磷酸钙复合胶凝材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷酸钙胶凝材料(CPC)具有可塑性、生物相容性好、骨传导性等优点,能直接通过注射器注入局部并快速固化,可作为药物缓释载体辅助治疗,载生长因子促进新骨的形成,是理想的骨替换及修复材料。随着研究的不断完善,这类骨替代材料将会得到越来越广泛的应用,成为生物材料的一个重要分支。但该类材料强度低、力学性能差的问题一直未能得到解决,且相关基础理论研究匾乏,限制了其应用范围,因此,临床仍以采用生物活性较差的PMMA骨水泥为主。针对目前的研究现状,开展CPC及其复合材料的相关理论研究,制备具有可操作性、力学性能好、可诱导成骨、降解速度与成骨速度匹配的CPC骨替代材料并研究其临床应用具有重要意义。为此,本文对CPC制备工艺、微观结构、力学性能及增强和生物学性能进行了研究。
     以磷酸氢钙和碳酸钙为原料,通过适宜的烧成工艺,合成了纯度高、性能稳定的α-磷酸三钙(α-TCP)。单纯α-TCP的水化硬化过程是溶解—析晶的过程,水化产物随pH值的不同而不同,当pH<5.5时,水化产物为羟基磷灰石(HAP)、磷酸八钙(OCP)和磷酸二氢钙(DCPD);当6<pH<8时,水化产物为HAP;NH_4H_2PO_4可促进α-TCP的水化反应,缩短凝固时间,改善抗压强度;当NH_4H_2PO_4的浓度为2.0M时,α-TCP凝固时间为17min,抗压、抗折强度分别为37.17MPa和6.2MPa。
     利用β-磷酸三钙(β-TCP)良好的降解性能和α-TCP的水化硬化性能,采用双氧水造孔法制备了可任意塑形、具有一定的强度的可降解多孔复合胶凝材料。α-TCP/β-TCP复合材料表面具有一定的生物活性,孔径受双氧水浓度影响,双氧水浓度越高,孔径越大;不同孔径材料在SBF中形成类骨磷灰石的能力不同:300~400μm>200~300μm>100~200μm>400~500μm。
     根据晶体成核生长原理,采用两步湿法合成了高纯Ca_4(PO_4)_2O(TTCP)。在此基础上,选用合适的促凝剂,用X衍射、红外光谱及扫描电镜等测试手段研究α-Ca_3(PO_4)_2-Ca_4(PO_4)_2O双相体系泥的胶凝特性,发现80wt%α-TCP-20wt%TTCP硬化体抗压强度最高达38.76MPa,且水化较为完全,水化产物主要是HAP;通过对该组成复合胶凝材料水化硬化过程及其水化转化率的研究,建立了水化反应动力学模型,说明了水化反应过程前期由表面溶解控制、后期由扩散控制。同时探讨了影响α-TCP/TTCP复合胶凝材料水化硬化过程及抗压强度的因素。结果表明:改变柠檬酸浓度、提高胶凝材料颗粒度、降低液固比可以改善α-TCP/TTCP复合胶凝材料的性能;低结晶度的HAP可作为晶种加速水化反应,而高结晶度的HAP可作为“骨料”提高胶凝材料的强度。
     研究发现经过氧化处理的碳纤维(CF)表面氧含量增多,挠曲强度及拨出功增高。采用8wt%NaOH溶液氧化处理碳纤维,长径比为375,添加量为0.3wt%时,增强磷酸钙胶凝材料(CPC)的效果最为理想,抗压强度提高了55%,最大达63.46MPa;抗折强度提高近100%,最大可达11.95MPa;CF增强磷酸钙复合胶凝材料的界面结合方式主要为两种:一是弱化学结合力,利用经氧化后碳纤维表面带有的部分羟基、羧基、羰基及水分子,与基体材料形成有效的弱化学力结合;二是机械结合,当胶凝材料流入和填充经处理后纤维表面的刻蚀沟槽等物理缺陷时,形成的凹凸嵌合使这一作用得到提高,在两者的共同作用下复合材料获得了良好的界面结合。
     研究表明α-TCP/TTCP复合胶凝材料具有良好的生物相容性、生物活性、生物降解性和骨传导性。α-TCP/TTCP植入体内后,界面形成Ca-P富集层,随Ca-P富集层的消失,最终与骨组织融为一体;该胶凝材料能在生物体内逐步降解,并被生物体组织吸收取代,降解和新骨生成过程是同时进行,是既相互联系又相互制约的复杂而缓慢的生物转化过程。
     本文采用湿式反应法合成高纯度TTCP工艺,解决了TTCP制备困难、纯度低的问题,在合成工艺上有较大创新;探讨了钙磷材料的水化机理,简化了磷酸钙化合物的合成和加工工艺,为研究开发其它磷酸钙种类的胶凝材料开辟了新途径;采用α-TCP的水化产物粘结β-TCP颗粒制备双相多孔磷酸钙材料避免了烧结过程和高结晶度HAP的形成,保证了磷酸钙的生物活性,为多孔材料的制备提供了新工艺;采用生物相容相好、力学性能优良的碳纤维与CPC复合,提高了CPC的机械强度,为CPC的增强提供了一条切实可行的方法。该胶凝材料性质稳定、操作方便、能自行固化,适用于作盖髓材料、牙体修复材料及骨缺损充填材料和牙根管充填材料,可提高疗效,缩短疗程,简化操作,具有临床使用价值。
Calcium phosphate cements (CPC) are the emerging class of perfect materials for bone substitution and reparation due to their excellent properties such as plasticity, biocompatibility and osteoconductibility. Calcium phosphate cements are more attractive than hydroxyapatite (HAP) ceramic granules because they can be molded and shaped to fill intricate bony cavities or narrow dental defect sites. The non-toxic and non-carcinogenic properties of CPC make them more advisable than polymethyl methacrylate (PMMA) bone cements. Other interesting properties of CPC are non-exothermic setting and negligible shrinkage. They can be directly injected in the local, rapidly set to hard mass, gradually replaced by new bone in vivo. They can also be used as drug deliver system in adjunctive therapy and growth factor carrier to promote new bone formation. With development of research, CPC have been widely used in restoration and orthopedics, and became an important part of biomaterials. However, the problems of low strength and bad mechanic performance for CPC have not been solved. Furthermore, the fundamental theories that are related to CPC are very deficient. CPC are only used to non-bearing bone and hard tissue repair due to the brittleness, so PMMA still remains a high priority in clinical application. As far as the actual research status of CPC is concerned, it is significant to develop the correlative theory research for CPC and their composites, prepare CPC substitutes which have maneuverability, good mechanic properties, osteoinductivity, matched rate between degradation and bone formation, and investigate the clinical application of CPC. Therefore, the preparation technology, microstructure, mechanic performance, strengthening method and biological properties for CPC were investigated in this paper.
     Via optimized preparation procedure, high pure and stableα-tricalcium phosphate (α-TCP) was synthesized by using dicalcium phosphate and calcium carbonate. The hydration and hardening process ofα-TCP is a dissolution-crystallization process, and the hydration products vary with the pH value. The products are HAP, octocalcium phosphate (OCP) and dicalcium phosphate dihydrate (pH<5.0) or HAP (6<pH<8). NH_4H_2PO_4~- can accelerate the hydration reaction rate, shorten setting time and improve compressive strength ofα-TCP. When the concentration of NH_4H_2PO_4 is 2.0M, the setting time ofα-TCP is 17rain, the compressive strength and bending strength is 37.17MPa and 6.2MPa, respectively.
     Owning to the excellent degradability ofβ-tricalcium phosphate (β-TCP) and the hydration-hardening performance ofα-TCP, degradable porous composite cement was prepared by using the hydrogen peroxide (H_2O_2) method, which can be shaped randomly and has certain mechanic strength. The surface ofα-TCP/β-TCP composite has appropriate bioactivity. The concentration of H202 has an influence on the pore size, which increases with the concentration of H202. The composites with diverse pore size show different potential of forming bone-like apatite in SBF: 300~400μm>200~300μm>100~200μm>400~500μm.
     The high pure Ca_4(PO_4)_2O (TTCP) powders were synthesized by tow-step wet method according to the mechanism of crystal nucleation and growth, andα-TCP/TTCP composite bone cement was prepared. Furthermore, an appropriate set accelerator was selected. The properties ofα-Ca_3(PO_4)_2-Ca_4(PO_4)_2O (α-TCP/TTCP) composite cements were investigated by using X-ray diffraction, infrared absorption spectrum and scanning electron microscope etc. The results show that the highest compressive strength ofα-TCP/TTCP composites reaches 38.76MPa, (80wt%α-TCP-20wt%TTCP), which has fully hydration reaction, and the main product is HAE The kinetics model of hydration reaction was illustrated by investigating the hydrating-hardening process and the transformation rate of hydration, which indicates that the reaction is controlled by surface dissolution during early stage and by diffusion during later stage. Furthermore, the effect factors on hydrating-hardening process and compressive strength ofα-TCP/TTCP were discussed. The results reveal that the properties ofα-TCP/TTCP composite cement can be improved when the concentration of citric acid is changed, the size of cement grains is increased or the ratio of liquid/solid was decreased. HAP with poor crystalline can accelerate the hydration reaction when used as crystal seed, while HAP with perfect crystalline can increase the strength of the cement as aggregate.
     As the results showed, the oxygen content of the fiber surfaces were increased, the flexural strength and pull-out load were improved after carbon fiber (CF) being oxidized. The flexure strength is strongly depending on the oxygen concentration incorporated into the fiber surfaces. The reinforcing effect is optimal by using 8wt% NaOH solution, an aspect ratio of 375, and an additive weight of 0.3wt%. Under these conditions, the compressive strength was increased 55% (the highest strength, is 63.46MPa) and the bending strength nearly increased 100% (the highest strength is 11.95MPa). There are mainly two kinds of interface combination way after calcium phosphate composite cement being reinforced by CF, one way are weak chemical bonds, which form between CPC matrix and CFs by using the hydroxyl group, carboxyl, carbonyl and hydrone on the surface of CF; the other way are mechanical bonds, which are enhanced due to forming concave-convex mosaic when cement inpours and fills in the erosive groove on the surface of CF after oxidization treating. Thus, a favorable interface combination is available via the jointly action of above ways.
     The biological experiments showed thatα-TCP/TTCP composite cement has good biocompatibility, bioactivity, biodegradability and osteoconductivity. Ca-P rich layer formed on the interface afterα-TCP/TTCP being implanted,α-TCP/TTCP cement incorporated into bone tissue with gradual disappearance of the layer. The composite can be gradually degraded, absorbed and replaced in vivo. This indicated that the processes of the biodegradation of the materials and formation of new bone take place at the same time. These complex processes are slow, interdependent and complementary biotransformation.
     In Summary, the wet reaction method for high purity TTCP synthesizing solves the problem that TTCP of low purity is difficult to prepare, which is an innovative technology. The investigation of hydration mechanism and the simplification of synthesis technology for calcium phosphate offer an approach to develop other calcium phosphate cements. A brand-new technics that the hydration products ofα-TCP are used to adhere toβ-TCP grains is provided for preparing porous calcium phosphate double phase ceramics, which avoids formation of high crystallinity HAP in the sintering process and keeps up the bioactivity of calcium phosphate. A feasible technique was invented to strengthen CPC by using CF, which is a kind of biomaterials with excellent biocompatibility and mechanical performance. CPC that has stable properties, convenient operation and self-setting can be used as pulp capping, dental restoration, bone defect reparation and root canal filling materials, which can enhance curative effect, simplify operation and be used widely in clinic.
引文
[1] Einhorn TA. Enhancement of fracture-healing. J Bone Joint Surg AM, 1995, 77(6): 940-956
    
    [2] Larry L. Hench and Julia M. Polak. Third-generation biomedical materials. Science, 2002. 295 :1014-1017
    
    [3] Langer R and Vacanti P. Tissue Engineering. Science, 1993. 260: 920-926
    [4] Hase H. Bilateral open laminoplasty using ceramic laminas for cervical myelopathy. Spine, 1991. 16(11):1269-1276
    
    [5] Roseberg A. Bones, joints, and soft tissue tumors. In: Robins Pathological Basis of Disease. Cotran RS, Kumar V and Collins T, eds. Phiadephia: W. B. Saunders, 1999. 6~(th) edition. 1215-1268
    
    [6] Bloom W, Fawcett DW, editors. Bone. In: A Textbook of Histology. Philadephia: W. B. Saunders, 1986. 11~(th) edition. 199-238
    
    [7] Elliot JC. Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier Science, Amsterdam, 1994. 261-262
    
    [8] William J. Landis, Karen J. Hodgens, James Arena, et al. Structure relation between collagen and mineral in bone as determined by high voltage electron microscopic tomography. Microscopy Research and Technique, 1996. 33(2): 192-202
    
    [9] Landis WJ, Song MJ, Leith A, et al. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction. J. Struct. Biol., 1993. 110: 39-54
    
    [10] De Vernejoul MC. Dynamics of bone remodeling: Biochemical and pathophysiological basis. Eur. J. Chem. Clin. Biochem., 1996. 34(9): 729-734
    
    [11] Natalie S, Roland B. Bone cell and their function. In: Skeletal Growth Factors. Ernesto C. editor. Philadelphia: Lippincott Williams & Wilkins, 2000. 1-17
    
    [12] Bonassar LJ, Vacanti CA. Tissue engineering: The first decade and beyond. J Cell. Biochen. Suppls. 1998. 30/31: 297
    
    [13] Green SA. Skeletal defects. A comparison of bone grafting and bone transport for segmental defects. Clin Orthop, 1994. 301: 111
    
    [14] Frost H M. The biology of fracture healing. Clin. Orthop., 1989. 248:283-309
    
    [15] Gajdobranski D, Zivkovic D. New physiologic aspects of fracture healing. Med. Pregl., 2003. 56(1-2):39-42
    [16] Franklin CM..The ultrastruture and function of bone. Science,1958, 127 (2396): 451-456
    
    [17] Hollinger JO, Brekke J, Gruskin E, et al. Role of bone substitutes. Clin. Orthop., 1996. 324: 55-65
    
    
    [18] Hinz P, Wolf E, Schwesinger G, et al. A new resorbable bone void filler in trauma: early clinical experience and histologic evaluation. Orthopedics, 2002. 25(S5): 597-600
    
    [19] Steveson S, Emery SE, Goldberg VM. Factors affecting bone graft incorporation. Clin. Orthop., 1996.324:66-74
    
    [20] Yourger M G. Problems of autograft for bone defects. Clin. Orthop. and Relat. Res., 1986. 208: 98-102
    
    [21] Chapman T B. Statistics on complications of bone graft. Arch. Orthop. Trauma. Surg., 1979. 94(1): 135-139
    
    [22] Perry CR. Bone repair techniques, bone graft and bone graft substitutes. Clin. Orthop., 1999.360:71-86
    
    [23] Ripamonti U. Bone formation in non-human primates. Clin. Orthop., 1991. 269: 284-294
    
    [24] Cunningham N, Ma S, Reddi AH. Biologic principles of bone induction: application to bone grafts. In: Habal MB, ed. Bone Graft & Bone Substitutes. Philadelphia: W. B. Sauders, 1992. 93-98
    
    [25] Dorcmus RH. Review bioceramics. J Mater Sci, 1992. 27(3): 285-290
    
    [26] Bauer TW, Muschler GF. Bone graft materials. An overview of the basic science. Clin. Orthop., 2000. 371: 10-27
    
    [27] Orban JM, Marra KG, Hollinger JO. Composition options for tissue-engineered bone. Tissue Eng., 2002. 8(4): 529-539
    
    [28] Meinel L, Karageorgiou V, Fajardo R, et al. Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow. Ann Biomed Eng., 2004. 32(1):112-122
    [29] Stock UA and Vacanti JP. Tissue engneering: current state and prospects. Annu. Rev. Med., 2001.52:443-451
    
    [30] Robert F. Tissue engineerings build new bone. Science, 2000. 289:1498-1500
    [31] Burg KJB, Porter S, Kellam JF. Biomaterials developments for bone tissue engineering. Biomaterials, 2000. 21(23):2347-2359
    [32] Min Wang. Developing bioactive composite materials for tissue replacement. Biomaterials, 2003. 24(13): 2133-2151
    [33] Lichun Lu, Susan J. Peter, Michelle D. Lymanet, et al. In vitro degradation of porous poly (L-lactic acid) foams. Biomaterials, 2000. 21(15): 1595-1605
    [34] Janette Furuzawa-Carballeda, Emilio Rojas, Mahara Valverde, et al. Cellular and humoral responses to collagen-polyvinylpyrrolidone administered during short and long periods in humans. J.-Physiol. Pharmacol. Rev. Can. Physiol. Pharmacol., 2003.81(11): 1029-1035
    [35] 李世普.生物材料导论.武汉:武汉工业大学出版社,2000.47-58
    [36] LeGeros R Z. Properties of osteoconductive biomaterials: calcium phosphates. Clinical Orthopaedics and Related Research, 2002. 395:81-98
    [37] Shackelford JF. History and scope of biomaterials. In Advance Ceramics, Vol.1. Bioceramics. New York: Gordon and Breach Science publishers, 1999. 1-3
    [38] Sidqui M, Collin P, Vitte C, et al. Osteoblast adherence and resorption activity of isolated osteoclasts on calcium sulphate hemihydrate. Biomaterials, 1995.16(17): 1327-1332
    [39] Vulal J, Goransson H, Bohling T, et al. Bone marrow induced osteogenesis in hydroxyapatite and carbonate implants. B iomaterials, 1996. 17 (18): 1761-1766
    [40] Albee FH. Studies in bone growth triple calcium phosphate as a stimulus to osteogenesis. Ann. Surg., 1920.71(1): 32-39
    [41] Leriche R, Policard A. The normal and pathological physiology of bone: its problems. Transl. by Moore S and Key JA. London: Henry Kimpton, 1928.128-137
    [42] Hench LL, Splinter R. J., Allen W.C., et al. Bonding mechanisms at the interface of ceramics prothetic materials. J. Biomed. Mater. Res., 1971.2(1): 117-141
    [43] Hentrich RL, Graves GA, Stein HG, et al. An evaluation of inert and resorbable ceramics for future clinical orthopedic applications. J Biomed Mater Res., 1971.5(1):25-51
    [44] Hideki Aoki, Science and Medical Application of hydroxyapatite. Japan Association of Apatite Science(JAAS), Tokyo: Takayama Press System Center Co., 1991.88-107
    [45] Jarcho M, Bolen CH, Bobick J, Kay JP, et al. Hydroxyapatite synthesis and characterization in dense polycrystalline forms. J. Mater. Sci., 1976.11(11):2027-2035
    [46] Driskell TD, Hassler C, McCoy L. The significance of resorbable bioceramics in the repair of bone defects. Proceedings of the 26th annual conference England Medical Biomaterials, 1973.15, 199
    [47] Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clin. Orthop. Relat. Res., 1981. 157:259-278
    [48] Hench LL, Wilson J. Surface-active biomaterials. Science, 1984. 226:630-635
    [49] De Groot K. Calcium phosphate ceramics: their current status. In: Boretos JW, Eden M, eds. Contemporary Biomaterials. USA: Noyes Publication, 1984. 477-492
    [50] Sergey V. Dorozhkin, Matthias Epple. Biological and Medical Significance of Calcium Phosphates. Angewandte Chemic International Edition, 2002.41 (17): 3130-3146
    [51] Y. Hong, C. Wang, et al., The periapical tissue reactions to a calcium phosphate ceramics in the teeth of monkeys, J. Biomed. Mater. Res., 1991. 25(4): 485-498
    
    [52] Oliveira J.F.D., Aguiar P.F.D., Rossi A.M., et al. Effect of process parameters on the characteristics of porous calcium phosphate ceramics for bone tissue scaffolds. Artificial Organs, 2003. 27(5): 406-411
    
    [53] Hench LL. Biomaterials. Science, 1980. 208: 826-831
    
    [54] Gaetano A. Osseointegration of endosseous ceramic implants after postoperative low-power laser stimulation: an in vivo comparative study. Clinical Oral Implants Research, 2003. 14(2): 226-233
    
    [55] T. Kokubo, H.M. Kim, M. Kawashita, et al. What kinds of materials exhibit bone bonding? In: Bone Engineering. Davies JE, ed. Canada: University of Toronto Press, 2000. 190-194
    [56] Hench LL. Bioceramics: from concept to clinic: J. Am. Ceram. Soc, 1991. 74(7): 1987
    
    [57] Williams DF. Definitions in biomaterials. Progress in Biomedical Engineering, New York: Elsevier Publisher, 1987. 66-72
    
    [58] Ducheyne P, Radin S, Ishikawa K. in: Bone-Bonding Biomaterials, P. Ducheyne, T. Kokubo and van Blitter-swijk CA, eds. The Netherlands: Reed Healthcare Communications Publishers, 1992.213-218
    
    [59] Urist MR. Bone: formation by autoinduction. Science, 1965. 150: 893-899
    
    [60] Urist MR, Lietze A, Mizutani H, et al. A bovine low molecular weight bone morphogenetic protein (BMP) fraction. Clin.Orthop., 1982. 162: 219-232
    
    [61] Misiek D J, Kent J N, Carr R E. Soft tissue responses to hydroxyapatite particles of different shapes. J. Oral Maxillofac. Surg., 1984. 42(3): 150-160
    
    [62] Heughebeart M, LeGeros R Z, Ginest M, et al. Physco-chemical characterization of deposits associated with HA ceramics implanted in non osseous sites. J. Biomed. Mater. Res.: Appl. Biomater., 1988. 22(suppl): 257-268
    
    [63] Pettis GY, Kaban LB, Glowacki J. Tissue response to composite ceramics hydroxyapaptitie /demineralized bone implant. J. Oral Maxillofac. Surg., 1990. 48(10):1068-1074
    
    [64] Zhang X. A Study of porous block HA ceramics and its osteogenesis. In: A. Ravaglioli A, Krajewski A, eds. Bioceramics and the Human Body. Amsterdam: Elsevier Science, 1991. 408-415
    
    [65] Yuan H, de Bruijn JD, Li Y, et al. Bone formation induced by calcium phosphate ceramics in soft tissue of dogs: a comparative study between porous alpha-TCP and beta-TCP. J. Mater. Sci.: Mater. Med., 2001. 12(1):7-13
    
    [66] Eid K, Zelicof S, Perona BP, et al. Tissue reactions to particles of bone-substitute materials in intraosseous and heterotopic sites in rats: discrimination of osteoinduction, osteocompatibility, and inflammation. J. Orthopaedic Research, 2001. 19(5): 962-969
    [67] Boyde A, Corsi A, Quarto R, et al. Osteoconduction in large macroporous hydroxyapatite ceramic implants: evidence for a complementary integration and disintegration mechanism. Bone, 1999.24(6): 579-589
    [68] Urist MR, Lietze A, Dawson E. β-tricalcium phosphate delivery system for bone morphogenetic protein. Clin. Orthop. Rel. Res., 1984. 187:277-280
    [69] Sampath TK and Reddi AH. Dissociative extraction and reconstitution of extracellular matrix components involved in local bone differentiation. Proc. Natl. Acad. Sci. USA, 1981. 78(12): 7599-7603
    [70] Ikeda N, Kawanabe K, Nakamura T. Quantitative comparison of osteoconduction of porous, dense A-W glass-ceramic and hydroxyapatite granules (effects of granule and pore sizes). Biomaterials, 1999.20(12): 1087-1095
    [71] 刘欣,史弘道.医用生物材料血液相容性评价研究概况.CHINESE J.DIAL.&ARTIE ORGANS,2003.14(1):40-44
    [72] Oonishi H, Kushitani S, lwaki H, et al. Comparative bone formation in several kinds of bioceramics granules. Bioceramics, 1995.8:137-144
    [73] Saha S, Pal S. Mechanical Properties of Bone Cement: A review. Biomed Mater Res, 1984. 18:435-462
    [74] 戴魁戎,郑泽坤,高玉兰.无机骨粒骨水泥的实验研究.中华外科杂志,1989.27(5):309
    [75] Murphy B P, Prendergast P J. On the magnitude and variability of the fatigue strength of acrylic bone cement. International Journal of Fatigue, 2000.22:855-864
    [76] 吕厚山主编.人工关节外科学,科学出版社,1998.546
    [77] Yamamuro T, Nakamura T, Iida H, et al. Development of bioactive bone cement and its clinical applications. Biomaterials, 1998. 19:1479-1482
    [78] Lee R R, Ogiso M, et al. Examination of hydroxyapatite filled 4-META/MMA-TBB adhesive bone cement in vitro and in vivo enironment, J Biomed Mater Res. 1997.38(1): 11-16
    [79] Frazier DD, Lathi VK, Gerhart TN, et al. Ex Vivo degradation of a poly (propylene glycolfumarate) biodegradable particulate composite bone cement. J Biomed Mater Res, 1997.35(3): 383-389
    [80] Lewis O. Properties of acrylic bone cement: State of the art review. Journal of Biomedical Materials Research, 1998.38(2): 155-182
    [81] Monma H, Ueno S, Kanazawa T. Properties of hydroxyapatite prepared by the hydrolysis of tricalcium phosphate, Journal of chemical technology and biotechnology, 1981.31 (1): 15-24
    [82] Brown WE, Chow LC. Dental restorative cement pastes, US Patent 4,518,430 of May21, 1985
    [83] Brown WE, Chow LC. Combinations of sparingly soluble calcium phosphates in slurries and pastes as mineralizers and cements, US Patent 4,612,053 of Sept.16, 1986
    
    [84] Bai BO, Jazrawi LM, Kummer FJ, et al. The use of an injectable, biodegradable calcium phosphate bone subsitute for the prophylactic augmentation of osteroporotic vertebral compression. Spine, 1999, 24(15): 1521-1526
    
    [85] Driessens FCM, Boltong MG, Bermudez O, et al. Effective formulations for the preparation of calcium phosphate bone cements. J Mater Sci Mater Med., 1994. 5: 164-170
    
    [86] Brown WE, Chow LC. A new calcium phosphate water-setting cement. In: Brown PW Ed, Cement Research Progress,Wasterville,Ohio: 1986.352-379
    
    [87] Fukase Y, Eanes ED, Takagi S, et al. Setting reactions and compressive strength of calcium phosphate cement. J Dent Res., 1990.69(12): 1852-1856
    
    [88] Mirtchi AA, Lemaitre J, Munting E. Calcium phosphate cements: study of the β-tricalcium phosphate-dicalcium phosphate-calcite cement, Biomaterials, 1990. 11(2): 83-88
    
    [89] Khairoun I., Boltong MG, Driessens FC, et al. Some factors controlling the injectability of calcium phosphate bone cements, J. Mater. Sci.: Mater. Med., 1998,9(8): 425-428
    
    [90] Li B, Li YB, Zhang XD, et al. Preparation and properties of self-setting calcium phosphate cement, The third far eastern symposium on biomedical materials, 1997. 224-225
    
    [91] Fernandez E, Gil FJ, Best SM, et al. Improvement of the mechanical properties of new calcium phosphate bone cements in the CaHPO_4-α-Ca_3PO_4 system: compressive strength and microstructural development. J Biomed Mater Res, 1998. 41:560-567
    
    [92] Driessens F CM, Demaeyer E AP, Fernandez E, et al. Amorphous calcium phosphate cements and their transformation into calcium deficient hydroxyapatite. Biocermics, 1996. 9:231-234
    
    [93] Bohner M, Vanlanduyt P, Merkle HP, et al. Composition effects on the pH of a hydraulic calcium phosphate cement. J Mater Sci: Mater Med., 1997. 8(11):675-681
    
    [94] Nakano M, Hirano N, Ishihara H, et al. Calcium phosphate cement leakage after percutaneous vertebroplasty for osteoporotic vertebral fractures: risk factor analysis for cement leakage. Key Engineering Materials, 2001. Vol. 192-195: 813-816
    
    [95] Ooms EM, Egglezos EA, Wolke JGC, et al. Soft-tissue Response to Injectable Calcium Phosphate Cements. Biomaterials, 2003. 24(14): 749-757
    
    [96] Gauthier O, Khairoun I, Weiss P, et al. In vivo Comparison of Two Injectable Calcium Phosphate Biomaterials: Ionic Cement and Polymer-associated Particulate Ceramic. Key Engineering Materials, 2001. Vol.192-195: 801-804
    
    [97] Landuyt P V, Peter B, Beluze L, et al. Reinforcement of Osteosynthesis Screws with Brushite Cement. Bone, 1999, 25(2): 95S-98S
    [98] Mermelstein LE, Mclain RF, Yerby SA. Reinforcement of Thoracolumbar Burst Fractures with Calcium Phosphate Cement: a.Biomechanical Study. Spine, 1998.23:664-670
    [99] Gerhart TN, Renshaw AA, Miller RL, et al. In vivo histologic and biomachnical characteriazation of a biodegradable particulate composite bone cement. J Biomed Mater Res., 1989.23(1): 1-6
    [100] Contantz BR, Ison IC, Fulmer MT, et al. Skeletal repair by in situ formation of mineral phase of bone. Science, 1995.267:1795-1803
    [101] Otsuka M, Matsuda Y, Fox JL, et al. A novel skeletal drug delivery system using self-setting calcium phosphate cement 9: effects of the mixing solution volume on anticancer drug release from homogenous drug-load cement. J Pharm Sci, 1995. 84(6): 733-736
    [102] Sasaki S, Ishii Y. Apatite cement containing antibiotics: efficacy in treating experimental osteomyelitis. J Orthop Sci, 1999.4:361-369
    [103] Blom EJ, Kleirr Nulend J, Klein CP, et al. Transforming growth factor betal incorporated during setting in calcium phosphate cement stimulates bone cell differentiation in vitro. J Biomed Mater Res, 2000. 50(1): 67-74.
    [104] Kamegai A, Shimamurs N, Naitou K, et al. Bone formation under the influence of bone morphogenetic protein/self-setting apatite cement composite as a delvery system. Biomed Mater Eng, 1994. 4(4): 291-307
    [105] Fernandez E, Gil FJ, Ginebra MP, et al. Calcium phosphate bone cements for clinical applications. Part Ⅱ: precipitate formation during setting reactions. J Mater Sci: Mater Med., 1999.10(3):177-183
    [106] LeGeros R Z. Biodegradation and bioresorption of calcium phosphate ceramics. Clinical Materials, 1993.14(1): 65-88
    [107] Monma H, Goto M. Behavior of the α-β Phase Transformation in Tricalcium Phosphate. J Ceram Soc Jpn. (Yogyo-Kyokai-Shi), 1983.91(10): 473-475
    [108] 马克·富尔默,布伦特·R·康斯坦茨,艾拉·C·艾森,等.活性磷酸三钙组合物和应用,1997.CN 1140442A
    [109] Mathew M, Schroeder LW, Dickens B, et al. The crystal structure of α-Ca_3(PO_4)_2. Acta Cryst Sect. B, 1977. B33:1325-1333
    [110] 王新荣,阮立坚.α-Ca_3(PO_4)_2的晶相转变研究.硅酸盐学报,1992.20(2):117-121
    [111] 曹文聪,杨树森.普通硅酸盐工艺学.武汉:武汉工业大学出版社,1996.69-70
    [112] 徐祖耀.相变原理.北京:科学出版社,1998
    [113] Laurence C Chow. Development of self-setting calcium phosphate cements. The ceramic society of Japan, 1991.99(10): 954-964
    [114] Berger G, Gildenhaar R, Ploska U, et al., Short-term dissolution behaviour of some calcium phosphate cements and ceramics. J. Mater. Sci. Let., 1997.16(15): 1267-1269
    [115] Dickens B and Schroeder LW. Investigation of epitaxy relationships between Ca_5(PO_4)_3OH and other calcium orthophosphates. J. Res. Nat. Bur. Stan., 1980. 85(5): 347-362
    [116] Brown WE, Chow LC. Dental restorative cement pastes. US patent, 4518430, 1985-3-21
    [117] Sargin Y. Synthesis of some calcium phosphate based dental materials and structural studies. MS. Thesis, Middle East Technical University, Chemistry Dept, Ankara, 1992
    [118] Sargin Y, Kizilyalli M, Telli C, et al. A New Method for the Solid-State Synthesis of Tetracalcium Phosphate, a Dental Cement: X-Ray Powder Diffraction and IR Studies. Journal of the European Ceramic Society, 1997. 17(7): 963-970
    [119] Ross SD. Inorganic Infrared and Raman Spectra. London: McGraw-Hill Book Company, UK, 1972.69-73
    [120] Ciesla K, Rudnicki R. Synthesis and transformation oftetracalcium phosphate in solid state. Pat Ⅰ: Synthesis of roentgenographically pure tetracalcium phosphate from calcium dibasic phosphate and calcite. Polish J. Chem. 1987.61:719-727
    [121] 郭大刚,孙浩亮,赵晓云等.磷酸四钙的高温固相合成及冷却速率对其纯度的影响.硅酸盐学报,2004.32(6):689-693
    [122] 顾汉卿 许国风.生物医学材料学.天津:天津科技翻译出版公司,1993.56-57
    [123] Yasukawa A, Takase H, Kandori K, et al. Preparation of calcium hydroxyapatite using amides. Polyhedron, 1994.13(22): 3071-3078
    [124] Barnes P.吴兆琦,汪瑞芳译.水泥的结构和性能.北京:中国建筑工业出版社,1991.253-255
    [125] Heimuth RA.新拌水泥浆体的结构和流变学,第七届国际水泥化学会议论文集(中译本),巴黎,1980.北京:中国建筑工业出版社,1985.487
    [126] 殷庆立,苏幕珍.水泥基材料强度影响因素.硅酸盐通报,1999.18(4):60-63
    [127] Ishikawa K, Asaoka K. Estimation of ideal mechanical strength and critical porosity of calcium phosphate cement. J Biomed Mater Res., 1995.29(12): 1537-1543
    [128] 关英主编.岩石矿物分析.北京:地质出版社,1991.159
    [129] Miyamoto Y, Ishikaway K, Takechi M, et al. Basic properties of calcium phosphate cement containing atelocollagen in this liquid or powder phases. Biomaterials, 1998.19(7-9): 707-715
    [130] Frankenburg EP, Goldstein SA, Bauer TW, et al. Biomechanical and histological evaluation of a calcium phosphate cement. J Bone Joint SurgAm, 1998.80:1112-1124
    [131] Chung D DL. Cement reinforced with short carbon fibers: a multifunctional material. Composites Part B: Engineering, 2000.31(6-7): 511-526
    [132] Chung D.D.L. Comparison of submicron-diameter carbon filaments and conventional carbon fibers as fillers in composite materials. Carbon, 2001.39(8): 1119-1125
    [133] Delmotte S, Paul J, Rubio, Angel. Mechanical properties of carbon nanotubes: a fiber digest for beginners. Carbon, 2002.40(10): 1729-1734
    [134] Sheshin ER Properties of carbon materials, especially fibers, for field emitter applications. Applied Surface Science, 2003.215 (1-4): 191-200
    [135] Oh WC, Jang WC. Physical properties and biological effects of activated carbon fibers treated with the herbs. Carbon, 2003.41(9): 1737-1742
    [136] Yang Y. Method for treating carbon fiber surface. Fuel and Energy, 2001.42(1): 23-29
    [137] 阮建明,邹俭鹏,黄伯云.生物材料学.北京:科学技术出版社,2004.45
    [138] Damien C J, Ricci JL, Christel P, et al. Formation of a Calcium Phosphate-rich Layer on Absorbable Calcium Carbonate Bone Graft Substitutes. Clacif Tissue Int., 1994. 55(2): 151-158

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700