HCBP6蛋白与HCVcore蛋白相互作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     在前期工作的基础上,进一步应用免疫共沉淀方法验证HCVcore蛋白与HCBP6蛋白之间的相互作用。并应用激光共聚焦技术了解HCVcore蛋白与HCBP6蛋白的亚细胞定位。为进一步明确HCBP6蛋白功能奠定基础。
     方法:
     1、用实时荧光PCR方法检测HCBP6在7种癌细胞系的表达,选择较高表达的细胞系用于随后的蛋白之间相互作用的真核水平的研究。
     2、将真核表达质粒pcDNA3.1-hcvcore、pcDNA3.1/myc-his(-)-hcbp6、pcDNA3.1及pcDNA3.1/myc-his(-)瞬时转染HepG2细胞,应用免疫共沉淀方法验证HCVcore蛋白与HCBP6蛋白之间的相互作用。
     3、构建HCBP6的绿色荧光表达载体和HCVcore的红色荧光表达载体,转染HepG2细胞,模拟该蛋白在细胞中的表达,在激光共聚焦显微镜下观察HCBP6及HCVcore蛋白的亚细胞定位。
     结果:
     1、HCBP6在Capan2细胞中表达最高,依次为HepG2、Hela、Huh7、7721、7701与7402。
     2、pcDNA3.1-hcvcore及pcDNA3.1/myc-his(-)-hcbp6在HepG2细胞中单独转染和共转染都获得成功。
     3、HCBP6的绿色荧光表达载体和HCVcore的红色荧光表达载体在HepG2细胞中均得到表达。激光共聚焦显微镜观察到HCBP6蛋白和HCVcore蛋白均主要定位于细胞浆中。
     结论:
     1、HCVcore为丙型肝炎病毒核心蛋白,研究它与HCBP6之间的作用应该选择一种肝癌细胞系。HCBP6在HepG2细胞系中表达水平较高,又因为HepG2是肝癌细胞系所以选择HepG2为后续实验的细胞系。
     2、HCBP6蛋白和HCVcore蛋白之间确实存在相互作用。
     3、HCBP6蛋白和HCVcore蛋白在细胞内均分布于细胞浆中,分布的部位相同,再次证明这两种蛋白之间存在相互作用。并初步表明HCBP6蛋白在细胞浆中发挥生物学活性。
Objective:
     To testify the interaction between HCBP6 and HCVcore by CO-IP. And to understand the subcellular localization of HCBP6 and HCVcore by LSCM(laser scan confocal microscopy). To identify the function of HCBP6 is useful to establish search foundation.
     Methods:
     1.Real-time PCR was adopted to compare different quantitative expression of HCBP6 from 7 cell lines.The cell line with higher expression was selected for subsequent experiment to evalute interaction between proteins on eukaryotic cell level.
     2.HepG2 cells was transfected with pcDNA3.1-hcvcore、pcDNA 3.1/myc-his(-)-hcbp6、pcDNA3.1and pcDNA3.1/myc-his(-), sepa-rately. The interaction between HCBP6 and HCVcore was evaluated by CO-IP.
     3.The GFP expressing vector of HCBP6 and pDsRed expressing vector of HCVcore were constructed after confirming by DNA sequence analysis and restriction enzyme digestion. The plasmids were transfected into HepG2 cell lines by lipofectamine, respectively. Subcellular localization was detected by the LSCM (laser scan confocal microscopy).
     Results:
     1.The expression of HCBP6 in different cell lines from highest to low-est is Capan2、HepG2、Hela、Huh7、7721、7701 and 7402.
     2.Both co-transfection and independent transfection of pcDNA 3.1-hcvcore and pcDNA3.1/myc-his(-)-hcbp6 to HepG2 are proved to be successful.
     3.The GFP expressing vector of HCBP6 and pDsRed expressing vector of HCVcore were successful expressing in the HepG2 cell lines. They are both detected in cytoplasm.
     Conclusion:
     1.HCVcore is the hepatitis C virus core protein.To study the role with HCBP6 should choose one between the hepatocellelar carcinoma cell lines.The expression of HCBP6 in HepG2 cell line is high and HepG2 is one kind of hepatoma carcinoma cell lines. HepG2 cell line was chosen for the following experiment.
     2.Interaction between HCBP6 and HCVcore are proved.
     3.Both HCBP6 and HCVcore are detected in cytoplasm. Subcellular localization establish the premise for interaction between HCBP6 and HCVcore.HCBP6 educe biologic activity in cytoplasm.
引文
1. LIM domain protein TES changes its conformational states in different cellular compartments Mol Cell Biochem (2009) 320:85-92
    2. Johannessen M, Moller S, Hansen T, et al. The muhifunctionalroles of the four and a haf-LIM only protein FHL [J]. Cell Mol Life Sci.2006.63:268-284
    3. Lin J,Arlinghaus R.Activated c-Abl tyrosine in malignant solid tumors [J]. Oncogene,2008,27:4385-4391
    4. 李楠等.激光扫描共聚焦显微术.人民军医出版社,1997,37-59
    5. 免疫荧光基础—实验新原理及临床新应用.第二版.北京:人民卫生出版社
    6. Durrenberger M B,Handschin S,Conde Petit B,et al. Visualization of Food Structure by Confocal Laser Scanning Microscopy (CLSM) [J] Lebensm Wissu Technol,2001,34(1):11.
    7. 张旭,徐维奇.激光扫描共聚焦显微镜技术的发展及应用[J].现代科学仪器,2001,2:21.
    8. 郗昕,姜泗长,方耀云.激光扫描共聚焦显微镜的原理与生物学应用[J]中国体视学与图像分析,1996,1(3,4):74.
    9. 激光共聚焦扫描显微镜简介河北医科大学学报2002年9月第23卷第5期
    10.韩贻仁.分子细胞生物学.第二版.上海科学出版社,P1
    11.赵启韬,苗俊英.激光共聚焦显微镜在生物医学研究中的应用[J]北京生物医学工程,2003,22(1):52.
    12. Lamprecht A, Schfer U F, Lehr CM. Characterization of microcapsules by confocal laser scanning microscopy:structure, capsule wall composition and encapsulation rate [J].Eur J Pharm Biopharm,2000,49:1.
    13. Win K Y, Feng S. Effect s of particle size and surface coatingon cellular uptake of polymeric nanoparticles for oral delivery of anticancer drug [J] Biomaterials,2005,26:2713.
    14. Torchilin V P. Fluorescence microscopy to follow the targeting of liposomes and micelles to cells and their intracellular fate [J]. Adv Drug Deliv Rev 2005,57:95.
    15. Verma D D, Verma S, Blume G, et al. Particle size of liposomes influences dermal delivery of substances into skin [J]. Int J Pharm,2003,258 (122):141.
    16. Verma D D, Verma S, Blume G, et al. Liposomes increase skin penet ration of entrapped and nonent rapped hydrophilic substances into human skin:a skin penetration and confocal laser scanning microscopy study [J]. Eur J Pharm Biopharm,2003,55 (3):271.
    17. Funami T, Nakauma M, Noda S, et al. Effects of Some Anionic Plysaccharides on the Gelatinization and Retrogradation Behaviors of Wheat Starch: Soybean—soluble Polysaccharide and Gum Arabic [J] Food Hydrocolloids, 2007,12.
    18. Nagano T, Tamaki E, Funami T. Influence of Guar Gum on Granule Mor-phologies and Rheological Properties of Maize Starch [J] Carbohydrate Polymers,2008,72:95 ~101.
    19. Gray J A, BeMiller J N. Influence of Reaction Conditions on the Location of Reactions in Waxy Maize Starch Granules Reacted with a Propylene Oxide Analog at Low Substitution Levels [J] Carbohydrate Polymers,2005,60:147~ 162.
    20. Wan—Yuan Kuo, His—Hei Lai. Changes of Prope-y and Morpholo—of Cationic Com Starches [J] Carbohydrate Polymers,2007,69:544~553.
    21. Mladenovska K, Cruaud O, Richomme P, et al.52ASA loaded chitosan-Ca-alginate microparticles:Preparation and physicochemical characterization [J]. Int J Pharm,2007:1.
    22. Wan—Yuan Kuo, His—Mei Lai. Changes of Prope-y and Morpholo—of Cationic Com Starches [J]. Carbohydrate Polymers,2007,69:544 ~ 553.
    23. Bereiter-Hohn J, Voth M. Dynamies of mitochondria in living cells:shape changes, dislocations, fusion, and fisson of mitochondria. Microsc Res Tech, 1994,27:198-219
    24. Poot M, Zhang Y E, Kramer J A, etal. Analysio of mito chondrial morphology and function with novel fixable fluorecent stains. [J] Histochem Cytochem, 1996,1363-1372
    25. Celis J E. Cell biology:a laboratory handbook. and ed.New York:Acadeniec Press,1998, Vol2,501-506
    26. Cole L,Davies D, Hyde GJ, et al. ER-Tracker dye and BODIPY-brefeldin A differentiote the eudoplasmic reticulum and golgibodies from the tubular-vacuole system in living hyphae of Pisolithus tinctorius. [J] Microse,2000, 197:239-249
    27. Hehl AB, Marti M, Kohler P. Stage-specific expression and targeting of cyst wall protein-green fluorescent protein chimeras in Giardia. Mol Biol Cell, 2000,11:1789-1800
    28. Jin M, Snider MD. Role of microtubules in transferrin receptor transport from the cell surface to endosomoes and the Golgi Compex [J] Biol Chem,1993, 268:18390-18397
    29. Berridge MJ. The biology and medicine of Caleium signalling. Mol Cell Endocrinol,1994,98:119-124
    30. Sohn HW, Choi EY, Kin SH, et al. Engagement of CD99 induces apoptosin through acalcineurin-independent pathway in Ewing's sarcoma cells. Am J Parhol,1998,153:1937-1945
    31. Cutts L S, Hibberd S, Adler J, etal. Characterizing drug release process wit hin controlled release dosage forms using the confocal laser scanning microscope [J].Conrolled Release,1996,42:115.
    32. Guo H X, Heinamaki J, Yliruusi J. Amylopectin as a subcoating material improves the acidic resistance of enteric coated pellet scontaining a freely soluble drug [J]. Int J Pharm,2002,235:79.
    33.彭黎红,细胞凋亡检测方法的研究进展[J]中华病理学杂志,2001,30(2):85-86
    34. Guo H X, Heinamaki J, Yliruusi J. Diffusion of a freely water soluble drug in aqueous enteric coated pellets [J]A A PS Pharm Sci Tech Pharm,2002,3 (2):16.
    35. Schwarze S R, Ho A, Vocero Akbani A, et al. In vivo proteint ransduction: delivery of a biologically active protein into the mouse [J]. Science,1999,285 (5433):1569.
    36. Krmer S D, Wunderli Allenspach H. No entry for TAT(4457) into liposomes and intact MDCK cells:novel approach to study membrane permeation of cell penet rating peptides [J].B iochimica et Biophysica Acta,2003,1609:161.
    37. KotzeA F, Lueβen H L, de Leeuw B J, et al. Comparison of the effect of different chitosan salts and Nt rime thy chitosan chloride on the permeability of intestinal epit helial cells (Caco22) [J]. J Cont rol led Release,1998,51:35.
    38. Benoit J P, Thies C. Microencapsulation methods and industrial applications, in:S. Benita (Ed.) Drugs and the Pharmaceutical Sciences,Vol,73[C]. Marcel Dekker, New York,1996.
    39. Bodmeier R, McGinity J. Polylactic acid microspheres containing quinidine base and quinidine sulphate prepared by the solvent evaporation technique. I. Met hods and morphology [J]. Microencapsul,1987,4:279.
    40. Matz MV, Fradkov AF, Labas YA, et al. Fluorescent proteins from nonbio luminescent Anthozoa species [J]. Nat Biotechnol,1999,17 (10):969-973.
    41. Fischer M, Haase I, Simmeth E, et al. A brilliant monomeric redfluorescent protein to visualize cytoskeleton dynamics in Dictyostelium [J]. FEBS Lett, 2004,577 (1/2):227-232.
    42. Mikkelsen L, Sarrocco S, Lubeck M, et al. Expression of the red fluorescent protein DsRed Express in filamentous ascomycete fungi [J]. FEMS Microbiol Lett,2003,223 (1):135-139.
    43. Terskikh A, Fradkov A, Ermakova G, et al. "Fluorescent timer"protein that changes color with time [J]. Science,2000,290 (5496):1585-1588.
    44. Sorensen M, Lippuner C, Kaiser T, et al. Rapidly maturing red fluorescent protein variants with strongly enhanced brightness in bacteria [J]. FEBS Lett 2003,552 (2/3):110-114.
    45. Hoffman RM, YangM. Dual color, whole 2 body imaging in mice [J].Nat Biotechnol,2005,23 (7):790.
    46. Zhao Z, Sheps JA, Ling V, et al. Expression analysis of ABC transporters reveals differential functions of tandemly duplicated genes in Caenorhabditis elegans [J]. J Mol Biol,2004,344 (2):409-417.
    47. Baird GS, Zacharias DA, Tsien RY. Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral [J].Proc Nat Acad Sci USA,2000,97 (22):11984-11989.
    48. Verkhusha VV, Chudakov DM, Gurskaya NG, et al. Common path way for the red chromophore formation in fluorescent proteins and chromoproteins [J]. Chem Biol,2004,11 (6):845-854.
    49. Cotlet M, Hofkens J, Kohn F, et al. Collective effects in individualoligomers of the red fluorescent coral protein DsRed [J]. Chem PhysLett,2001,336 (5):415-423.
    50. Wall MA, Socolich M, Ranganathan R. The structural basis for red fluorescence in the tetrameric GFP homolog DsRed [J]. Nat Struct Biol,2000,7 (12):1133-1138.
    51. Campbell RE, Tour O, Palmer AE. A monomeric red fluorescentprotein [J]. Proc Natl Acad Sci USA,2002,99 (12):7877-7882.
    52. Wiehler J, von Hummel J, Steipe B. Mutants of Discosoma red fluorescent protein with a GFP like chromophore [J]. FEBS Lett,2001,487 (3),384-389.
    1.成军.加强病毒性肝炎发病的分子生物学机制研究.胃肠病学和肝病学杂志,2004;13(1):1-2
    2. Kato N. Genome of human hepatitis C virus (HCV):gene organization, sequence diversity,and variation. Microbial & comparative genomics,2000; 5(3):129-151.
    3.成军综述1丙型肝炎病毒核心蛋白的研究进展[J]1国外医学病毒学分册,2000,7(4):12321271
    4.HCV核心蛋白结合蛋白基因6的克隆中华实验和临床病毒学杂志2002年12月第16卷第4期Chinese J Exp Clin Virol,December 2002,Vol 16,No.4
    5.成军,张玲霞.抗HCV的基因治疗方案-从HCV—肝细胞相互作用的分子生物学机制设计.国外医学流行病学传染病学分册,1999,26(2):59-61
    6.成军,朱传琳.丙型肝炎病毒感染慢性化的分子生物学机制.国外医学病毒学分册,2000,7(1):29-32
    7.成军.丙型肝炎病毒致病的分子生物学机制.解放军医杂志,2003,28(1):23-27
    8. Hepatitis B Viral Polymerase Fusion ProteinsAre Biologically Active and Can Interact with the Hepatitis C Virus Core Protein in vivo [J] Biomed Sci 2001;8:492-503
    9. HCV RNA and Antibody to HCV CoreProtein in Japanese Patients with Chronic Liver Disease Digestive Diseases and Sciences, Vol.37, No.10 (October 1992)
    10. Clinical Evaluation of Three Anti-HCVELISAs in Patients with Various Liver Diseases Digestive Diseases and Sciences, Vol.37, No.8 (August 1992), pp. 1268-1274
    11.蛋白质相互作用的研究方法生物技术通报2009年第1期:1429~1435.
    12.免疫共沉淀技术的研究进展中医药导报2007年12月第13卷第12期
    13.LIM domain protein TES changes its conformational states in different cellular compartments Mol Cell Biochem (2009) 320:85-92
    14.BRCA1 transcriptional activity is enhanced by interactions between its AD1 domain and AhR Cancer Chemother Pharmacol (2008) 62:965-975
    15.Matz MV, Fradkov AF, Labas YA, et al. Fluorescent proteins from nonbioluminescent Anthozoa species [J]. Nat Biotechnol,1999,17 (10):969-973.
    16.查锡良生物化学。北京:人民卫生出版社,2008.1
    17. Structural Analysis of Microparticles by Confocal Laser Scanning Microscopy AAPS PharmSciTech,2000; 1 (3) article 17
    18. Durrenberger M B,Handschin S,Conde2Petit B,et al. Visualiza2tion of Food Structure by Confocal Laser Scanning Microscopy (CLSM) [J]. Lebensm Wissu Technol,2001,34(1):11.
    19.张旭,徐维奇.激光扫描共聚焦显微镜技术的发展及应用[J].现代科学仪器,2001,2:21.
    20. Mass Spectrometry Identifies LGI1-Interacting Proteins that Are Involved in Synaptic Vesicle Function in the Human Brain
    21.红色荧光蛋白的研究进展 国外医学药学分册 2006年4月第33卷第2期
    22. Hurst DR, Mehta A, Moore BP, et al. Biochem Biophys Res Commun,2006, 348 (4)
    23.Reddi HV, Kumar V. BiochemBiophys Res Commun,2004,317(4):1017~1022.
    24. Benoit JP, Thies C. Microencapsulation-methods and industrial applications. In: BenitaS, ed. Drugs and the Pharmaceutical Sciences., Vol.73. New York:Marcel Dekker;1996.
    25.Benita S, Benoit JP, Puisieux F, Thies C.Characterization of drug-loaded poly(d,llactide) microspheres. J Pharm Sci.1984;73:1721-1724.
    26. Mathews BR, Nixon JR. Surface characteristicsof gelatin microcapsules byscanning electron microscopy. J Pharm Pharmacol.1974;26:383-384.
    27. Bodmeier R, McGinity J. Polylactic acid microspheres containing quinidine base and quinidine sulphate prepared by the solvent evaporation technique. I. Methods and morphology. J Microencapsul.1987;4:279-288.
    28. Cutts LS, Hibberd S, Adler J, Davies MC,Melia CD. Characterising drug release processes within controlled release dosageforms using the confocal laser-scanning microscope. J Controlled Rel.1996;42:115-124.
    29. De Smedt SC, Meyvis TKL, Van Oostveldt P,Demeester J. A new microphotolysis based approach for mapping the mobility of drugs in microscopic drug delivery devices. Pharm Res.1999; 16:1639-1642.
    30. Bouillot P, Babak V, Dellacherie E. Novelbioresorbable and bioeliminable surfactants for microsphere preparation. Pharm Res.1999;16:148-154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700