穿心莲二萜内酯类化合物跨膜转运机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:通过采用Caco-2细胞模型对穿心莲内酯、脱水穿心莲内酯和新穿心莲内酯在体外的吸收特征进行系统研究,为深入探讨穿心莲二萜内酯类化合物的药代动力学特征及其药理学作用机制提供试验和理论依据。
     方法:①采用摇瓶法测定穿心莲内酯、脱水穿心莲内酯和新穿心莲内酯在正辛醇-水和王辛醇-缓冲液体系中的表观油水分配系数。
     ②建立液相色谱串联质谱检测方法,测定Caco-2细胞外穿心莲内酯、脱水穿心莲内酯和新穿心莲内酯的浓度;建立及全面评价Caco-2单层细胞特性;用Caco-2细胞模型研究穿心莲内酯、脱水穿心莲内酯和新穿心莲内酯的双向转运:考察时间、浓度、体系温度、抑制剂对三者跨膜转运的影响,探究其在Caco-2细胞转运试验中的吸收机制和外排现象。
     ③研究了穿心莲内酯和新穿心莲内酯不同配比条件下在Caco-2细胞模型中的转运情况。固定穿心莲内酯浓度,改变新穿心莲内酯的剂量,观察新穿心莲内酯对穿心莲内酯转运的影响。
     结果:①37℃下穿心莲内酯、脱水穿心莲内酯和新穿心莲内酯的表观油水分配系数分别为3.90(log Papp=0.29)、19.75(log Papp=1.30)和1.75(log Papp=0.24),穿心莲内酯和新穿心莲内酯在pH6磷酸盐缓冲液时表观油水分配系数最大,而脱水穿心莲内酯则在pH5磷酸盐缓冲液时最大。
     ②Transwell板上培养21天后的Caco-2细胞单层结构紧密、TEER值>500Ω·cm2、碱性磷酸酶已经大部分集中于刷状缘一侧(AP侧)、模型通透性较好。
     ③穿心莲内酯在Caco-2细胞模型中,随时间和浓度的增加,药物吸收呈饱和趋势,且受温度和碘乙酰胺影响,但不受外排抑制剂维拉帕米和MK-571的影响。
     ④脱水穿心莲内酯在Caco-2细胞模型中,随着浓度的增加和时间的延长,转运量呈线性增加,不受温度、维拉帕米和MK-571的影响。
     ⑤新穿心莲内酯在Caco-2细胞模型中,存在浓度和时间依赖性,而温度和碘乙酰胺显著的影响转运结果,不受维拉帕米和MK-571的影响。
     ⑥穿心莲内酯和新穿心莲内酯结合给药,随着新穿心莲内酯浓度的增加,穿心莲内酯从肠腔侧(AP)到基底侧(BL)的转运量减少。
     结论:①pH对穿心莲内酯、脱水穿心莲内酯和新穿心莲内酯的表观油水分配系数有一定影响。在一定范围内,pH值增加可使穿心莲二萜内酯类成分的表观油水分配系数减小。
     ②本研究建立的完整Caco-2细胞单层模型符合药物转运试验的要求。
     ③穿心莲内酯在Caco-2细胞中的吸收主要是由载体介导的主动转运,且该主动转运的载体可能位于AP侧。
     ④脱水穿心莲内酯主要以被动扩散为主要方式经由Caco-2细胞单层吸收和转运。
     ⑤新穿心莲内酯在Caco-2细胞中的吸收转运主要由被动转运和主动转运共同参与,主要转运的载体可能位于AP侧。
     ⑥穿心莲内酯的吸收转运可被新穿心莲内酯竞争性抑制,二者的吸收转运可能由同-转运载体介导。
Objective:The present study was to investigate the absorptive mechanism of andrographolide, dehydroandrographolide and neoandrographolide and to refer the experimental and theories gist for a deep study of the pharmacokinetics and pharmacological mechanism, using Caco-2 cells as models and determing apparent octanol-water partition coefficient.
     Methods:①The apparent octanol-water/buffer partition coefficient of andrographolide, dehydroandrographolide and neoandrographolide was measured by shaking flask method.
     ②An LC/MS/MS method was developed for analyzing the Caco-2 cell assay samples. Establish and assess the characteristic of Caco-2 cell monolayer. Caco-2 cell monolayer model was used to investigate the bidirectional transport of andrographolide, dehydroandrographolide and neoandrographolide. The effect of time, drug concentration, system temperature and inhabitors on the absorption of them was observed for exploring the absorptive characteristic and transcellular efflux.
     ③The transport of andrographolide and neoandrographolide was studied while two compound were co-administrated. The effect of neoandrographolide on transport of andrographolide was tested across Caco-2 cell monolayers.
     Results:①The apparent octanol-water partition coefficient (Papp) of andrographolide, dehydroandrographolide and neoandrographolide were 3.90 (log Papp=0.29),19.75 (log Papp=1.30) and 1.75 (log Papp=0.24) in water at 37℃respectively. Andrographolide and neoandrographolide have the highest partition coefficient in pH6, and dehydroandrogapholide in pH5.
     ②Caco-2 cells cultured on transwell plate had formed a tight structure with a TEER value of Caco-2 monolayers being greater than 500Ω·cm2. Permeability and the expression of alkaline phosphatase in the cell model were superior.
     ②Time and concentration saturation were observed for the absorptive transport of andrographolide across Caco-2 monolayers. The transport of andrographolide was influenced by the change of temperature and the presence of iodoacetamide, but not Verapamil or MK-571.
     ④The amount of dehydrographolide which was transported increased linearly with the time and concentration. And it was not influenced by the change of temperature and the presence of Verapamil or MK-571.
     ⑤The amount of dehydrographolide which was transported increased linearly with the time and concentration. But it was influenced by the change of temperature and the presence of iodoacetamide, but not Verapamil or MK-571.
     ⑥Co-administration of andrographolide and neoandrographolide leaded to a decrease transport of andrographolide from apical side to basolateral side when concentration of neoandrographolide increased.
     Conclusions:①The Papp of andrographolide, dehydroandrographolide and neoandrographolide was influenced by pH, and the higher pH could decrease Papp of them.
     ②The study established an integrated Caco-2 cell monolayers model, which met the requirement of the drug transport experiment.
     ③The absorption and transport of andrographolide in Caco-2 cell monolayer was an active transportation mediated by transporter, which mainly located in the apical side of Caco-2 cell monolayers.
     ④The absorption and transport of dehydroangrapholide was passive diffusion as the dominating process in Caco-2 cell monolayers.
     ⑤The absorption and transport of dehydroangrapholide was passive diffusion and active transport. And the transporter maybe located in the apical side of Caco-2 cell monolayers.
     ⑥The absorption and transport of andrographolide could be inhibited by neoandrographolide. They may be mediated by the same transporter.
引文
1. 蔡文涛,韩凤梅.RP-HPLC测定穿心莲、路边青配伍药液中脱水穿心莲内酯在小鼠血浆中的浓度.湖北大学学报(自然科学版),2005,27(1):74-77.
    2. 邓文龙,刘家玉,聂仁吉.穿心莲制剂炎宁—3药理作用初步研究.中草药通讯,1978:26—29.
    3. 邓文龙,刘家玉,聂仁吉.十三种穿心莲注射液的药理作用.中药通报,1985,10(7):38—42.
    4. 刘新建,王一飞,李贵生,穿心莲内酯及其衍生物的药理研究进展.中药材,2003,26(2):-135-138.
    5. 刘峻,唐庆九,王峥涛,新穿心莲内酯对小鼠巨噬细胞呼吸爆发及淋巴细胞增殖的影响.中国新药与临床杂志,2005,24(3):206-209.
    6. 刘峻,王峥涛,新穿心莲内酯对体外活化小鼠巨噬细胞的影响.中国天然药物,2005:308-311.
    7. 汪宝琪,庞志功,汪丛莹.用化学发光法研究家兔穿心莲内酯的药物动力参数.沈阳药科大学学报,1995,12(5):5-9.
    8. 祝晨蔯,莫建霞,杜蜀华,等.家兔血清中穿心莲内酯的血药浓度测定.中药临床与药理.2002,18(4):9-115.
    9. 邹建军,顾小祥,朱余宾,等.穿心莲内酯分散片的药动学与生物等效性.中国医药工业杂志,2007,38(7):506-508.
    10.韩凤梅,蔡文涛,夏启松,等.穿心莲片中脱水穿心莲内酯在大鼠血浆中的药代动力学.中华中医药杂志,2005,20:206-210.
    11.蔡文涛,韩凤梅.RP-HPLC测定穿心莲、路边青配伍药液中脱水穿心莲内酯在小鼠血浆中的浓度.湖北大学学报(自然科学版),2005,27(1):74-77.
    12.魏存芳,姚媛,廖琼峰,等.穿心莲片中穿心莲内酯和脱水穿心莲内酯的药代动力学研究[J].中成药,2009,31(5):724-727.
    13.李克敏,刘文清,朱治本.脱水穿心莲内酯在大鼠体内的动力学研究.中国药理与临床,1990,6(1):38-40.
    14.金晶,赵钟祥,晏菊娇,等.亚硫酸氢钠穿心莲内酯在Beagle犬体内的药动学研究.医药导报,2005:109—110.
    15.何祥久.穿心莲内酯在大鼠体内代谢产物及瓜萎薤白白酒汤活性成分研究:[学位论文].沈阳:沈阳药科大学,2002.
    16.祝晨蔯,莫建霞.穿心莲二萜内酯类代谢产物初步研究.亚台传统医药,2005,4:82-82
    17.崔亮.穿心莲内酯在人体内的代谢产物研究:[学位论文].沈阳:沈阳药科大学,2004.
    18.徐如云,汴如濂等,药理实验方法学,人民卫生出版社第三版,2002:699
    19.高坤,孙进,何仲贵.肠道转运蛋白在药物吸收中的重要作用.药学学报,2006,41(2):97-102.
    20. Juliano RL, Ling VA. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta.1976,455:152-162.
    21. Thiebaut F, Tsuro T, Hamada H, Gottesman MM, Pastan I, Willingham MC. Cellular localization of the multidrug resistance gene product P-glycoprotein in normal human tissue. Proc. Natl. Acad. Sci. 1987,84:7734-7738.
    22. Wacher VJ, Silverman JA, Zhang Y, Benet LZ. Role of P-glycoprotein and cytochrome P450 3A in limiting oral absorption of peptides and peptidomimetics. J. Pharm. Sci.1998,87:1322-1330.
    23. Seelig A, Li X, Wohnsland F. Substrate recognition by P-glycoprotein and the multidrug resistance-associated protein MRP1:a comparison. Int. J. Clin. Pharmacol. Ther.2000,3:111-121.
    24.董宇,杨庆,朱晓新.常见药物肠道吸收的转运蛋白.中国天然药物,2008,6(3):161-167.
    25. Gan LL, Dhiren RT. Applications of the Caco-2 model in the design and development of orally active drugs:elucidation of biochemical and physical barriers posed by the intestinal epithelium. Adv. Drug Deliv. Rev.1997,23:77
    26. Liu DZ, Morris-Natschke SL, Kucera LS, Ishaq KS, Thakker DR. Structure-activity relationships for enhancement of paracellular permeability by 2-alkoxy-3-alkylamidopropylphosphocholines across Caco-2 cell monolayers.J. Pharm. Sci.1999,88:1169-1174.
    27.兰建国,尹东锋,王玉亮.研究药物肠吸收的实验方法和进展.中华综合医学杂志,2003,5(11):37-38.
    28. Hidalgo IJ, Raub TJ, Borchardt RT. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology,1989,96: 736-749.
    29.蒋学华,贾运涛,袁媛,等.细胞模型在口服药物吸收过程研究中的应用.中国药学杂志,2002,37(5):325-327.
    30.王敏,齐云.Caco-2细胞模型及其在药物吸收研究中的应用新进展.中国药学杂志,2007,42(16):1201-1204.
    31.王彦荣,何应.Caco-2细胞模型在天然药物吸收研究中的应用.中国生化药物杂志,2007,28(1):66-68.
    32.杨秀伟,杨晓达,王莹,等.中药化学成分肠吸收研究中细胞模型和标准操作规程的建立.中西医结合学报,2007,5(6):634-641.
    33. Steensma A, Noteborn H, van der Jagt R, et al. Bioavailability of gonistein, daidzein, and their glycosides in intestinal epithelial Caco-2 cells[J]. Environ. Toxicol and Pharmaco.1999,7(3): 209-212.
    34.陈丙銮,李松林,李萍,等.黄酮类化合物在Caco-2细胞模型中的吸收规律.中国天然药物,2006,4(4):299-302.
    35. Woo J s, Lee c H, Shim c K, etal. Enhanced oral bioavailabilty of paclitaxel by coadmiulstration of the P-glycoproteinin hefitor KR30031. Pharm. Res.2003,20(1):24-30.
    36. Maeng H J, Yoo H J, Kiml W, et al. p-glycoprotein in mediated transport of berbedne across Caco-2 cell monolayers. J. Pharm. Sd.2002,91(12):2614-2621.
    37.谢海棠,王广基,赵小辰,等.Caco-2细胞对人参皂营Rg3的摄取及代谢研究.中国临床药理学与治疗学,2004,9(3):258-262.
    38. Xiu-Wei Yang, Jie Teng,Ying Wang, et al. The permeability and efflux of alkaloids of the Evodiae fructus in the Caco-2 model. Phytother. Res.2009,23:56-60.
    39. Hang L Z, Zheng Y, Chow M S S, et al. Investigation of intestinal absorption and disposition of green tea catechns by Caco-2 monolayer model. Int. J. Pharm.2004,287(1-2):1-12.
    40. Dean A G, Mark L F, Robert J S, et al. Accumulation and retention of micellar B-carotene and lutein by Caco-2 human intestinal eels. J. Nutr. Biohem.1999,10(10):573-581.
    41.廖正根,平其能,萧伟,等.桂枝茯苓胶囊中有效成分的大鼠在体肠吸收研究.中国天然药物,2005,3(5):33-37.
    42.朱狄峰.丹参素和芍药苷在Caco-2细胞模型中的转运研究:[学位论文].杭州:浙江大学,2006.
    43.于波涛,张志荣,刘文胜,等.穿心莲内酯体外稳定性研究.中成药,2002,24(5):332.
    44.孙进.现代药物制剂技术丛书——口服药物吸收与转运.北京:人民卫生出版社,2006:345-346.
    45. Dressman J B, Lennemas H. Oral Drug Absorption:Prediction and Assessment.Marcel Dekker Ihc. 2000:51-72.
    46.孙敏,盛星,胡一桥.Caco-2细胞单层的建立与验.中国药学杂,2006,41(18):1431-1434.
    47. During A, Harrison EH. Intestinal absorption and metabolism of carotenoids:insights from cell culture. Arch. Biochem. Biophys.2004,430(1):77-88.
    48.马燕,李沛波,苏微薇.药理实验中Caco-2细胞模型建立的评价指标.中药材,2006,29(9): 946-948.
    49. Mukherjee T, Squillantea E, Gillespieb M, et al. Transepithelial electrical resistance is not a reliable measurement of the Caco-2 monolayer integrity in Transwell. Drug Deliv.2004,11(1):11-18.
    50.马金霞,潘世扬,张卫.MTT比色法用于肿瘤细胞体外药物敏感性试验的检测.临床检验杂志,2002,20(2):104.
    51. Sargent JM. The use of the MTT assay to study drug resistance in fresh tumour samples. Recent Results Cancer Res.2003,161:13-25.
    52.钟大放.以加权最小二乘法建立生物分析标准曲线的若干问题.药物分析杂志,1996,16(5):343-346.
    53.胡晓渝,姚彤炜,曾苏.Caco-2细胞系及其在药物吸收、代谢中的应用.中国现代应用药学杂志,2002,19(2):88-90.
    54. Dokladny K, Moseley PL, Ma TY. Physiologically relevant increase in temperature causes an increase in intestinal epithelial tight junction permeability. Am. J. Physiol. Gastrointest. LiverPhysiol.2006,290(2):204-212.
    55. Yamashita S, Furubayashi T, Kataoka M, et al. Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells. Eur. J. Pharm. Sci.2000,10(3):195-204.
    56. BartelsH. Korsiak E, Daniel H. Transport activity of the MDRl-gene product in monolayers of Caco-2 cells. Z. Gastroent.1994,32:15-18.
    57. Roepe PD. The P-glycoprotein effux pump:how does it transport drug? J. Membrane Biol. 1997:160(3):161-175.
    58. Artursson P, Palm K, Luthman K. Caco-2 monlayers in experimental and theoretical prediction of drug transport. Adv. Drug Deliv. Rev.2001,46(1-3):27-43.
    59. Yee S. In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man-fact or myth. Pharm. Res.1997,14(6):763-766.
    60. Gan LL, Dhiren RT. Applications of the Caco-2 model in the design and development of orally active drugs:elucidation of biochemical and physical barriers posed by the intestinal epithelium. Adv. Drug Deliv. Rev.1997,23(1):77.
    61. Jezyk N, Li C, Stewart BH, et al. Transport of pregabalin in rat intestine and Caco-2 monolayers. Pharm. Res.1999,16(4):519.
    62. Lee K,Thakker DR. Saturable transport of H2-antagonists raniti-dine and famotidine across Caco-2 cell monolayers. J. Pharm. Sci.1999,88 (7):680.
    63.关溯,毕惠嫦,陈孝,等.隐丹参酮在Caco-2细胞模型中的吸收机制.中国临床药理学杂志,2005,21(4):268-271.
    64. Kenji Kuwayama, Hiroyuki Inoue, Tatsuyuki Kanamori, et al. Interaction between 3,4-methylenedioxymethamphetamine, methamphetamine, ketamine, and caffeine in human intestinal Caco-2 cell and in oral administration to rats. Forensic Sci. Int.2007,170:183-188.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700