血竭微粒体系制备及粒径与吸收的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的本文以血竭为研究对象,通过改善辅料、溶剂、温度等因素制成从纳米到微米等不同粒径的血竭自组装制剂,制剂的粒径由马尔文激光粒度仪及透射式电子显微镜测得;将不同粒径的血竭自组装制剂灌胃于小鼠体内用平衡研究法考察其生物利用度;旨在考察不同粒径血竭制剂的吸收情况与其粒径大小之间的相关性,选择最优粒径的制剂以提高血竭生物利用度,提高药效,克服血竭在水中难溶临床难以提高生物利用度的难题。
     方法不同粒径血竭自组装制剂的研究:以50%,60%,70%,80%,90%,100%的乙醇溶液为主要分散基质制得血竭纳米混悬液,观察在以乙醇为主要分散基质的血竭纳米混悬液中加入PEG的种类与量对其粒径的影响;制备以不同分子量的PEG为载体的血竭固体分散体并测得粒径;制得以泊洛萨姆为载体的血竭固体分散体并测得粒径;制得以PEG和泊洛萨姆不同比例混合物为载体的血竭固体分散体,考察不同比例PEG与泊洛萨姆混合物对粒径的影响;考察载药量对血竭粒径的影响;考察加水量对血竭粒径的影响;考察水温对血竭粒径的影响。
     从制剂研究中选取7个不同粒径的血竭制剂,以小鼠体内平衡研究法研究血竭制剂的吸收情况,高效液相电化学检测(HPLC-ECD)法测定小鼠粪便中龙血素A、B及其他指纹峰的含量,比较7个不同粒径的血竭制剂的吸收情况与粒径的相关性。结果不同粒径血竭制剂制备结果:以不同浓度乙醇为主要分散基质的血竭纳米混悬液,常温下粒径均在200nm左右,粒径不受乙醇浓度的影响。在以乙醇为主要分散基质的血竭纳米混悬液中加入助乳化剂PEG,当低温时加入PEG会使溶液中析出物更少且析出物粒径更均匀,而在室温时,溶液中不形成析出物,溶液粒径随着加入PEG分子量的增大粒径增大,当加入PEG600时粒径约为300nm,当加入PEG4000时粒径约为2μm;以不同分子量的PEG为载体制备血竭固体分散体时,随着PEG分子量的大小变化,粒径变化不呈规律性,经电子显微镜测定平均粒径约为183nm;以泊洛萨姆为载体制得血竭固体分散体时,制成的溶液澄明,可能已形成胶束;以泊洛萨姆与PEG4000混合物为载体制备血竭固体分散体时,当泊洛萨姆的比例超过50%能形成澄明的溶液,当PEG4000:泊洛萨姆=60:40,70:30,75:25,80:20时,平均粒径分别为29,45,59,123nm.即随着PEG百分含量变大,粒径在一定范围内变大;当制备固体分散体时,载体能承载的药量是一定的,一般1g载体最多能使0.2g的血竭粉末分散均匀;加水量不对血竭制剂的粒径造成影响;温度对血竭纳米自组装制剂的粒径影响较大,温度低于室温时,溶液中常出现大小不一的析出物。
     选取7个不同粒径的血竭制剂,以小鼠平衡研究法研究血竭制剂的吸收情况,HPLC-ECD法测定小鼠粪便中龙血素A、B及其他指纹峰的残留情况,结果平均粒径小于2.6μm的样品龙血素A、B的吸收百分比和100.83μm样品的吸收百分比相比较,前者约为后者的两倍,其他指纹图谱峰也是随着粒径的减小,吸收百分比增大。从100.83μm到2.6μm这个粒径范围内表现为最明显的随着粒径的减小,吸收率增加,从2.6μm以后再减小血竭自组装制剂的粒径的话,吸收率增加的幅度较小。
     结论制剂粒径大小是影响血竭吸收的关键,在2.6μm以上,粒径越小,血竭吸收百分比越大;2.6μm以下的粒径,吸收百分比增加的幅度较小,吸收可能已经达到饱和。吸收率与粒径呈线性相关,粒径越小,吸收率越大。本论文表明将龙血竭药材制成小粒径自组装制剂后,生物利用度明显提高,对血竭剂型改革具有一定的意义。
Objective:
     In this paper, different diameter Dragon's blood preparation from nanometer to micrometer was prepared by changing the auxiliary、solvent、temperature and other factors. The diameter of the preparations were measured by the Malvern laser size analyzer and electron microscope. After Dragon's blood preparation with different diameter were given to mice ig, its bioavailability would be texted with the balance research method.This paper would text its correlation between Dragon's blood diameter and its absorption,select the optimal diameter of Dragon's blood preparation to enhance its bioavailability,improve its efficacy and overcome Dragon's blood's poor water-solubility,improve its bioavailability in clinical.
     Method:
     The study of Dragon's blood preparation with different diameter:
     Dragon's blood nanometer suspension,taking 50%.60%.70%.80%.90%.100% ethanol as the main dispersion matrix system, was made up.Observed its influence to diameter by adding different type or quantity PEG to the Dragon's blood nanometer suspension taking ethanol as the main dispersion matrix system; Dragon's blood solid dispersion with different molecular weight's PEG as carrier was prepared,and measured its diameter; Dragon's blood solid dispersion with poloxamer as carrier was prepared,and measured its diameter; Dragon's blood solid dispersion with PEG and poloxamer mixtures of different ratios as carrier was prepared, and measured its diameter, examined the influence to the diameter of different ratios; Examined the influence of drug loading to the Dragon's blood diameter; Examined the influence of watering quantity to the Dragon's blood diameter; Examined the influence of tempeature to the Dragon's blood diameter.
     Dragon's blood preparation of 7 different diameter were selected,and studied its absorption in mice with the balance research method. Loureirin A. B and other fingerprint peak levels in mice feces were determined by HPLC-electrochemical determination(HPLC-ECD),compared its correlation between Dragon's blood diameter and its absorption.
     Result:
     The results of the prepared of different diameter Dragon's blood:
     The Dragon's blood nanometer suspension's diameter with different concerntrations of ethanol as the main dispersion matrix system was about 200nm in room temperature, the diameter was not influence of ethanol concerntration. There was auxiliary PEG adding to the Dragon's blood nanometer suspension with ethanol as the main dispersion matrix system, when the low temperature, adding PEG would cause less precipitation and more uniform diameter in solution, when at room temperature,there was no precipition in solution,the diameter was increasing with the adding PEG molecular increased. The diameter was about 300nm when adding PEG600, the diameter was about 2μm when adding PEG4000. The average diameter of Dragon's blood solid dispersion with PEG as carrier was about 183nm,measured by electron microscope. The diameter did not change regulary with PEG molecular weight change. Poloxamer as carrier to get Dragon's blood solid dispersion, the solution made of clarity, may form micelle. There was Dragon's blood solid dispersion with the mixture of poloxamer and PEG4000 as carrier, when the ratio of poloxamer was more than 50%,the solution was clarity, when the ratio was PEG4000:poloxamer=60:40,70:30,75:25,80:20, the average diameter was about 29,45, 59,123nm,namely along with PEG the percentage content was larger, the diameter was larger in certain rang. The carrier carried the drug was certain, when prepared Dragon's blood solid dispersion, generally 1g carrier can support 0.2g drug at most; The watering quantity did not influence Dragon's blood diameter; Temperature effected on the diameter of Dragon's blood preparation, when temperature was lower than room temperature, precipitates of different size often appeared in solution.
     This experiment selected Dragon's blood preparation of 7 different diameter, studied its absorption in mice with the balance research method. Loureirin A、B and other fingerprint peak levels in mice feces were determined by HPLC-ECD. The results showed that, Loureirin A、B absorption percentage in the sample that average diameter was smaller than 2.6μm was twice than in the sample that average diameter was about 100.83μm.Other fingerprint peak's absorption percentage also increased with the diameter decreased. From 2.6μm to100.83μm, the performance was most obvious with diameter decreased, the absorption rat increased. When the diameter was less than 2.6μm, futher reduce the diameter of Dragon's blood preparation,then a less extent increase in absorption rate.
     Conclusion:Diameter of the Dragon's blood preparation was key to its absorption. When the diameter was more than 2.6μm, the smaller the diameter, the greater percentage of Dragon's blood absorption. When the diameter is less than 2.6μm, the absorption percentage increases scope is small, the absorption possibility already achieved saturated. Absorption rate was correlated with the diameter, the smaller the diameter, the absorption rate is higher. This paper showed that, the bioavailability increased significantly after made small diameter of Dragon's blood. There was certain significance to the formulation reform of Dragon's blood.
引文
[1]粱文权.生物药剂学与药物动力学[M],人民卫生出版社:2003,第二版,10.
    [2]高坤,孙进,何仲贵.口服药物吸收中的生物药剂学性质[J].沈阳药科大学学报,2007,24(3):186-192.
    [3]Tsuji, and Tamai.Carrier-mediated intestinal transport of drugs[J].Pharm Res,1996,13(7):963-77.
    [4]Gottesman, M.M. and I. Pastan.Biochemistry of multidrug resistance mediated by the multidrug transporter[J]. Annu Rev Biochem,1993,62:385-427.
    [5]南莉莉,张超,杜娟等.现代口服药物的吸收问题及促吸收方法的概述[J].上海医药,2008,29(8):355-358.
    [6]周昕.药物吸收体外研究方法的概述[J].中国临床药理学与治疗学,2006,11(4):379-384.
    [7]鲁小笋,李燕.肠道P-糖蛋白和细胞色素P4503A对口服药物吸收的联合作用[J].国外医学:药学分册,2004,31(2):108-111.
    [8]Amidon, G. L.Lennernas, H.Shah, V. P.et al. A theoretical basis for a biopharmaceutic drug classification:the correlation of in vitro drug product dissolution and in vivo bioavailability[J]. Pharm Res,1995,12(3):413-20.
    [9]O'Driscoll, C.M. and B.T. Griffin. Biopharmaceutical challenges associated with drugs with low aqueous solubility-the potential impact of lipid-based formulations[J]. Adv Drug Deliv Rev,2008, 60(6):617-24.
    [10]Xiao, c.Balsalazine decreases intestinal mucosal permeability of dextran sulfate sodium-induced colitis in mice[J].中国药理学报:英文版,2009,12(7):987-993.
    [11]Avdeef, A. Determination of liposomal membrane-water partition coefficients of ionizable drugs[J]. Pharm Res,1998,15(2):209-15.
    [12]占先利.食物对药物治疗效果的影响[J].时珍国医国药,2005,16(10):1066-1066.
    [13]石磊,张远.饮食对药物吸收的影响[J].新医学,2000;31(4):244-245.
    [14]黄林清,张恩娟.食物对药物吸收代谢的影响[J].中国药房,2002,13(2):116-117.
    [15]邹国华.胃镜检查同时测定胃液pH值的临床价值[J].现代保健:医学创新研究,2008,5(21):82-82.
    [16]Hsieh, P.W., C.F. Hung, and J.Y. Fang, Current prodrug design for drug discovery[J]. Curr Pharm Des,2009,15(19):2236-50.
    [17]Chabot, G.G. Etoposide bioavailability after oral administration of the prodrug etoposide phosphate in cancer patients during a phase I study[J]. J Clin Oncol,1996,14(7):2020-30.
    [18]Amidon, G. L. Walgreen, C. R. Jr.5'-Amino acid esters of antiviral nucleosides, acyclovir, and AZT are absorbed by the intestinal PEPT1 peptide transporter [J]. Pharm Res,1999,16(2):175.
    [19]Scala-Bertola, J.Rabiskova, M.Lecompte, T. et,al. Granules in the improvement of oral heparin bioavailability. Int J Pharm,2009,374(1-2):12-6.
    [20]韩玉梅,鄢丹,袁海龙.苦参素磷脂复合物在大鼠体内的生物利用度研究[J].中国中药杂志,2007;32(23):2508-2510.
    [21]Semalty, A.Semalty, M.Singh, D.et al., Development and physicochemical evaluation of pharmacosomes of diclofenac[J]. Acta Pharm,2009,59(3):335-44.
    [22]Hostetler, K.Y.Alkoxyalkyl prodrugs of acyclic nucleoside phosphonates enhance oral antiviral activity and reduce toxicity:current state of the art[J]. Antiviral Res,2009,82(2):A84-98.
    [23]Sun, N.In vitro evaluation and pharmacokinetics in dogs of solid dispersion pellets containing Silybum marianum extract prepared by fluid-bed coating[J]. Planta Med,2008,74(2):126-32.
    [24]陈洁.多烯紫杉醇固体分散体的制备和体内外研究[J].中国药学杂质,2007,42(22):1717-1722.
    [25]韩刚,王传胜,张永等.固体分散体提高姜黄素溶出度的研究[J].中国中药志,2007,32(7):637-638.
    [26]Patel, M.Tekade, A.Gattani, S.et al.Solubility enhancement of lovastatin by modified locust bean gum using solid dispersion techniques[J]. AAPS PharmSciTech,2008,9(4):1262-9.
    [27]Chen, Y.Li, G.Huang, J. Get al.Comparison of self-microemulsifying drug delivery system versus solid dispersion technology used in the improvement of dissolution rate and bioavailability of vinpocetine[J]. Yao Xue Xue Bao,2009,44(6):658-66.
    [28]Xu, H.He, L.Nie, S.et al.Optimized preparation of vinpocetine proliposomes by a novel method and in vivo evaluation of its pharmacokinetics in New Zealand rabbits[J]. J Control Release, 2009,140(1):61-8.
    [29]Patel, D. and K.K. Sawant. Self micro-emulsifying drug delivery system:formulation development and biopharmaceutical evaluation of lipophilic drugs[J]. Curr Drug Deliv,2009,6(4):419-24.
    [30]杜红,牛欣,冯前进等.穿心莲内酯口服微乳与穿心莲内酯片在家兔体内生物利用度的比较研究[J].中药新药与临床药理,2007,18(3):217-219.
    [31]崔升淼,赵春顺,何仲贵.葛根黄酮自微乳化给药系统的体内外评价[J].中药材,2007,30(6):684-687.
    [32]Wu, H. Lu, C.Zhou, A.et al. Enhanced oral bioavailability of puerarin using microemulsion vehicle[J]. Drug Dev Ind Pharm,2009,35(2):138-44.
    [33]刘晓阳,曹丰亮,刘锡联等.氟比洛芬自乳化给药系统中释放的体内外分[J].中国医院药学杂志,2007,27(3):343-346.
    [34]孟健,郑梁元.辛伐他汀微乳的制备及犬体内药物动力学[J].中国医药工业杂志,2007,38(11):772-775.
    [35]李剑惠,胡英,钦富华等.氯雷他定自乳化释药系统的制备和质量评价[J].中南药学,2008,6(4):414-416.
    [36]Trotta, M. Gallarate, M. Carlotti, M. E.et al.Preparation of griseofulvin nanoparticles from water-dilutable microemulsions[J]. Int J Pharm,2003,254(2):235-42.
    [37]Cui, J. Yu, B. Zhao, Y. et al.Enhancement of oral absorption of curcumin by self-microemulsifying drug delivery systems[J]. Int J Pharm,2009,371(1-2):148-55.
    [38]Balakrishnan, P. Lee, B. J. Kim, J. O.et al.Enhanced oral bioavailability of dexibuprofen by a novel solid self-emulsifying drug delivery system (SEDDS) [J]. Eur J Pharm Biopharm,2009,72(3): 539-45.
    [39]Li,X. Gu, L. Xu, Yet al.Preparation of fenofibrate nanosuspension and study of its pharmacokinetic behavior in rats[J]. Drug Dev Ind Pharm,2009,35(7):827-33.
    [40]Singh, A.K. Chaurasiya, A. Awasthi, A.et al.Oral bioavailability enhancement of exemestane from self-microemulsifying drug delivery system (SMEDDS) [J]. AAPS PharmSciTech,2009,10(3): 906-16.
    [41]Zuo, Z. Tam, Y. K. Diakur, J.et al.Hydroxypropyl-beta-cyclodextrin-flutamide inclusion complex. Ⅱ. Oral and intravenous pharmacokinetics of flutamide in the rat[J]. J Pharm Pharm Sci,2002,5(3): 292-8.
    [42]Fernandes, C.M, M. Teresa Vieira, and F.J. Veiga, Physicochemical characterization and in vitro dissolution behavior of nicardipine-cyclodextrins inclusion compounds[J]. Eur J Pharm Sci, 2002,15(1):79-88.
    [43]Pokharkar, V. Khanna, A. Venkatpurwar, V.et al.Ternary complexation of carvedilol, beta-cyclodextrin and citric acid for mouth-dissolving tablet formulation[J]. Acta Pharm, 2009,59(2):121-32.
    [44]deJesus, M.B. Pinto Lde, M. Fraceto, L. Ret al.Improvement of the oral praziquantel anthelmintic effect by cyclodextrin complexation[J]. J Drug Target,2009,18(1):21-6.
    [45]刘建成,黄一帆,陈庆等.超微粉碎对鱼腥草中金丝桃苷和槲皮苷溶出的影响[J].福建农林大学学报:自然科学版,2007,36(2):167-170.
    [46]Anand, P. Nair, H. B. Sung, B.et al.Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo[J]. Biochem Pharmacol,2010,79(3):330-8.
    [47]Inoue, Y. Yoshimura, S. Tozuka, Y.et al. Application of ascorbic acid 2-glucoside as a solubilizing agent for clarithromycin:solubilization and nanoparticle formation[J]. Int J Pharm,2007,331(1): 38-45.
    [48]Lambert, G.. Fattal, E. Brehier, A. et al.Effect of polyisobutylcyanoacrylate nanoparticles and lipofectin loaded with oligonucleotides on cell viability and PKC alpha neosynthesis in HepG2 cells[J]. Biochimie,1998,80(12):969-76.
    [49]吕瑞勤,朱家壁.阿昔洛韦眼用壳聚糖纳米粒的制备及家兔生物利用度研究[J].药学与临床研究,2007,15(1):14-17.
    [50]Giannavola, C. Bucolo, C. Maltese, A.et al. Influence of preparation conditions on acyclovir-loaded poly-d,l-lactic acid nanospheres and effect of PEG coating on ocular drug bioavailability [J]. Pharm Res,2003,20(4):584-90.
    [51]Fresta, M. Ocular tolerability and in vivo bioavailability of poly(ethylene glycol) (PEG)-coated polyethyl-2-cyanoacrylate nanosphere-encapsulated acyclovir[J]. J Pharm Sci,2001,90(3): 288-97.
    [52]戴幼琴.尼莫地平纳米脂质微粒大鼠体内药动学及生物利用度研究[J].中国药学杂质,2007,42(24):1885-1887.
    [53]田治科,胡富强,丁建潮等.西罗莫司固体脂质纳米粒的制备及在大鼠体内的相对生物利用度[J].中国医药工业杂志,2006,37(9):610-613.
    [54]Muller, R.H., C. Jacobs, and O. Kayser. Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future[J]. Adv Drug Deliv Rev, 2001,47(1):3-19.
    [55]Demirel, M. Yazan, Y. Muller, R. H.et al. Formulation and in vitro-in vivo evaluation of piribedil solid lipid micro-and nanoparticles[J]. J Microencapsul,2001,18(3):359-71.
    [56]Bernkop-Schnurch, A. and M. Pasta, Intestinal peptide and protein delivery:novel bioadhesive drug-carrier matrix shielding from enzymatic attack[J]. J Pharm Sci,1998,87(4):430-4.
    [57]Wu, Y.P., M.R. Huo, and J.P. Zhou, Preparation of silymarin-loaded amphiphilic chitosan micelle and its in situ absorption in rat intestine[J]. Yao Xue Xue Bao,2009,44(6):651-7.
    [58]Uchiyama, T. Sugiyama,T. Quan, Y. S. et al. Enhanced permeability of insulin across the rat intestinal membrane by various absorption enhancers:their intestinal mucosal toxicity and absorption-enhancing mechanism of n-lauryl-beta-D-maltopyranoside[J]. J Pharm Pharmacol, 1999,51(11):1241-50.
    [59]钟华宜.测定猪饲料氨基酸利用率的体外法研究进展[J].中国畜牧杂志,2004,40(2):39-41.
    [60]Cornaire, G. Effect of polyoxyl 35 castor oil and Polysorbate 80 on the intestinal absorption of digoxin in vitro[J]. Arzneimittelforschung,2000,50(6):576-9.
    [61]程晓华,熊玉卿.熊果酸在Caco-2细胞单层模型中的跨膜转运[J].中国药理学通报,2009,25(8):1118-1119.
    [62]Artursson, P., K. Palm, and K. Luthman, Caco-2 monolayers in experimental and theoretical predictions of drug transport[J]. Adv Drug Deliv Rev,2001,46(1-3):27-43.
    [63]Hovgaard, L. Drug delivery studies in Caco-2 monolayers. Synthesis, hydrolysis, and transport of O-cyclopropane carboxylic acid ester prodrugs of various beta-blocking agents[J]. Pharm Res, 1995,12(3):387-92.
    [64]Ginski, M.J. and J.E. Polli, Prediction of dissolution-absorption relationships from a dissolution/Caco-2 system[J]. Int J Pharm,1999,177(1):117-25.
    [65]Lennernas, H. Ahrenstedt, O. Hallgren, R.et al. Regional jejunal perfusion, a new in vivo approach to study oral drug absorption in man[J]. Pharm Res,1992,9(10):1243-51.
    [66]吴正红.壳聚糖及其衍生物包覆脂质体对胰岛素肠道吸收的影响[J].药学学报,2005,40(7):618-622.
    [67]张经济,连至诚,许冠荪等.消化道生理有病理学基础与临床[M].广东科技出版社,1997,10(第一版):297.
    [68]蒋晔,赫晓花,刘虹菊.HPLC测定灌胃虎杖提取物大鼠粪便及尿液中大黄素和大黄素甲醚[J].中草药,2007,38(1):57-59.
    [69]钟大放,陈笑艳.液相色谱-串联质谱法快速测定血浆样品中的药物浓度:在药物动力学研究中的应用[J].质谱学报,2004,25(B10):121-122,120.
    [70]刘萌,王荣福.放射性核素示踪技术检测端粒酶活性的研究进展[J].中国医学影像技术,2009,(1):18-20.
    [71]卢贺起,张智,魏雅川等.以药效法测定四物汤药动学参数的研究[J].中药药理与临床,1995,11(1):11-13.
    [72]窦昌贵,成俊.当归四逆汤镇痛抗炎作用的实验研究[J].中国实验方剂学杂志,1999,5(5):38-39.
    [73]薛焰,袁红宇.药理效应法测定超细粉马钱子和普通粉马钱子的药动学参数[J].南京中医药大学学报,2002,18(2):94-95.
    [74]党月兰,张玉琳.用小鼠急性死亡率法测定4-苯基丁酮-2的表观药动学能数[J].兰州医学院学报,1992,18(1):26-28.
    [75]曹鉴平,王士贤.马蔺子素的小鼠急性累计死亡率法测定表观药动学参数的研究[J].天津药学,2002,14(3):36-37.
    [76]魏刚,尹雪,何建雄,阳春砂仁GC-MS特征指纹图谱“数字化”信息的构建与应用[J].中成药,2008,30(9):1256-1260.
    [77]钟海军,邓英杰,王丽君等.灯盏花素脂质体/水分配系数的研究与应用[J].沈阳药科大学学报,2005,22(2):110-114.
    [78]葛庆华,周臻,支晓瑾等.灯盏花素在犬体内的药动学和绝对生物利用度研究[J].中国医药工业杂志,2003,34(12):618-620,632.
    [79]沈群,罗佳波.中药复方药代动力学研究的特殊性[J].中成药,2004,26(8):665-666.
    [80]任平,黄熙.麻醉犬心房内注射复方川芎汤后血清和川芎嗪药时曲线双峰[J].第四军医大学学报,2000,21(7):S157-S160.
    [81]周莉玲,李锐.丁公藤注射液的药动学相关性研究[J].中成药,1999,21(9):439-443.
    [82]陈定芳,宋启示.血竭资源开发的研究进展[J].广州中医药大学学报,2004,21(6):489-492.
    [83]蓝鸣生.龙血竭研究进展[J].医学文选,2005,24(6):1053-1055.
    [84]王凤珠,陈海燕.从文献计量学分析中国珍贵资源龙血竭的研究.农业图书情报学刊,2007,19(9):163-164,173.
    [85]王雪芬,卢文杰,陈家源.剑叶龙血树化学成分的研究一剑叶龙血素A和B的结构测定[J].广西中医药,1993,16(1):38-39.
    [86]卢文杰,王雪芬, 陈家源.剑叶龙血树氯仿部位化学成分的研究[J].药学学报,1998,33(10):755-758.
    [87]唐人九,文东旭,韦宏.广西血竭石油醚和醋酸乙酯部位中的化学成分[J].中国中药杂质,1995,20(7):421-423.
    [88]韦宏,文东旭,刘晓松.广西血竭石油醚和醋酸乙酯部位中的化学成分(Ⅱ)[J].中国中药杂质,1998,23(10):616-618.
    [89]屠鹏飞,陶晶, 胡迎庆.龙血竭黄酮类成分研究[J].中国中药杂质,2003,1(1):27-29.
    [90]申秀民.广西血竭化学成分的研究[J].中草药,2004.35(7):728.
    [91]朱卫东,孙志琴.龙血竭的药理作用研究[J].黑龙江医药,2006,19(5):403-404.
    [92]文东旭.龙血竭的研究进展[J].中草药,2001,32(11):1053
    [93]林芳,任杰红.血竭的药效学研究[J].云南中医中药杂志,1999,20(1):31-33.
    [94]锦亮,江东福.云南血竭的化学成分及抗真菌活性[J].云南植物研究,1995,17(3):336-340.
    [95]史晓海,邓秀珍.薄层扫描法测定骨折挫伤散中血竭素的含量[J].中成药,1991,13(1):10-10.
    [96]刘迪,邱泽雨.薄层扫描法测定盘根接骨中血竭素的含量[J].沈阳药科大学学报,1996,13(4):251-254.
    [97]刘玉珍,李秀芬.复肢胶囊质量标准的研究[J].中成药,1996,18(1):17-19
    [98]杨淑桂.溃结康灌肠液的制备与质量控制[J].中成药,1998,20(2):41-41.
    [99]宋前流,胡双丰.薄层色谱与紫外光谱联合鉴别血竭与龙血竭[J].中国药师,2009,(9):1314-1315.
    [100]蒋蒨.龙血竭散中龙血竭的高效液相色谱特征研究[J].重庆工商大学学报:自然科学版,2009,26(4):394-398.
    [101]鲁静,刘燕.血竭中血竭素含量测定[J].中成药,1992,14(5):36-36.
    [102]刘三康,李章万.HPLC法测定血竭及含血竭复方中药制剂中血竭素的含量[J].华西医科大学学报,1997,28(4):450-453.
    [103]黄余燕,郭建红.进口与国产血竭的HPLC鉴定[J].中国现代药物应用,2008,2(11):35-36.
    [104]刘玉琴,白五龙等.二阶导数光谱法测定七厘散中血竭的含量[J].中成药,1993,15(2):14-15.
    [105]杨丽川,陈鹏,雷伟亚等.β环糊精包合血竭对血小板聚集和血栓形成的影响[J].昆明医学院学报,2007,28(6):33-38.
    [106]韩彬彬.龙血竭-环糊精包合作用研究及其片剂的研制[J].中国中药杂志,2008,33(18):2066-2070.
    [107]Han, B.B. Studies on cyclodextrin inclusion complexes of Dragon's blood and its tablets preparation[J]. Zhongguo Zhong Yao Za Zhi,2008,33(18):2066-70.
    [108]朱慧芬,杨道锋,王敏等.不同粒径纳米血竭和普通血竭对肿瘤细胞的体外效应[J].医药导报,2007,26(7):744-747.
    [109]彭锐,李胜利,邹阳等.明胶白芨胶/纳米血竭多孔材料对大鼠创面组织血管内皮细胞生长因子表达的影响[J].中国中医骨伤科杂志,2007,15(6):15-16.
    [110丁里玉.血竭聚乳酸缓释微球的制备及体外释药研究[J].中国中药杂志,2007,32(5):388-390.
    [111]俞忠明.超微粉碎工艺对血竭透皮吸收的影响研究[J].浙江中医杂志,2008,43(6):359-360.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700