钢包内衬用MgO基和Al_2O_3基耐火材料对钢质量的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着炼钢技术的发展,特别是洁净钢、低碳和超低碳钢等品种钢生产量的大幅增长,人们对耐火材料产品的要求从单纯强调抗侵蚀和长寿命逐渐转向强调耐火材料在使用过程中尽量少“污染”钢水,对耐火材料的选择从以前主要取决于经济效果(吨钢消耗及价格等),转向更关注冶金效果和重视耐火材料在高温使用条件下对钢质量的影响,主要包括对钢中C、S、P和H等元素以及T[O]、钢中夹杂物、央杂物形态和变性处理等方面。
     本试验采用Consarc.Co.VIM中频炉,选用不同MgO基和Al_2O_3基材质耐火材料做为炉衬材料,包括Al_2O_3-MgO(MgO含量为13.81%)、MgO-Al_2O_3(MgO含量为82.93%)和MgO-CaO系列材料(MgO-CaO材料中CaO含量从10-40%)。对选定钢种(82B和ML15)进行二次冶炼(试验时采用铝脱氧,同时添加试验渣进行保护),冶炼期间采取虹吸管和钢杯对不同冶炼时间钢水进行取样,通过化学分析和扫描电镜方法研究对钢中磷和硫的影响;采用图像分析、扫描电镜和大样电解等方法研究钢中夹杂物的变化情况;选用不同碳源材料和应用静态法,利用化学分析、光学显微镜和扫描电镜方法研究不同碳源材料及碳含量对钢水增碳的影响;采用热力学方法(利用实验数据)对钢中夹杂物成分等进行预测。
     MgO基和Al_2O_3基耐火材料(包括Al_2O_3-MgO、MgO-Al_2O_3和MgO-CaO系列材料)对钢中磷和硫、央杂物以及钢水增碳的影响有很大差异。不同材质炉衬材料对钢中P、S和夹杂物的影响可以排列为Al_2O_3-MgO<MgO-Al_2O_3<MgO-CaO。
     Al_2O_3-MgO和MgO-Al_2O_3材料对去除钢水磷和硫的作用很小,而MgO-CaO系列材料中的游离CaO对磷和硫有明显的去除效果。磷在钢中可以无限溶解,但要去除磷只能是其氧化产物(P_2O_5)进一步与游离CaO生成稳定的化合物(Ca_4P_2O_9);而去除钢中硫主要是通过液相完成的,即MgO-CaO材料中的游离CaO与硫反应生成CaS。Ca_4P_2O_9和CaS等在冶炼过程中被吸附在MgO-CaO内衬表面或上浮至渣中达到去除钢中磷和硫的效果。
     Al_2O_3-MgO材料对去除钢中夹杂物没有作用,反而由于自身被熔蚀增加夹杂物的数量;MgO-Al_2O_3材料对钢水的净化作用有限,但至少不污染钢水;MgO-CaO材料对去除央杂物有明显作用,而且CaO含量越高作用越明显,试验条件下CaO含量大于30%时的效果最明显。
     根据钢水各组元的实际活度与范特霍夫等温式ΔG=ΔG~θ+RTlnJ,可以计算一定温度下钢液中各反应实际反应自由能ΔG,从而判断可能形成的非金属夹杂物种类以及各种央杂物的生成条件。理论计算与实际检测结果基本吻合,即在已知钢液、炉渣和耐火材料成分以及钢中T[O]含量的基础上,可以通过热力学计算预测央杂物的成分。
     MgO-CaO-C砖对钢中增碳研究表明,MgO-CaO-C砖碳含量越高,则碳向钢中溶解的速率越快且总量越大,对钢水的增碳作用越明显。采用炭黑作为碳源材料时对钢水的增碳率小于用传统天然鳞片石墨时的值。
With the development and requirements of clean steel, low carbon and ultra-lowcarbon steel in recent years, the study of refractory focus on the impacts of refractoryon the steel quality at high temperature, including C, S, P, N, H, T[O] and inclusions,rather than corrosion resistance and long life, i.e., refractory cost and consumption inthe past.
     The intermediate frequency furnace with type of Consarc.Co.VIM is adopted inthe study. The MgO based and Al_2O_3 based refractorys are used for the lining, includingAl_2O_3-MgO(13.81%MgO), MgO-Al_2O_3 (82.93%MgO)and MgO-CaO with CaOcontent variation from 10% to 40%. The following steel grades, 82B, ML15 and pureiron are remelted with aluminum deoxidization and slag protection. The samplers aretaken by silica glass tube and steel cup during the melting process. Afterwards, theimpacts of refractory on steel, P, S and inclusions are analyzed by image analyzer, SEM,SLIM etc. Moreover, the phenomenon and mechanism of carbon pick-up areinvestigated with static method and different types of carbon by chemical analyses,optical microscope and SEM. Finally, the thermodynamic calculation is used forinclusions composition prediction.
     The MgO based and Al_2O_3 based refractorys, including Al_2O_3-MgO, MgO-Al_2O_3and MgO-CaO lining have greatly impacts on steel quality, P, S, inclusions and carbonpick-up. It can be ranked as follows, Al_2O_3-MgO<MgO-Al_2O_3<MgO-CaO.
     The results demonstrate that Al_2O_3-MgO and MgO-Al_2O_3 lining contribute little toP and S removal in the melt, however, MgO-CaO lining shows strong ability ofremoving P and S due to the dissociated CaO. P can dissolve into the steel infinitely,nevertheless,P can only be removed by the reaction between P_2O_5 and dissociated CaOto form stable compound, Ca_4P_2O_9. The mechanism of S removal is through liquid, inother words, the dissociated CaO in MgO-CaO lining reacted with sulphur to form CaS.Afterwards, Ca_4P_2O_9 and CaS is absorbed on the surface of MgO-CaO lining or float to the slag, and then the S and P is eliminated from the molten steel.
     Al_2O_3-MgO has no effect on inclusion removal; on the contrary, it can increaseinclusions in the molten steel due to its erosion. MgO-Al_2O_3 lining contributes tocleaning the steel a little, in other words, it doesn't contaminate molten steel at least.MgO-CaO lining has strong ability of reducing inclusions, and it become obvious withCaO content increasing. The best effect appeared at 30% CaO in present trial.
     The free energy AG at certain temperature can be calculated by element activity inthe melt and Van't Hoff isothermal equationΔG=ΔG~θ+RTlnJ, thus inclusion type andcorresponding condition can be predicted. The theorchical calculation is in a goodagreement with trial results, i.e., the inclusions composition can be forecasted bythermodynamic calculation while the composition of molten steel, slag and refractoryand the content of oxygen are predictable.
     The investigation the influence of MgO-CaO-C bricks on carbon pick-up in thesteel indicates that the amount of carbon pick-up goes up with carbon content inMgO-CaO-C bricks, which promote the rate and total amount of carbon dissolution intomolten steel. By substituting charcoal for flake graphite, the extent of carbon pick-up inthe melt is reduced.
引文
[1] 翁宇庆.新一代钢铁材料的重大基础研究[C].高洁净度超细晶微合金化高强高韧钢论文集(文集3).北京:冶金部钢铁研究总院,1999:1-6.
    [2] G. Baumann, K. Knothe, H.J. Fecht. Surface modification, corrugation and nanostructure formation of high speed railway tracks[J]. Nanostructured Materials, 1997, 9(1):751-754.
    [3] A.A. Popov, I.Yu. Pyshmintsev, S.L. Demakov, et al. Structural and mechanical properties of nanocrystalleve titanium processed by severe plastic deformation[J]. Scripta Materialia, 1997, 37(10): 1089-1094.
    [4] 翁宇庆.超级金属[J].金属功能材料,2002,6(1):62-63.
    [5] Wigley D.A. Mechanical Properties of Matherials at Low Temperatures[M]. The International Cryogenics Monograph Series, New York: Plenum Press, 1971: 26.
    [6] Zhong X. C. Thoughts on Strategic Development of China's Refractories Industry[J]. Refractories research, 2003, 12(2): 3-8.
    [7] 王诚训,栾永杰,李洪申.炉外精炼用耐火材料[M].北京:冶金工业出版社,1996:67.
    [8] A. Buhr. Refractories for Steel Secondary Metallurgy [J]. CN-Refractory, 1999, 6 (3): 19-23.
    [9] 陶绍平.钢包内衬用镁钙碳砖开发与应用[J].首钢科技,2002,(1):26-30.
    [10] 单尚华,张壮志,关克正.中国钢铁工业发展战略思考[C].2003年中国钢铁年会论文集.北京:冶金工业出版社,2003:10.
    [11] 苏天森.中国钢铁工业中长期科学与技术发展指南研究情报汇报[C].2004年全国炼钢、轧钢生产技术会议文集.无锡:中国金属协会,2004:35-40.
    [12] 徐匡迪.中国钢铁工业的任务、现状和发展[J].自然杂志,2000,22(4):187-193.
    [13] 李本海,章军,邹宗树.首钢洁净钢冶炼技术最新进展[C].2004年全国炼钢、轧钢生产技术会议文集.无锡:中国金属协会,2004:193-196.
    [14] Christmas I.21世纪世界钢铁工业展望[J].钢铁,1999,34:12-16.
    [15] 翁宇庆.中国钢铁材料现状及发展目标[J].中国冶金,2002,(6):1-4.
    [16] Krause C.A. Refractories:the Hidden History[M]. American Ceramic Society Inc. 1987: 32.
    [17] 严东生.钟香崇耐火材料论文选(序言)[M].北京:冶金工业出版社,1991:1.
    [18] 钟香崇.我国耐火材料工业战略发展方向的几个问题[J].耐火材料,1990,24(4):1-4.
    [19] 钟香崇.展望90年代我国耐火材料的发展[J].耐火材料,1993,27(2):63-68.
    [20] R. D. Schmidt. Refractories for the Steel Industry [M]. England: Elsevier Science Publishers Ltd, 1989: 47-58.
    [21] 钟香崇等.展望新一代优质高效耐火材料[J].耐火材料,2003,37(1):1-10.
    [22] 王学达,陈述江,张红鹰等.镁钙耐火材料对钢水的净化作用[J].耐火材料,2004 38(2):88-90.
    [23] Nils Lindskog. Study on Al deoxidation in ASEA-3KF furnace using redioaction 977 Zr[J]. Scandinavian J. of Metallurgy, 1997, (4): 150-154.
    [24] Kiessling R. Clean Steel(Special Report 77). London, The Iron & Steel Institute. 1962, 19-25.
    [25] 潘秀兰,郭艳玲,王艳红.国外纯净钢生产技术的新发展[J].鞍钢技术,2003,(5):1-5.
    [26] 刘中柱.纯净钢生产技术[J].钢铁,2002(2):64-69.
    [27] Fukumoto S., Mitchell A. The Manufacture of Alloys with Zero Oxide Inclusion Content[C]. Proceedings of the 1991 Vacuum Metallurgy Conference on the Melting and Processing of Specialty Materials I & SS, Inc. Pittsburgh, USA,1991:3-8.
    [28] 李正邦.超洁净钢的新发展[J].材料与冶金学报,2002,(3):161-165.
    [29] 汪大洲.钢铁生产中的脱磷[M].北京:冶金工业出版社,1986:89.
    [30] Inoue R, Usui T, Yamada K. Dephosphurization of Chromium Comaining Iron with Various Oxide-halide Fluxes[J]. Trans ISIJ, 1988, 28: 192-197.
    [31] 魏耀武,李楠.耐火材料对钢水结晶度的影响[J].耐火材料,2001,17(3):58-62.
    [32] 陈肇友.化学热力学与耐火材料[M].北京:冶金工业出版社,2005:444.
    [33] 孙本良,陈新贵,张崇民等.钙基、镁基脱硫剂的脱硫极限[J].钢铁研究学报, 2003.15(2):1-5.
    [34] 常开地等.转炉生产含硫非调制钢中硫化物央杂的研究[C].2004年全国炼钢、轧钢生产技术会议文集,无锡:中国金属协会,2004:214-218.
    [35] Roger J Pomfret. Chemistry of hot metal pretreatment [J]. Steel Times Intemational, 1990,14(3): 14-17.
    [36] Donahue F.M. A study of hot metal desulphurization by magnesium-lime powder injection [J]. Steelmaking Conference Proceedings, 1992: 249-254.
    [37] Irons G.A., Celik C. The kinetics of Iron Desulphurization with Calcium Carbide and Lime-Magnesium [C]. Steelmaking Conference Proceedings, 1992: 255-264.
    [38] Hilty D.C, J.W. Earrel. Modification of Inclusion by Calcium[J]. Iron and Steelmaker, ISS-AIME, 1975(5): 17-22 and (6): 20-27.
    [39] Bannenberg N.清净钢生产耐火物要求[J].耐火物,1996,48(5):234-251.
    [40] 赵俊学.炉外脱硫研究综述[J].钢铁研究,1995,(5):59-53.
    [41] 程煜,任彤.铁水深脱硫发展趋势[J].钢铁,2003,36(4):17-19.
    [42] 及川 滕成.经故事钢中形成的MnS形态控制[J].武钢技术,1996,34(4):28-34.
    [43] 陈训浩.连铸坯夹杂物的控制[J].唐钢技术,1995,(3):1-5.
    [44] 刘克俭,王祖宽.钢中硫化物夹杂的产生及其形态控制[J].河北理工学院学报,2001,23(1):21-23.
    [45] F.布赖思,皮克林.钢的组织与性能[M].北京:科学出版社,1999:69.
    [46] N.Bannenberg.耐火材料与钢水的相互关系以及它们对钢水洁净度的影响[J].现代冶金,2001,(1):51-71.
    [47] 于景坤,刘承军.镁碳耐火材料表面MgO致密层的形成机理[J].耐火材料,2002,36(3):125-127.
    [48] 于景坤,刘承军.影响镁碳耐火材料表面MgO致密层形成的因素[J].耐火材料,2002,36(4):190-193.
    [49] Oeters F. Metallurgieder stahlerzeugung[R]. VerlagStahleisen: Springer Verlag, 1989.
    [50] Gatellier C, OLETTE M. Kinetics of high temperature[J]. Met. 1979, (76): 377-386.
    [51] Schawwinhold D. Demands of Materials Technology on Metallurgy for the Improvement of the Service Properties of Steels[J]. Process of the Intemational Conference on Section Metallurgy. Aachen, Germany. 1987: 3-18.
    [52] Turkd E. Phys. Chem. of surfaces[J]. Arch Eisenhfittenwes, 1983,54:1-10.
    [53] Nadif M, Gatellier C. Renew of metallurgie[J]. Met, 1986, 83: 377-394.
    [54] 黄希祜.钢铁冶金原理[M].北京:冶金工业出版社,1997:68.
    [55] Yuasa G., Sugiura S., Fujine M. et al. Oxygen content in refractories[J]. Transactions ISU, 1983, (23): 289.
    [56] KISHIDA T., KITAGUWA S., SUGIURA S. Dusselorf: Vorein Deutscher Eisenhuttenleute[C]. 7th Japan-Germany Seminar, 1989, 169-180.
    [57] 魏耀武,李楠,杨熹文.耐火材料对钢水洁净度的影响[J].炼钢,2001,17(3):58-62.
    [58] 李会利,李楠,魏耀武.耐火材料对LF钢总氧含量及夹杂物的影响[J].耐火材料,2003,37(1):22-24.
    [59] Jouko Harkki, Raija Rytila. Marko Plander and Salla SundstrOm, Reoxidation caused by refractory materials [J]. Scandinavian Jaumal of Metallurgy, 1990, (19): 116-126.
    [60] Jouko Harkki, Marko Plander. Theoretical Considerations about Reoxidation of Steel Melt by Refractory Materials [J]. Interceram, 1991, 40(5):284-289.
    [61] Lumir Kuchar, Jouko Harkki. Refractory Material-Source of Reoxidation in Tundish[C]. UNTECR 1993 CONGRESS, Sao Paulo Brazil, 1993: 1398-1410.
    [62] SU Tiansen. Clean Production of Steel and Refractories in China's Steel Industry[J]. China's Refractory, 2002, 11(3): 14-17.
    [63] H.T.Tsai, W.J.Sammon, D.E.Hazelton. Characterization and countermeasures for sliver defects in cold rolled products[C]. Steelmaking Conf. Proc., Iron and Society, Warrendale PA, 1990, 73: 49-59.
    [64] 池本正.钢中介在物耐火物[J].耐火物,1998,50(2):65-75.
    [65] 张立峰,吴巍,蔡开科.洁净钢中杂质元素的控制[J].炼钢,1996,31(10): 36-42.
    [66] 冼爱平,张盾,王仪康.钢中残余元素及其对钢性能的影响[J].钢铁,1999,34(10):64-68.
    [67] Jacobi. The processs metallurgy and material engineering of steel with high purity and cleaness[C]. 37th International Refractories Colloquium, Aachen Germany, 1995: 234-240.
    [68] Wei Lin, Wsamu Nomura, Ryosuke N.M., et al. Decarbonization behavior of graphite-containing refractories by molten steel[J]. Taikabutsu Overseas, 1999, 19(4): 15-24.
    [69] 市川 健治,林伟.熔钢耐火物反应[C].日本学术振兴会制钢第19委员会反应研究会,平成11年9月29日 1-7.
    [70] 李为锡.钢中非金属夹杂物[M].北京:冶金工业出版社,1988:228.
    [71] R.Akoskl.钢中非金属夹杂物[J].武钢技术,2001,(1)29-32.
    [72] 1972: 216.
    [73] Sims E. Coexistence Theory of Slag Structure and Its Application to Calculation of Oxidizing Capability of Slag Melts[C]. Electric Furnace Steelmaking Vol. Ⅱ, London, 1963: 370-374.
    [74] 董履仁,刘新华.钢中大型非金属夹杂物[M].北京:冶金工业出版社,1991:2.
    [75] Emi T. A Fluid Mechanical Model of Inclusion Removal [J]. Scand J Metallurgy, 1975, (4): 49-58.
    [76] 李代钟.钢中的非金属夹杂物[M].上海:科学技术出版社,1983:18.
    [77] Picking F. B. Physical Metallurgy and Design of Steels [M]. London, Science Publishers Ltd., 1957: 1-3.
    [78] Holappa L. Injection Metallurgy on Inclusion Control[C]. Swedish Symposium on Non-metallic Inclusions in Steel, Sweden, 1981: 19-34.
    [79] 张德堂.钢中非金属夹杂物鉴别[M].北京:国防工业出版社,1991:89.
    [80] 王丽萍.首钢小方坯纯净度的研究.内部资料.
    [81] 张必赦.沸腾钢大颗粒非金属夹杂的特性[J].钢铁,1980,(3):19-23.
    [82] Borgianni C., Casella G. Vortrag Journess Siderurgiques ATS[J]. Pairs, 1993,(9): 56-61
    [83] Malkiewicz T, Rudnik S. Deformation of Non-metallic Inclusion During Rolling of Steel[J]. Iron & Steel Institute,1963, (1): 33-38.
    [84] Kiessling R. The Influence of Non-metallic Inclusion on the Properties of Steel[J]. Metals, 1969, (10): 48-54.
    [85] 张志仁.钢中夹杂物与耐火材料[J].太钢译文,1999,4(5):19-27.
    [86] Yuasa G., Fujin M. Effect of refractory on deoxidation in molten steel[J]. Transactions ISIJ, 1983, (23) 289.
    [87] Fedock M.P. Experimental Study on Effect of Refractory on Molten Steel Cleanliness[C]. Electric fumace proceeding. 1953.269-274.
    [88] Rudnik S. Discontinuities in Hot-rolled Steel Caused by Non-metallic Inclusions[J]. JISI, 1966, 204(4): 374-376.
    [89] Bruch J. Activity of a Macrophage Factor in Collagen Formation by Silica[J]. Nature, 1967,29(4):512-522.
    [90] 永山宏.消化防止研究[J].工业协会,1979,87(1):22-31.
    [91] 王庆贤.镁钙炭砖在100t LF-VD精炼炉渣线部位的应用[J].炼钢,1995,15(2):10-12.
    [92] 前川静弥.-2-铁鋼中吸光光度定量[J],Jpn.Anal.1971,23(11):512.
    [93] Emi T. Scand J. Melt Flow Characterization in Continuous Casting Tundishes [J]. Metallur, 1975, (4): 1-8.
    [94] 朱光东.耐火材料对钢质量的影响[J].天津职业院校联合学报,2006,8(5):12-13.
    [95] 朱立光,邸光明.洁净钢生产技术[J].河北冶金,1998,(6):4-7.
    [96] Kohnvetel A. Study of the Origin of Aluminunm-Bearing Inclusions in Electric Steel [C]. Electric Furance conference Proceeding, 1969: 27-39.
    [97] Emi. T. Lida Y. Scand. Future steelmaking plant with minimized energy consumption and waste evolution[C]. 3rd International Conference on Refining of Iron and Steel by Power Injection, Lulea, 1983: 15-17.
    [98] Γ.M.伊茨科维奇.钢脱氧及非金属夹杂物的变性处理[M].北京:冶金工业出版社,1986:143.
    [99] Wahlster M. Production and Application of Clean Steel[J]. Iron and Steel Institute, 1972, 205-214.
    [100] H. Jansen. Refractories fror the Production of Steel[J]. CN-Refractories, 1999: 6(3): 15-19.
    [101] 钱之荣,范广举.耐火材料实用手册[M].北京:冶金工业出版社,1992:92.
    [102] 林彬荫,吴清顺.耐火矿物原料[M].北京:冶金工业出版社,1989:57.
    [103] 周良.钢帘线用优质钢丝[J].金属制品,1987:(6):56-59.
    [104] 邢守渭.中国冶金百科全书(耐火材料卷)[M].北京:冶金工业出版社,1992:46.
    [105] 张翔.高碳钢82B线材的质量改进[J].轧钢,2001,18(4):20-23.
    [106] Y. Shinsho, T. Nozaki, K. Sorimachi. Inference of Secondary Steelmaking on Occurrence of Nonmetallic Inclusions in High-Carbon Steel for Tire Cord[J]. Wire J. Int., 1988, 21(9): 145-153.
    [107] 首钢优质厂材基地工业化建设.首钢总公司,鉴定材料,2003年06月.
    [108] Inoue S., Usui T., Yamada K. et al. Dephosphurization of Chroumium-containing Iron with Various Oxide-halide Fluxes[J]. Trans ISIJ, 1988, 28(3): 192-195.
    [109] 陈肇友.化学热力学与耐火材料[M].北京:冶金工业出版社,2005.444-446.
    [110] 田志红,孔祥涛,蔡开科等.BaO-CaO-CaF_2系渣用于钢液深脱磷能力[J].北京科技大学学报,2005,27(3):294-297.
    [111] 董履仁,陈新华.钢种大型非金属夹杂物[M].北京:冶金工业出版社,1991:238.
    [112] Bannenberg N. Demands on refractory material for clean steel production [C]. Proceedings of UNITECR'95 Congress. Kyoto, Japan, 1995: 36-59.
    [113] 魏耀武,李楠.耐火材料对钢水洁净度的影响[J].耐火材料,2001,17(3):58-62.
    [114] 富英君.耐火材料与钢水的相互作用关系以及它们对钢水洁净度的影响[J].现代冶金,2000,Vol.1 51-71.
    [115] 黄希沽.钢铁冶金原理[M].北京:冶金工业出版社,1997:67.
    [116] 江大洲.钢铁生产中的脱磷[M].北京:冶金工业出版社,1986:89-90.
    [117].魏耀武,李楠.耐火材料对钢水洁净度的影响[J].炼钢,2001,17(3):58-62.
    [118] Tamaki K, Yoshitomi J, Harada M. Slag corrosion and coating resistance of magnesia lime carbon brick[J].耐火物, 1996, (8): 427-429.
    [119] 钟香崇.我国镁质耐火材料发展的战略思考[J].硅酸盐通报,2006,25(3):91-95.
    [120] 王学达,陈述江,张红鹰等.镁钙耐火材料对钢水的净化作用[J].耐火材料,2004,38(2):88-90.
    [121] Jacobi. The processs metallurgy and material engineering of steel with high purity and cleaness[C]. 37th International Refractories Colloquium. Aachen, Germany, 1994: 69-75.
    [122] 黄希祜.钢铁冶金原理(M).北京:冶金工业出版社,1990:24.
    [123] Verein Deutscher Eisenhuttenleute (VDEh). Slag Atlas[M]. 2nd Edition. Verlag Stahleisen Gmbh, D-Dusseldorf, 1995:69.
    [124] G.K.Sigworth, J.F.Elliott. The thermodynamics of liquid dilutee iron alloys[J]. Metal Science, 1974,(18):298-316.
    [125] 日本学术振兴会制钢第19次委员会.制钢反应推荐平衡值(改定增补)[S],昭和59年10月:255.
    [126] S-W.Cho, H. Suito. Assessment of calcium-oxygen equilibrium in liquid iron[J]. ISIJ Int, 1994, 34(3): 265-269.
    [127] 陈襄武.炼钢过程脱氧[M].北京:冶金工业出版社,1991:73.
    [128] 杨念祖,朱良.轴承钢钙处理时点状夹杂物生成及转变热力学分析[J].钢铁, 1988,23(3):42-46.
    [129] 陈家祥.钢铁冶金学(炼钢部分)[M].北京:冶金工业出版社,1990:109.
    [130] O.Hiroki, S.Hideaki. Activities in MnO-SiO_2-Al_2O_3 slag and deoxidation equilibria of Mn an Si[J]. Metall. And Meterial Trans., 1996, 27B: 263-270.
    [131] Richard H., Rein, John Chipman. Activities in liduid Solution SiO_2-CaO-MgO-Al_2O_3 at 1600℃[J]. Trans. Metallurgical Society of AIME, 1965, 233(2): 415-425.
    [132] 王诚训.MgO-C质耐火材料[M].北京:冶金工业出版社,1995:40.
    [133] 战东平,姜周华,王文忠.耐火材料对钢水洁净度的影响[J].耐火材料,2003,37(4):230-232.
    [134] 程秀梅译.冶炼超低碳钢用低碳MgO-C砖的开发[J].国外耐火材料,1999,(4):59-60.
    [135] 秦福平译.低碳MgO-C砖的开发[J].国外耐火材料,2002,(5):56-57.
    [136] Souland H. Interactions Mechanisms Between MgO-C and Al-Killed Steels[C]. Proceeding of UNITECR'99. Berlin, Germany, 1999: 301-308.
    [137] 阮国智,李楠.MgO-C耐火材料对钢水的增碳作用及机理的研究进展[J].材料导报,2003,17(7):26-29.
    [138] 何勇译.低导热性MgO-C砖在钢包上的应用[J].国外耐火材料,2002,(1):21-28.
    [141] Shin-ichi Tamura et al. Nano-Tech. Refractories-1: The Development of the Nano Structural Matrix[C]. Proceeding of UNITECR2003. Osaka, Japan, 2003: 517-520.
    [139] Potschke J M. Reaction Between MgO-C Bricks and Steel Melts[C]. Proceedings of UNITECR'99. Berlin, Germany, 1999: 199-208.
    [140] Boher M., Lehmann J. Physico-climical Study of Reaction Between MgO Refractory and Liquid Steel[C]. Proceeding of the 15th Conference of the Ceramic European Society. Nice, France, 2001: 301-309.
    [141] 黄希祜.钢铁冶金原理[M].北京:冶金工业出版社,1990:86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700