1 neurons in rat hippocampal slices, J. Physiol, 546 (2003) 455-460.
    187. Stent,G.S., A physiological mechanism for Hebb's postulate of learning, Proc. Natl. Acad. Sci. U. S. A, 70 (1973) 997-1001.
    188. Bienenstock,E.L., Cooper,L.N., and Munro,P. W., Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex, J. Neurosci., 2 (1982) 32-48.
    189. Bear,M.F., Bidirectional synaptic plasticity: from theory to reality, Philos. Trans. R. Soc. Lond B Biol. Sci, 358 (2003) 649-655.
    190. Rittenhouse,C.D., Shouval,H.Z., Paradiso,M.A., and Bear,M.F., Monocular deprivation induces homosynaptic long-term depression in visual cortex, Nature, 397 (1999) 347-350.
    191. Bear,M.F., Kleinschmidt,A., Gu,Q.A., and Singer,W., Disruption of experience-dependent synaptic modifications in striate cortex by infusion of an NMDA receptor antagonist, J. Neurosci, 10 (1990) 909-925.
    192. Berke,J.D. and Hyman,S.E., Addiction, dopamine, and the molecular mechanisms of memory, Neuron, 25 (2000) 515-532.
    193. Everitt,B.J. and Wolf,M.E., Psychomotor stimulant addiction: a neural systems perspective, J. Neurosci, 22 (2002) 3312-3320.
    194. Hyman,S.E. and Malenka,R.C., Addiction and the brain: the neurobiology of compulsion and its persistence, Nat. Rev. Neurosci, 2 (2001) 695-703.
    195. Faleiro,L.J., Jones,S., and Kauer,J.A., Rapid synaptic plasticity of glutamatergic synapses on dopamine neurons in the ventral tegmental area in response to acute amphetamine injection, Neuropsychopharmacology, 29 (2004)2115-2125.
    196. Ungless,M.A., Whistler, J.L., Malenka,R.C., and Bonci,A., Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons, Nature, 411(2001)583-587.
    197. Borgland,S.L., Malenka,R.C., and Bonci,A., Acute and chronic cocaine-induced potentiation of synaptic strength in the ventral tegmental area: electrophysiological and behavioral correlates in individual rats, J. Neurosci., 24 (2004) 7482-7490.
    198. Hoffman,A.F., Riegel,A.C., and Lupica,C.R., Functional localization of cannabinoid receptors and endogenous cannabinoid production in distinct neuron populations of the hippocampus, Eur. J. Neurosci., 18 (2003) 524-534.
    199. Mato,S. and Pazos,A., Influence of age, postmortem delay and freezing storage period on cannabinoid receptor density and functionality in human brain, Neuropharmacology, 46 (2004) 716-726.
    200. Jones,S., Kornblum,J.L., and Kauer,J.A., Amphetamine blocks long-term synaptic depression in the ventral tegmental area, J. Neurosci., 20 (2000) 5575-5580.
    201. Mansvelder,H.D. and McGehee,D.S., Long-term potentiation of excitatory inputs to brain reward areas by nicotine, Neuron, 27 (2000) 349-357.
    202. Haydon,P.G., GLIA: listening and talking to the synapse, Nat. Rev. Neurosci., 2 (2001) 185-193.
    203. Fields,R.D. and Stevens-Graham,B., New insights into neuron-glia communication, Science, 298 (2002) 556-562.
    204. Laming,P.R., Kimelberg,H., Robinson,S., Salm,A., Hawrylak,N., Muller,C., Roots,B., and Ng,K., Neuronal-glial interactions and behaviour, Neurosci. Biobehav. Rev., 24 (2000) 295-340.
    205. Paudice,P., Gemignani,A., and Raiteri,M., Evidence for functional native NMDA receptors activated by glycine or D-serine alone in the absence of glutamatergic coagonist, Eur. J. Neurosci., 10 (1998) 2934-2944.
    206. Bergeron,R., Meyer,T.M., Coyle,J.T., and Greene,R.W., Modulation of N-methyl-Daspartate receptor function by glycine transport, Proc. Natl. Acad. Sci. U. S. A, 95 (1998) 15730-15734.
    207. Gluck,M.A. and Myers,C.E., Psychobiological models of hippocampal function in learning and memory, Annu. Rev. Psychol., 48 (1997) 481-514.
    208. Royer,S. and Pare,D., Conservation of total synaptic weight through balanced synaptic depression and potentiation, Nature, 422 (2003) 518-522.
    209. Xu,L., Anwyl,R., and Rowan,M.J., Spatial exploration induces a persistent reversal of long-term potentiation in rat hippocampus, Nature, 394 (1998) 891-894.
    210. Sun,X., Zhang,J., Li,H., Zhang,Z., Yang,J., Cui,M., Zeng,B., Xu,T., Cao,J., and Xu,L., Propofol effects on excitatory synaptic efficacy in the CA1 region of the developing hippocampus, Brain Res. Dev. Brain Res., 157 (2005) 1-7.
    211. Kemp,J.A., Foster,A.C., Leeson,P.D., Priestley,T., Tridgett,R., Iversen,L.L., and Woodruff,G.N., 7-Chlorokynurenic acid is a selective antagonist at the glycine modulatory site of the N-methyl-Daspartate receptor complex, Proc. Natl. Acad. Sci. U. S. A, 85 (1988) 6547-6550.
    212. Mothet,J.P., Rouaud,E., Sinet,P.M., Potier,B., Jouvenceau,A., Dutar,P., Videau,C., Epelbaum,J., and Billard,J.M., A critical role for the glial-derived neuromodulator D-serine in the age-related deficits of cellular mechanisms of learning and memory, Aging Cell, 5 (2006) 267-274.
    213. Swanson,R.A. and Graham,S.H., Fluorocitrate and fluoroacetate effects on astrocyte metabolism in vitro, Brain Res., 664 (1994) 94-100.
    214. Franks,K.M. and Sejnowski,T.J., Complexity of calcium signaling in synaptic spines, Bioessays, 24 (2002) 1130-1144.
    215. Duffy,S., Labrie,V., and Roder,J.C., D-serine Augments NMDA-NR2B Receptor-Dependent Hippocampal Long-Term Depression and Spatial Reversal Learning, Neuropsychopharmacology, (2007).
    216. Fox,C.J., Russell,K.L., Wang,Y.T., and Christie,B.R., Contribution of NR2A and NR2B NMDA subunits to bidirectional synaptic plasticity in the hippocampus in vivo, Hippocampus, 16 (2006) 907-915.
    217. Thomson,A.M., Walker,V.E., and Flynn,D.M., Glycine enhances NMDA-receptor mediated synaptic potentials in neocortical slices, Nature, 338(1989)422-424.
    218. Brebner,K., Wong,T.P., Liu,L., Liu,Y., Campsall.P., Gray,S., Phelps,L., Phillips,A.G., and Wang,Y.T., Nucleus accumbens long-term depression and the expression of behavioral sensitization, Science, 310 (2005) 1340-1343.
    219. Goto,Y. and Grace,A.A., Dopamine-dependent interactions between limbic and prefrontal cortical plasticity in the nucleus accumbens: disruption by cocaine sensitization, Neuron, 47 (2005) 255-266.
    220. Hashimoto,K., Fukushima,T., Shimizu,E., Komatsu,N., Watanabe,H., Shinoda,N., Nakazato,M., Kumakiri,C., Okada,S., Hasegawa,H., Imai,K., and Iyo,M., Decreased serum levels of D-serine in patients with schizophrenia: evidence in support of the N-methyl-Daspartate receptor hypofunction hypothesis of schizophrenia, Arch. Gen. Psychiatry, 60 (2003) 572-576.
    221. Hashimoto,K., Fukushima,T., Shimizu,E., Okada,S., Komatsu,N., Okamura,N., Koike,K., Koizumi,H., Kumakiri,C., Imai,K., and Iyo,M., Possible role of D-serine in the pathophysiology of Alzheimer's disease, Prog. Neuropsychopharmacol. Biol. Psychiatry, 28 (2004) 385-388.
    222. Foy,M.R., Stanton,M.E., Levine,S., and Thompson,R.F., Behavioral stress impairs long-term potentiation in rodent hippocampus, Behav. Neural Biol., 48(1987)138-149.
    223. Pavlides,C., Ogawa,S., Kimura,A., and McEwen,B.S., Role of adrenal steroid mineralocorticoid and glucocorticoid receptors in long-term potentiation in the CA1 field of hippocampal slices, Brain Res., 738 (1996) 229-235.
    224. Kim,J.J., Foy,M.R., and Thompson,R.F., Behavioral stress modifies hippocampal plasticity through N-methyl-Daspartate receptor activation, Proc. Natl. Acad. Sci. U. S. A, 93 (1996) 4750-4753.
    225. Gerges,N.Z., Stringer,J.L., and Alkadhi,K.A., Combination of hypothyroidism and stress abolishes early LTP in the CA1 but not dentate gyrus of hippocampus of adult rats, Brain Res., 922 (2001) 250-260.
    226. Xu,L., Anwyl,R., and Rowan,M.J., Behavioural stress facilitates the induction of long-term depression in the hippocampus, Nature, 387 (1997) 497-500.
    227. Bezzi,P. and Volterra,A., A neuron-glia signalling network in the active brain, Curr. Opin. Neurobiol., 11 (2001) 387-394.
    228. Hansson,E. and Ronnback,L., Altered neuronal-glial signaling in glutamatergic transmission as a unifying mechanism in chronic pain and mental fatigue, Neurochem, Res., 29 (2004) 989-996.
    229. Rajkowska,G., Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells, Biol. Psychiatry, 48 (2000) 766-777.
    230. Barros,V.G., Duhalde-Vega,M., Caltana,L., Brusco,A., and Antonelli,M.C., Astrocyte-neuron vulnerability to prenatal stress in the adult rat brain, J. Neurosci. Res., 83 (2006) 787-800.
    231. Stanton,P.K., LTD, LTP, and the sliding threshold for long-term synaptic plasticity, Hippocampus, 6 (1996) 35-42.
    232. Malenka,R.C., Synaptic plasticity in the hippocampus: LTP and LTD, Cell, 78(1994)535-538.
    233. Malenka,R.C. and Bear,M.F., LTP and LTD: an embarrassment of riches, Neuron, 44 (2004) 5-21.
    234. Kopp,C., Longordo,F., Nicholson,J.R., and Luthi,A., Insufficient sleep reversibly alters bidirectional synaptic plasticity and NMDA receptor function, J. Neurosci., 26 (2006) 12456-12465.
    235. Coussens,C.M., Kerr,D.S., and Abraham,W.C., Glucocorticoid receptor activation lowers the threshold for NMDA-receptor-dependent homosynaptic long-term depression in the hippocampus through activation of voltage-dependent calcium channels, J. Neurophysiol., 78 (1997) 1-9.
    236. Artola,A., von Frijtag,J.C., Fermont,P.C., Gispen,W.H., Schrama,L.H., Kamal,A., and Spruijt,B-M., Long-lasting modulation of the induction of LTD and LTP in rat hippocampal CA1 by behavioural stress and environmental enrichment, Eur. J. Neurosci., 23 (2006) 261-272.
    237. Parpura,V., Basarsky,T.A., Liu,F., Jeftinija,K., Jeftinija,S., and Haydon,P.G., Glutamate-mediated astrocyte-neuron signalling, Nature, 369 (1994) 744-747.
    238. Pascual,O., Casper,K.B., Kubera,C., Zhang,J., Revilla-Sanchez,R., Sul,J.Y., Takano,H., Moss,S.J., McCarthy,K., and Haydon,P.G., Astrocytic purinergic signaling coordinates synaptic networks, Science, 310 (2005) 113-116.
    239. Wise,R.A., Dopamine, learning and motivation, Nat. Rev. Neurosci., 5 (2004) 483-494.
    240. Nestler,E. J., Molecular basis of long-term plasticity underlying addiction, Nat. Rev. Neurosci., 2 (2001) 119-128.
    241. Trujillo,K.A. and Akil,H., Inhibition of morphine tolerance and dependence by the NMDA receptor antagonist MK-801, Science, 251 (1991) 85-87.
    242. Wolf,M.E., The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants, Prog. Neurobiol., 54 (1998) 679-720.
    243. Pu,L., Bao,G.B., Xu,N.J., Ma,L., and Pei,G., Hippocampal long-term potentiation is reduced by chronic opiate treatment and can be restored by re-exposure to opiates, J. Neurosci., 22 (2002) 1914-1921.
    244. Roberto,M., Nelson,T.E., Ur,C.L., and Gruol,D.L., Long-term potentiation in the rat hippocampus is reversibly depressed by chronic intermittent ethanol exposure, J. Neurophysiol., 87 (2002) 2385-2397.
    245. Thompson,A.M., Gosnell,B.A., and Wagner,J. J., Enhancement of long-term potentiation in the rat hippocampus following cocaine exposure, Neuropharmacology, 42 (2002) 1039-1042.
    246. Narita,M., Miyatake,M., Suzuki,M., Kuzumaki,N., and Suzuki,T., [Role of astrocytes in rewarding effects of drugs of abuse], Nihon Shinkei Seishin Yakurigaku Zasshi, 26 (2006) 33-39.
    247. Jones,S. and Bonci,A., Synaptic plasticity and drug addiction, Curr. Opin. Pharmacol., 5 (2005) 20-25.
    248. Jones,S. and Bonci,A., Synaptic plasticity and drug addiction, Curr. Opin. Pharmacol., 5 (2005) 20-25.
    249. Kemp,J.A. and Leeson,P.D., The glycine site of the NMDA receptor-five years on, Trends Pharmacol. Sci., 14 (1993) 20-25.
    250. Pu,L., Bao,G.B., Xu,N.J., Ma,L., and Pei,G., Hippocampal long-term potentiation is reduced by chronic opiate treatment and can be restored by re-exposure to opiates, J. Neurosci., 22 (2002) 1914-1921.
    251. Clark,R.E., Manns,J.R., and Squire.L.R., Classical conditioning, awareness, and brain systems, Trends Cogn Sci., 6 (2002) 524-531.
    252. Morris,R.G., Garrud,P., Rawlins,J.N., and O'Keefe,J., Place navigation impaired in rats with hippocampal lesions, Nature, 297 (1982) 681-683.
    253. Nestler,E.J., Neurobiology. Total recall-the memory of addiction, Science, 292(2001)2266-2267.
    254. Yoshikawa,M., Andoh,H., Ito,K., Suzuki,T., Kawaguchi,M., Kobayashi,H., Oka,X, and Hashimoto,A., Acute treatment with morphine augments the expression of serine racemase and Damino acid oxidase mRNAs in rat brain, Eur. J. Pharmacol, 525 (2005) 94-97.
    255. Hassinger,T.D., Guthrie,P.B., Atkinson,P.B., Bennett,M.V., and Kater.S.B., An extracellular signaling component in propagation of astrocytic calcium waves, Proc. Natl. Acad. Sci. U. S. A, 93 (1996) 13268-13273.
    256. Abraham,W.C. and Tate,W.P., Metaplasticity: a new vista across the field of synaptic plasticity, Prog. Neurobiol., 52 (1997) 303-323.
    257. Abraham,W.C., Metaplasticity: Key Element in Memory and Learning?, News Physiol Sci., 14(1999)85.
    258. Panatier,A., Theodosis,D.T., Mothet,J.P., Touquet,B., Pollegioni,L., Poulain,D.A., and Oliet,S.H., Glia-derived D-serine controls NMDA receptor acti(?)ity and synaptic memory, Cell, 125 (2006) 775-784.
    259. Fuchs,S.A., Berger,R., Klomp,L.W., and de Koning,T.J., Damino acids in the central nervous system in health and disease, Mol. Genet. Metab, 85 (2005) 168-180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700