重组柯萨奇A16病毒致病机理及候选疫苗对动物模型致死性保护机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由肠道病毒引起的手足口病(Hand, Foot and Mouth Disease, HFMD)是全球范围内爆发流行的传染病。多发生于5岁以下婴幼儿,多数临床症状较轻微,表现为发热和手足口疱疹,一般2周后自愈。少数患儿可引起迟缓性瘫痪、无菌性脑膜脑炎、肺水肿、心肌炎等并发症。个别重症患儿死亡。近年来,手足口病疫情在亚太地区不断暴发,在我国出现多次大范围爆发流行,对我国儿童的健康造成了严重威胁。2008年卫生部将手足口病列入传染病防治法规定的丙类传染病进行管理,卫生部官方数据显示2008年以来手足口病发病数一直位居丙类传染病之首。引发手足口病的肠道病毒多达20多种,包括肠道病毒71型,柯萨奇病毒A组的16、4、5、9、10型,B组的2、5型以及埃可病毒,其中以肠道病毒71型(enterovirus71, EV71)和柯萨奇病毒A16型(Coxsachievirus A16,CA16)最常见。目前手足口病尚无特异的治疗方法,也无特异的疫苗和抗病毒药物。因此,有关手足口病的临床特征及最常见的病原体EV71和CA16的病毒生物学特性、致病机理及疫苗开发等的研究日益受到人们的重视。
     引起婴幼儿手足口病的人肠道病毒在东南亚国家和太平洋地区广泛流行传播,其中EV71和CA16是两个主要的病原体。CA16和EV71属于小核糖核酸(Ribonucleic Acid, RNA)病毒科(Picornaviridae),肠道病毒属(Enterovirus),是人类多种疾病的致病病原体,可引起结膜炎、发热性皮疹、HFMD、疱疹性咽峡炎、心肌炎、心肌病及无菌性脑膜炎、脑炎、肺炎和急性弛缓性麻痹等疾病,严重影响婴幼儿的身体健康。EV71与CA16感染交替或同时出现,成为引起手足口病流行的主要病原体。
     CA16和EV71病毒基因组是由大约7410个核苷酸组成的单股正链RNA,两端为5′端和3′端非编码区(Untranslated Region, UTR)。基因组中间是单一的开放读码框架(Open Reading Frame, ORF),编码一个较大的多聚蛋白质前体,最终形成11个终末产物。CA16和EV71以非帽依赖形式(cap-independent)由内部核糖体进入位点(internalr ibosome entry site, IRES)直接将核糖体小亚基结合到病毒RNA的5′端而开始翻译过程。在病毒感染周期中,病毒与宿主细胞受体的结合起着重要的作用。目前认为与柯萨奇A16病毒结合的细胞受体主要有:脊髓灰质炎病毒受体(CD155),三个整合蛋白(α2β3, αvβ3和αvβ6),衰减加速因子(CD55),柯萨奇-腺病毒受体(coxsackievirus adenovirus receptor, CAR)和细胞内粘附分子。同时,细胞受体及其体内其他辅助因子也CA16和EV71病毒组织趋向性和致病机理的主要决定因素。
     因此本课题是从手足口病患者咽拭子中分离出CA16和EV71病毒,对其分子生物学特性、生物学特性、细胞适应性、致病机理、体外中和抗体及动物模型的保护性等方面进行了系统分析研究。通过基因组全长测序和与其他已知病毒基因进行对比分析,鉴定为多种病毒形式的重组体,并发现在基因遗传形式上与CA16病毒的原型株G10截然不同,特别是病毒的5′端和P2、P3区基因,当前的流行的CA16病毒是重组形式的A型人肠道病毒,包括CA4、CA16和可能的EV71、CA2、CA3、CA6、CA10和CA12重组体。
     体外中和试验,免疫CA16和EV71病毒的小鼠血清体外中和试验,发现CA16鼠血清能中和多株异源性CA16病毒,且有较高的中和抗体效价,但与EV71病毒进行交叉中和试验时,发现两者之间无交叉中和作用。通过乳鼠体内保护性试验,进一步验证了CA16和EV71之间无相互保护作用。
     在东南亚地区,流行传播的重组形式的CA16病毒是手足口疾病的主要病原体。目前,还没有有效的针对CA16病毒的疫苗。对重组CA16病毒敏感的致病性动物模型是疫苗发展和质量评价的关键因素。在这项研究中,我们从手足口病患者咽拭子中分离并鉴定为重组形式的CA16病毒。这些在人群中流行的CA16病毒对新发展的乳鼠动物模型有较高的致病性。同时,我们也观察到并分析了具有代表性的重组CA16病毒的发病机理。
     在该动物模型试验中,我们研究发现临床分离株重组CA16病毒对新生乳鼠的致病性强于原型株G10病毒和EV71病毒。虽然这些病毒对乳鼠组织器官的特异趋向性存在相同之处,即都对肌肉组织有较强的亲嗜性,表明肌肉组织是引起手足口病毒的主要复制场所,除此之外,对其他组织的趋向性并不相同。分别通过小鼠组织器官的病理分析、免疫组织化学以及实时荧光定量PCR检测不同时间点的病毒增殖情况,证明了重组CA16对新生乳鼠的致病机理,第一次发现了CA16病毒对鼠类动物的肺部易感性。
     该研究中,制备了一种CA16灭活疫苗,包含有氢氧化铝佐剂和微克级的病毒蛋白的试验性灭活疫苗,免疫母鼠,用多株致死性剂量病毒攻击其出生的新生乳鼠,发现疫苗能对乳鼠起到很好的保护性作用,我们又深入分析了被免疫母鼠和乳鼠的体液免疫,通过体外中和试验证明了母鼠和乳鼠血清抗体都能够中和多株异源CA16病毒。而且,在免疫组被致死性剂量攻击的乳鼠的组织病毒滴度和载量明显小于对照组,并且多数组织器官中未能检测到病毒。这种应用致病性的重组CA16病毒建立的致死性动物模型和保护该动物模型的候选疫苗株对未来疫苗的发展和CA16疫苗的评价提供了有利的条件。体外中和抗体试验证明了候选病毒疫苗株具有较强的广谱交叉保护性,小鼠体内攻毒保护性试验证明了免疫了候选株疫苗的乳鼠能很好的保护其他异源CA16病毒的感染。
     为能更好的掌握手足口疾病的预防措施。我们对CA16和EV71病毒进行交叉中和抗体反应及体内动物模型保护性试验,证明两种病毒间无交叉中和及动物保护性。将灭活CA16和EV71制备成双价联合疫苗免疫母鼠,致死性攻毒感染所出生的乳鼠,我们观察到免疫联合疫苗组的体外中和相对单价苗有更高的抗体效价,体内保护性也同时证明了能够较好的保护EV71或CA16病毒致死性攻毒。为未来CA16和EV71联合疫苗的发展奠定了良好的理论基础。
Hand, foot and mouth disease (HFMD) is a global infectious disease caused bymultiple enterovirus and commonly affects children who are younger than5years old.Most patients have mild symptoms and recover spontaneously within2weeks, but asmall proportion of them may suffer from severe complications such as asepticmeningitis, encephalitis, acute flaccid paralysis, pulmonary edema, myocarditis andeven death. In recent years, the prevalence of HFMD in the Asia-Pacific region hasincreased greatly and there were several epidemics in mainland China in the past fewyears. It is a serious threat to health of infants and young children. As HFMD is lifethreatening for children, the disease was listed as one of the category “C” notifiablediseases in China since2nd May2008. The epidemic may further expand, and how toprevent the disease is still very important in future. At present, there is no specifictreatment, specific vaccines and antiviral drugs. Therefore, the clinical characteristicsof HFMD and the research of biology, pathogenesis and prevention of enterovirus areextremely necessary.
     The enterovirus which cause hand, foot and mouth disease spread popular insoutheast Asia and the Pacific. EV71and CA16are the two main pathogens. EV71and CA16belong to Ribonucleic Acid (RNA), Picornaviridae and Enterovirus, whichcan cause a variety of human disease, including conjunctivitis, febrile, rash, HFMDand herpangina, myocarditis, cardiomyopathy and aseptic meningitis, encephalitis,diseases such as pneumonia and acute flaccid paralysis, seriously affects infants andchildren's health. EV71and CA16infection or alternately appear at the same time,become the main pathogens causing, foot and mouth disease epidemic.
     The RNA genome of EV71and CA16consists of7400nucleotides and iscomposed of a5′-untranslated region (UTR) and a3′-UTR, and an open reading frame (ORF), encoding a polyprotein precurosor that is proteolytically cleaved to11endproducts. The translation of CA RNAs generally proceeds by a cap-independentmechanism, in which ribosomes bind directly to an internal ribosome entry site (IRES)in the5′-UTR of the RNA. It might play an important role in viruses binding cellularreceptor in the infectious cycle. Various cellular receptors were demonstratedincluding coxsackievirus-adenovirus receptor (CAR), the complement system (DAF),Polio virus receptors (CD155), α2β3, αvβ3and αvβ6and decay accelerating factorand so on. Meanwhile, the interactions between cellular receptor and some accessoryfactors are thought to be crucial factors in tissue tropism.
     In the study, we have investigated the molecular biology, the biologicalcharacteristic, adaptation to cell culture, neutralization of antibody in vitro andanimal model of CA16which was isolated from FHMD patients. The CA16strainswere identified recombinant form by genome sequencing and compared with otherknown virus gene. Moreover, circulating CA16viruses from HFMD patients aregenetically distinct from the prototype CA16(G10), especially in5′UTR, P2and P3region. The currently circulating CA16viruses are actually complex recombinantviruses involving multiple types A HEV, including CA4, CA16, and possiblyEV71/CA2/CA3/CA6/CA10/CA12. The enterovirus can form different genotypesbecause it mutates extremely easily.
     In neutralization test in vitro, we found the antibody of CA16can neutralizemultiple strains of heterologous CA16virus, even including G10virus, and theneutralizing antibody titer is relatively high. However, the antibody of CA16can notneutralize EV71and the antibody of EV71can not neutralize CA16, these resultswere demonstrated by lethal challenge neonatal mouse model.
     Circulating recombinant forms of CA16(CA16) is a major cause of HFMD inSoutheast Asia. At present, there is no vaccine against CA16viruses. Pathogenicanimal models that are sensitive to diverse circulating CA16viruses would bedesirable for vaccine development and evaluation. In this study, we isolated andcharacterized several circulating CA16viruses from recent HFMD patients. TheseCA16viruses currently circulating in humans were highly pathogenic in a newly developed neonatal mouse model; we also observed and analyzed the pathogenesis ofrepresentative circulating recombinant form (CRF) CA16viruses.
     In this animal model, the pathogenicity of the circulating recombinant formCA16viruses to neonatal mice was stronger than that of the prototype CA16(G10)and EV71virus. Although all the viruses were susceptible to the same organ andtissue including muscle and so on, the mice muscle was the main room where theCA16and EV71viruses replicated. These results were demonstrated throughpathological analysis, immunohistochemistry and viral load. We found in the firsttims that the recombinant form CA16viruses were very susceptible to lung inneonatal mouse model.
     An inactivated CA16vaccine candidate, formulated with alum adjuvant andcontaining sub-microgram quantities of viral proteins, well protected neonatal miceborn to immunized female mice from lethal-dose challenge with a series of CA16viruses. Further analysis of humoral immunity showed that antibody elicited fromboth the immunized dams and their pups can neutralize various lethal viruses bycytopathic effect (CPE) in vitro. Moreover, viral titers and loads in the tissues ofchallenged pups in the vaccine group were far lower than those in the control group,and some were even undetectable. This lethal challenge model using pathogenicCA16viruses and the vaccine candidates that mediated protection in this model couldbe useful tools for the future development and evaluation of CA16vaccine.
引文
[1] Ang, L.W, et al. Epidemiology and control of hand, foot and mouth disease inSingapore,2001-2007[J]. Ann Acad Med Singapore,2009,38(2):106-112.
    [2] Hosoya, M., et al., Genetic diversity of coxsackievirus A16associated withhand, foot, and mouth disease epidemics in Japan from1983to2003. J ClinMicrobiol,2007,45(1):112-120.
    [3] Chang, L.Y, et al. Comparison of enterovirus71and coxsackie-virus A16clinical illnesses during the Taiwan enterovirus epidemic,1998[J]. PediatrInfect Dis J,1999,18(12):1092-1096.
    [4] Zhu, Q, et al. Surveillance of hand, foot, and mouth disease in mainland China(2008-2009)[J]. Biomed Environ Sci,2011,24(4):349-56.
    [5] Zhou, H, et al. Clinical characteristics of hand, foot and mouth disease inHarbin and the prediction of severe cases [J]. Chin Med J (Engl),2012,125(7):1261-1275.
    [6] Zhu, S.B, et al. Severe enterovirus71-associated hang-foot-and-mouth diseasecomplicated by brainstem encephalitis: report of2cases [J]. Zhongguo DangDai Er Ke Za Zhi,2009,11(6):502-513.
    [7]喻文亮,于毅等。 EV71所致重症手足口病的诊治[J]。中国厂矿医学,2008,21(3):257-258.
    [8] Sickles, G M, et al. Recently classified types of Coxsackie virus, group A;behavior in tissue culture [J]. Proc Soc Exp Biol Med,1955,90(2):529-531.
    [9] Schmidt, N J, E.H. Lennette, H H. Ho, et al. An apparently new enterovirusisolated from patients with disease of the central nervous system [J]. J InfectDis,1974,129(3):304-309.
    [10] Bendig, J W, D M. Fleming,et al. Epidemiological, virological, and clinicalfeatures of an epidemic of hand, foot, and mouth disease in England and Wales[J]. Commun Dis Rep CDR Rev,1996,6(6):81-96.
    [11] Rabenau, H.F, M. Richter, H.W. Doerr, et al. Hand, foot and mouth disease:seroprevalence of Coxsackie A16and Enterovirus71in Germany [J]. MedMicrobiol Immunol,2010,199(1):45-51.
    [12] Iwai, M., et al, Genetic changes of coxsackievirus A16and enterovirus71isolated from hand, foot, and mouth disease patients in Toyama, Japanbetween1981and2007[J]. Jpn J Infect Dis,2009,62(4):254-259.
    [13] Shekhar, K, et al. Deaths in children during an outbreak of hand, foot andmouth disease in Peninsular Malaysia--clinical and pathological characteristics[J]. Med J Malaysia,2005,60(3):297-304.
    [14] Aaltonen,T, et al. Measurement of the ratio sigma sigma gamma and preciseextraction of the tt cross section [J]. Phys Rev Lett.2010,105(1):120-130.
    [15] Chang, C.W, Y.L.Leu,J.T. et al. Horng, Daphne Genkwa sieb. Et zucc.Water-soluble extracts act on enterovirus71by inhibiting viral entry [J].Viruses,2012,4(4):539-556.
    [16] Aaltonen, T, et al. Search for exclusive Z-boson production and observation ofhigh-mass pgammagammap over events in over collisions [J]. Phys Rev Lett,2009,102(22):222-232.
    [17] Abulencia, A, et al. Search for new high-mass particles decaying to Leptonpairs in collisions at square root [J]. Phys Rev Lett,2005.95(25):2520-2531.
    [18] Jia, L, et al. Comparisons of epidemiological and clinical characteristics inchildren with hand-foot-mouth disease caused by Enterovirus71andCoxackievirus A16[J]. Zhongguo dang dai er ke za zhi, Chinese journal ofcontemporary pediatrics,2011,13(8):635-642.
    [19] Li, L, et al. Genetic characteristics of human enterovirus71andcoxsackievirus A16circulating from1999to2004in Shenzhen, People'sRepublic of China [J]. J Clin Microbiol,2005,43(8):3835-3849.
    [20] Lin, T Y, et al. Enterovirus71outbreaks, Taiwan: occurrence and recognition[J]. Emerg Infect Dis,2003,9(3):291-303.
    [21] Podin, Y, et al. Sentinel surveillance for human enterovirus71in Sarawak,Malaysia: lessons from the first7years [J]. BMC Public Health,2006,6:180-190.
    [22] Xue-hui, L, Z.Y.Z, Jian-qun,et al. Etiological Diagnosis and Analysis of FourOutbreaks of Hand-foot-mouth Disease [J]. China Preventive Medicine,2008,12:12-19.
    [23] Zong, W, et al. Molecular phylogeny of Coxsackievirus A16in Shenzhen,China, from2005to2009[J]. J Clin Microbiol,2011,49(4):1659-1661.
    [24] Goto, K, et al. Rhombencephalitis and coxsackievirus A16[J]. Emerg InfectDis,2009,15(10):1689-1691.
    [25] Legay, F, et al. Fatal coxsackievirus A-16pneumonitis in adult [J]. EmergInfect Dis,2007,13(7):1084-1096.
    [26] Robinson, C R, F W. Doane, A.J.et al. Rhodes, Report of an outbreak of febrileillness with pharyngeal lesions and exanthem: Toronto, summer1957;isolation of group A Coxsackie virus [J]. Can Med Assoc J,1958,79(8):615-621.
    [27] Urquhart, G E, A survey of coxsackie A16virus antibodies in human sera [J]. JHyg (Lond),1984,93(2):205-212.
    [28] Wang, C Y, et al. Fatal coxsackievirus A16infection [J]. Pediatr Infect Dis J,2004,23(3):275-286.
    [29] Wright, H T, Jr. et al. Fatal infection in an infant associated with Coxsackievirus group A, type16[J]. N Engl J Med,1963,268:1041-1054.
    [30]朱汝南等北京市儿童手足口病与肠道病毒71型和柯萨奇病毒A组16型感染有关[J].中华流行病学杂志,2007.28(10):1004-1008.
    [31]朱俊萍等,2007年北京地区儿童手足口病病原的初步筛查[J]。病毒学报,2009,25(1):23-28。
    [32]徐文体等。天津市手足口病患儿危险因素的病例对照研究[J]。中华流行病学杂志,2009,30(1):100-101。
    [33] Jia, L, et al. Comparisons of epidemiological and clinical characteristics inchildren with hand-foot-mouth disease caused by Enterovirus71andCoxackievirus A16[J]. Zhongguo Dang Dai Er Ke Za Zhi。13(8):635-637.
    [34]王娟等。2007-2008年北京地区CA16VP1区系统进化分析[J]。第三军医大学学报,2009,31(023):2342-2346。
    [35]郭汝宁等。广东省手足口病流行特征和危险因素研究[J]。中华流行病学杂志,2009(5):530-531。
    [36] Norder, H, et al. Sequencing of 'untypable' enteroviruses reveals two newtypes, EV-77and EV-78, within human enterovirus type B and substitutions inthe BC loop of the VP1protein for known types [J]. J Gen Virol,2003,84(4):827-836.
    [37] Oberste, M, et al. Molecular identification of new picornaviruses andcharacterization of a proposed enterovirus73serotype [J]. J Gen Virol,2001,82(Pt2):409-416.
    [38] Oberste, M S, et al. Molecular identification and characterization of twoproposed new enterovirus serotypes, EV74and EV75[J]. J Gen Virol,2004,85(11):3205-3212.
    [39] Oberste, M.S, et al. Enteroviruses76,89,90and91represent a novel groupwithin the species Human enterovirus A [J]. J Gen Virol,2005,86(2):445-451.
    [40] Oberste, M.S, et al. Species-specific RT-PCR amplification of humanenteroviruses: a tool for rapid species identification of uncharacterizedenteroviruses [J]. J Gen Virol,2006,87(1):119-128.
    [41] Junttila, N, et al. New enteroviruses, EV-93and EV-94, associated with acuteflaccid paralysis in the Democratic Republic of the Congo [J]. J Med Virol,2007,79(4):393-400.
    [42] Brown, B, et al. Complete genomic sequencing shows that polioviruses andmembers of human enterovirus species C are closely related in the noncapsidcoding region [J]. J Virol,2003,77(16):8973-8984.
    [43] McMinn, P.C, An overview of the evolution of enterovirus71and its clinicaland public health significance [J]. FEMS Microbiol Rev,2002,26(1):91-107.
    [44] Liu, F, et al. Construction and characterization of an infectious clone ofcoxsackievirus A16[J]. Virol J,2011,8:534-556.
    [45] Hsu, Y.Y, et al. In vivo dynamics of enterovirus protease revealed byfluorescence resonance emission transfer (FRET) based on a novel FRET pair[J]. Biochem Biophys Res Commun,2007,353(4):939-945.
    [46] Kuo, R.L, et al. Infection with enterovirus71or expression of its2A proteaseinduces apoptotic cell death [J]. J Gen Virol,2002,83(6):1367-1376.
    [47] Shih, S.R, et al. Mutations at KFRDI and VGK domains of enterovirus713Cprotease affect its RNA binding and proteolytic activities [J]. J Biomed Sci,2004,11(2):239-248.
    [48] Li, M.L, et al. The3C protease activity of enterovirus71induces humanneural cell apoptosis [J]. Virology,2002,293(2):386-395.
    [49] Lin, J.Y, et al. Viral and host proteins involved in picornavirus life cycle [J]. JBiomed Sci,2009,16:103-115.
    [50] Oberste, M.S, K. Maher, M.A.et al. Pallansch, Evidence for frequentrecombination within species human enterovirus B based on completegenomic sequences of all thirty-seven serotypes [J]. J Virol,2004,78(2):855-867.
    [51] Lai, M.M, RNA recombination in animal and plant viruses [J]. Microbiol Rev,1992,56(1):61-79.
    [52] Figlerowicz, M, J J Bujarski, et al. Genetic recombination (+) RNA viruses[J]. Postepy Biochem,1997,43(4):257-66.
    [53] Cascone, P.J, T.F. Haydar, A.E. Simon,et al. Sequences and structures requiredfor recombination between virus-associated RNAs [J]. Science,1993,260(5109):801-815.
    [54] Gmyl, A P, et al. Nonreplicative RNA recombination in poliovirus [J]. J Virol,1999,73(11):8958-8965.
    [55] Kirkegaard, K. D. Baltimore, et al. The mechanism of RNA recombination inpoliovirus [J]. Cell,1986,47(3):433-443.
    [56] Alejska, M, et al. How RNA viruses exchange their genetic material [J]. ActaBiochim Pol,2001,48(2):391-407.
    [57] Andersson, P, K. Edman, et al. A.M. Lindberg, Molecular analysis of theechovirus18prototype: evidence of interserotypic recombination withechovirus9[J]. Virus Res,2002,85(1):71-83.
    [58] Hyypia, T, et al. Classification of enteroviruses based on molecular andbiological properties [J]. J Gen Virol,1997,78(1):1-11.
    [59] Santti, J, et al. Evidence of recombination among enteroviruses [J]. J Virol,1999,73(10):8741-8749.
    [60] Lukashev, A.N, et al. Recombination in circulating enteroviruses [J]. J Virol,2003,77(19):10423-10431.
    [61] Oberste, M.S, S. Penaranda, M.A. Pallansch, et al.RNA recombination plays amajor role in genomic change during circulation of coxsackie B viruses [J]. JVirol,2004,78(6):2948-2955.
    [62] Zhao, K, et al. Circulating coxsackievirus A16identified as recombinant typeA human enterovirus, China [J]. Emerg Infect Dis,2011,17(8):1537-1550.
    [63] Wang, X, et al. Characterization of full-length enterovirus71strains fromsevere and mild disease patients in northeastern China [J]. PLoS One,2012,7(3):3240-3255.
    [64] Nishimura, Y, et al. Human P-selectin glycoprotein ligand-1is a functionalreceptor for enterovirus71[J]. Nat Med,2009.15(7):794-807.
    [65] Nishimura, Y H. Shimizu, et al. Identification of P-selectin glycoproteinligand-1as one of the cellular receptors for enterovirus71[J]. Uirusu,2009,59(2):195-203.
    [66] Koike S, et al. Identification of an enterovirus71receptor; SCARB2. Uirusu,2009,59(2):189-194.
    [67] Lin, Y.W, et al. Enterovirus71infection of human dendritic cells [J]. Exp BiolMed (Maywood),2009,234(10):1166-1173.
    [68] Yang, B, H. Chuang, K.D. Yang, et al. Sialylated glycans as receptor andinhibitor of enterovirus71infection to DLD-1intestinal cells [J]. Virol J,2009,6:141-152.
    [69] Zhou, T, et al. DC-SIGN and immunoregulation [J]. Cell Mol Immunol,2006,3(4):279-293.
    [70] He, Y, et al. Interaction of coxsackievirus B3with the full lengthcoxsackievirus-adenovirus receptor [J]. Nat Struct Biol,2001,8(10):874-888.
    [71] Bergelson, J M, et al. Isolation of a common receptor for Coxsackie B virusesand adenoviruses2and5[J]. Science,1997,275(5304):1320-1333.
    [72] Carson, S.D, N.N. Chapman, S.M Tracy, et al. Purification of the putativecoxsackievirus B receptor from HeLa cells [J]. Biochem Biophys ResCommun,1997,233(2):325-338.
    [73] Tomko, R.P, R. Xu, L. Philipson, et al. HCAR and MCAR: the human andmouse cellular receptors for subgroup C adenoviruses and group Bcoxsackieviruses [J]. Proc Natl Acad Sci U S A,1997,94(7):3352-3366.
    [74] Martino, T.A, et al. The coxsackie-adenovirus receptor (CAR) is used byreference strains and clinical isolates representing all six serotypes ofcoxsackievirus group B and by swine vesicular disease virus [J]. Virology,2000,271(1):99-108.
    [75] Kim, M., et al. The coxsackievirus and adenovirus receptor acts as a tumoursuppressor in malignant glioma cells [J]. Br J Cancer,2003,88(9):1411-1426.
    [76] Shafren, D.R, et al. Coxsackieviruses B1, B3, and B5use decay acceleratingfactor as a receptor for cell attachment [J]. J Virol,1995,69(6):3873-3887.
    [77] Bergelson, J.M, et al. Coxsackievirus B3adapted to growth in RD cells bindsto decay-accelerating factor (CD55)[J]. J Virol,1995,69(3):1903-1916.
    [78] Noutsias, M, et al. Human coxsackie-adenovirus receptor is colocalized withintegrins alpha (v)beta(3) and alpha(v)beta(5) on the cardiomyocytesarcolemma and upregulated in dilated cardiomyopathy: implications forcardiotropic viral infections. Circulation,2001,104(3):275-290.
    [79] Okamura, T., et al., Effect of caspase inhibitors on myocardial infarct size andmyocyte DNA fragmentation in the ischemia-reperfused rat heart. CardiovascRes,2000,45(3):642-650.
    [80] Koretz, K., et al., Decay-accelerating factor (DAF, CD55) in normal colorectalmucosa, adenomas and carcinomas. Br J Cancer,1992,66(5):810-824.
    [81] Seol, D.W,T.R. Billiar,et al. A caspase-9variant missing the catalytic site is anendogenous inhibitor of apoptosis [J]. J Biol Chem,1999,274(4):2072-2086.
    [82] Martino, T.A, et al. Cardiovirulent coxsackieviruses and thedecay-accelerating factor (CD55) receptor [J]. Virology,1998,244(2):302-314.
    [83]. Shafren, D.R, D.T. Williams, R.D Barry, et al. A decay-acceleratingfactor-binding strain of coxsackievirus B3requires the coxsackievirus-adenovirus receptor protein to mediate lytic infection of rhabdomyosarcomacells [J]. J Virol,1997,71(12): p.9844-8.
    [84] Selinka, H.C, et al. Comparative analysis of two coxsackievirus B3strains:putative influence of virus-receptor interactions on pathogenesis [J]. J MedVirol,2002,67(2):224-33.
    [85] Frisk, G, T. Elfstrom, H. Diderholm, et al. The replication of certain CoxsackieB virus strains in CHO cells [J]. J Virol Methods,2001,98(2):161-175.
    [86] Dechecchi, M.C, et al. Heparan sulfate glycosaminoglycans are involved inadenovirus type5and2-host cell interactions [J]. Virology,2000,268(2):382-390.
    [87] Zaini, Z, P. Phuektes, P. McMinn,et al. Mouse adaptation of a sub-genogroupB5strain of human enterovirus71is associated with a novel lysine to glutamicacid substitution at position244in protein VP1[J]. Virus Res,2012,167(1):86-96.
    [88] Sabin, A B,et al. Characteristics and genetic potentialities of experimentallyproduced and naturally occurring variants of poliomyelitis virus [J]. Ann N YAcad Sci,1955,61(4):924-938.
    [89] Murph, J.R, et al. Sabin inactivated trivalent poliovirus vaccine: first clinicaltrial and seroimmunity survey [J]. Pediatr Infect Dis J,1988,7(11):760-775.
    [90] Evans, D M, et al. Increased neurovirulence associated with a singlenucleotide change in a noncoding region of the Sabin type3poliovaccinegenome [J]. Nature,1985,314(11):548-550.
    [91] Hyypia, T, et al. Pathogenetic differences between coxsackie A and B virusinfections in newborn mice [J]. Virus Res,1993,27(1):71-78.
    [92] Khong, W.X, et al. A non-mouse-adapted enterovirus71(EV71) strain exhibitsneurotropism, causing neurological manifestations in a novel mouse model ofEV71infection [J]. J Virol,2012,86(4):2121-31.
    [93] Wang, Y F, et al. A mouse-adapted enterovirus71strain causes neurologicaldisease in mice after oral infection [J]. J Virol,2004,78(15):7916-24.
    [94] Yao, P P, et al. Enterovirus71-induced neurological disorders in young gerbils,Meriones unguiculatus: development and application of a neurological diseasemodel [J]. PLoS One,2006,7(12):519-526.
    [95] Mao, Q, et al. A neonatal mouse model of coxsackievirus a16for vaccineevaluation [J]. J Virol,2012,86(22):1196-1206.
    [96] Innis, B L. K H. Eckels, et al. Progress in development of a live-attenuated,tetravalent dengue virus vaccine by the United States Army Medical Researchand Materiel Command [J]. Am J Trop Med Hyg,2003,69(6Suppl):1-14.
    [97] Arita, M, et al. Temperature-sensitive mutants of enterovirus71showattenuation in cynomolgus monkeys [J]. Journal of General Virology,2005,86(5):1391-1401.
    [98] Liu, Q, et al. A virus-like particle vaccine for coxsackievirus A16potentlyelicits neutralizing antibodies that protect mice against lethal challenge [J].Vaccine,2012,30(47):6642-6658.
    [99] Liang, Z, et al. Progress on the research and development of humanenterovirus71(EV71) vaccines [J]. Front Med,2013,7(1):111-121.
    [100] Bek, E J, et al. Formalin-inactivated vaccine provokes cross-protectiveimmunity in a mouse model of human enterovirus71infection [J]. Vaccine,2011,29(29):4829-4838.
    [101] Zhu, F C, et al. Efficacy, safety, and immunology of an inactivatedalum-adjuvant enterovirus71vaccine in children in China: a multicentre,randomised, double-blind, placebo-controlled, phase3trial [J]. Lancet,2013.381(9882):2024-2032.
    [102] Odemuyiwa, S O, F D. Adu, A Alimi,et al. Neutralizing antibodies topoliovirus types1and3in cord blood of Nigerian children [J]. J Trop Pediatr,1997.43(3):187-199.
    [103] Liu, C, et al. Purification and characterization of EV71viral particlesproduced from Vero cell grown in a serum-free microcarrier bioreactor system[J]. PLoS One,2011,11(15):808-816.
    [104] Wang W, et al. A mouse muscle-adapted enterovirus71strain with increasedvirulence in mice [J]. Microbes Infect,2011,13(10):862-870.
    [105] Xiu, J H, et al. Necrotizing myositis causes restrictive hypoventilation in amouse model for human enterovirus71infection [J]. Virol J.10(1):215-226.
    [106] Shi J, et al, Identification of conserved neutralizing linear epitopes within theVP1protein of coxsackievirus A16[J]. Vaccine,31(17): p.2130-2136.
    [107] Chen, C.W, et al. Formaldehyde-inactivated human enterovirus71vaccine iscompatible for co-immunization with a commercial pentavalent vaccine [J].Vaccine,2011,29(15):2772-2736.
    [108] Iwai, M, et al. Genetic changes of coxsackievirus A16and enterovirus71isolated from hand, foot, and mouth disease patients in Toyama, Japanbetween1981and2007[J]. Jpn J Infect Dis,2009,62(4):254-269.
    [109] Yang F, et al. Survey of enterovirus infections from hand, foot and mouthdisease outbreak in China,2009[J]. Virol J,2011,8:508-517.
    [110] Mao Q, et al. Antigenicity, animal protective effect and genetic characteristicsof candidate vaccine strains of enterovirus71[J]. Arch Virol,2012,157(1):37-51.
    [111] Chen H, et al. The effect of enterovirus71immunization onneuropathogenesis and protein expression profiles in the thalamus of infectedrhesus neonates [J]. Virology,2012,432(2):417-426.
    [112] Liang, Y, et al. Analysis of the Th1/Th2Reaction in the Immune ResponseInduced by EV71Inactivated Vaccine in Neonatal Rhesus Monkeys [J]. J ClinImmunol,2012,32(5):1048-1058.
    [113] Chen, Y.C, et al. A murine oral enterovirus71infection model with centralnervous system involvement [J]. J Gen Virol,2004,85(1):69-77.
    [114] Hashimoto, I. A. Hagiwara, et al. Pathogenicity of a poliomyelitis-like diseasein monkeys infected orally with enterovirus71: a model for human infection[J]. Neuropathol Appl Neurobiol,1982,8(2):149-156.
    [115] Arita, M, et al. An attenuated strain of enterovirus71belonging to genotype ashowed a broad spectrum of antigenicity with attenuated neurovirulence incynomolgus monkeys [J]. J Virol,2007,81(17):9386-9395.
    [116] Nagata, N, et al. Differential localization of neurons susceptible to enterovirus71and poliovirus type1in the central nervous system of cynomolgusmonkeys after intravenous inoculation [J]. J Gen Virol,2004,85(10):2981-2989.
    [117] Kao, S J, et al. Mechanism of fulminant pulmonary edema caused byenterovirus71[J]. Clin Infect Dis,2004,38(12):1784-1798.
    [118] Chan, Y.F, S. AbuBakar,et al. Human enterovirus71subgenotype B3lackscoxsackievirus A16-like neurovirulence in mice infection [J]. Virol J,2005,2:74-85.
    [119] Shi, Q, et al. Mouse-adapted scrapie strains139A and ME7overcome speciesbarrier to induce experimental scrapie in hamsters and changed theirpathogenic features [J]. Virol J.2005,9:63-76.
    [120] Hurrelbrink, R J,P.C. et al. McMinn, Attenuation of Murray Valleyencephalitis virus by site-directed mutagenesis of the hinge and putativereceptor-binding regions of the envelope protein. J Virol,2001,75(16):7692-7702.
    [121] Shih, S.R., et al. Genetic analysis of enterovirus71isolated from fatal andnon-fatal cases of hand, foot and mouth disease during an epidemic in Taiwan[J].1998,Virus Res,2000,68(2):127-136.
    [122] Brown, B A, et al. Molecular epidemiology and evolution of enterovirus71strains isolated from1970to1998[J].J Virol,1999,73(12):9969-9975.
    [123] Brown,B A, M A.et al. Pallansch, Complete nucleotide sequence ofenterovirus71is distinct from poliovirus [J]. Virus Res,1995,39(2-3):195-205.
    [124] Yamayoshi, S, et al., Scavenger receptor B2is a cellular receptor forenterovirus71[J]. Nat Med,2009,15(7):798-801.
    [125] Ho, M, et al. An epidemic of enterovirus71infection in Taiwan. TaiwanEnterovirus Epidemic Working Group. N Engl J Med,1999,341(13):929-935.
    [126] Ma, E, et al. Estimation of the basic reproduction number of enterovirus71and coxsackievirus A16in hand, foot, and mouth disease outbreaks [J]. PediatrInfect Dis J,2011,30(8):675-689.
    [127] Wu, T C, et al. Immunity to avirulent enterovirus71and coxsackie A16virusprotects against enterovirus71infection in mice [J]. J Virol,2007,81(19):10310-10315.
    [128] Takada, A Y Kawaoka, et al. Antibody-dependent enhancement of viralinfection: molecular mechanisms and in vivo implications [J]. Rev Med Virol,2003,13(6):387-398.
    [129] Huisman, W, et al. Vaccine-induced enhancement of viral infections [J].Vaccine,2009,27(4):505-512.
    [130]周密.柯萨奇B4病毒致小鼠胰腺病变及其全基因组序列的研究[D].长春:吉林大学白求恩医学院。
    [131]王晓美.长春地区手足口病的临床特征和肠道病毒71型的分子生物学特点[D].长春:白求恩第一医院。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700