用户名: 密码: 验证码:
面向可信分析的CAD模型简化误差评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面向分析的CAD模型简化是实现从设计几何模型到分析几何模型转化的有效手段,对实现CAD/CAE智能无缝集成十分关键。然而,目前的CAD模型简化方法还难以满足可信分析的需要,其根本问题在于缺少量化评价模型简化对分析影响的方法。本文正是针对这一问题,对基于物理的CAD模型简化误差评价展开研究。主要的研究工作包括以下几个方面:
     1.提出一种面向可信分析的CAD模型简化误差评价框架
     针对面向分析的CAD模型简化的需要,基于CAD模型简化误差评价必须遵循的原则,提出面向可信分析的CAD模型简化误差评估框架,以实现具有系统性的CAD模型简化误差评估功能。
     2.提出一种基于物理的细节移除误差评价方法
     为了量化评估细节移除对分析精度的影响,提出基于物理的细节移除误差评价方法。基于互易定理进行细节移除误差的评价;根据各个细节移除导致的模型应变能变化,量化细节移除对分析结果的影响,从而实现基于物理的细节移除误差量化评价。
     3.提出一种基于物理的薄区域降维误差评价方法
     为了量化评估薄区域降维对分析精度的影响,提出基于物理的薄区域降维误差评价方法,利用薄区域降维前后耦合面的应力变化定义降维误差评价指标。评价指标的计算采用薄区域的p自适应方法,量化评价薄区域降维对模型分析结果的影响,同时确保最终模型的分析精度。
     4.提出基于信息重用的简化模型边界补偿方法
     为了进一步提高简化模型的分析精度,提出基于信息重用的简化模型边界补偿方法。该方法利用评价指标计算产生的特征接触面性能参数,对简化模型特征接触面的边界条件进行补偿,从而改善模型的分析精度。
     本文对上述研究工作进行了实验验证,同时还给出了误差评价指标及其相关计算信息在面向分析的多分辨模型生成、基于分析的产品详细设计等方面的应用。
To achieve effective conversion from design models to analysis models and the seamless integration of CAD/CAE, the analysis oriented CAD model simplification plays a key role. However, current techniques for CAD model simplification can hardly fulfill the requirements of trusted analysis, due to the lacking of effective methods for quantifying the analysis error caused by CAD model simplification. To solve the problem, a physics-based approach to evaluate the analysis error caused by CAD model simplification is studied in this dissertation.
     The main works include:
     1. A framework for evaluation of analysis error caused by CAD model simplification is presented.
     According to the need of analysis oriented CAD model simplification and the principles that error evaluation must follow, we propose a framework for evaluation of analysis error caused by CAD model simplification.
     2. A physics-based error evaluation on detail removal is presented.
     In order to quantify the impacts of detail removal on analysis results, a physics-based error evaluation method is proposed. Specifically, we evaluate the error induced by detail removal based on the reciprocal theorem; and we quantify the impacts of each detail removal on the analysis results according to the changes of strain energy when each detailed feature is removed.
     3.A physics-based error evaluation on dimension reduction of thin regions is presented.
     In order to evaluate the impacts on the analysis accuracy due to the dimension reduction of thin regions in a CAD model, we propose a physics-based error evaluation method. We use the stresses changes on coupled interface to define the evaluation indicator. Local p adaptive method has been used on the thin regions to calculate the evaluation indicator. This method is able to quantify the impacts on the analysis results due to the dimension reduction of thin regions, while ensuring the analysis accuracy of the final model.
     4. An information reuse orientied method of boundary condition compensation for the simplified model is presented.
     In order to improve the accuracy of analysis results of the simplified model, we proposed an information reuse oriented method of boundary condition compensation for the simplified model. The boundary conditions of the simplified model are compensated by taking utility of the characteristics of the feature interfaces involved in computation of the evaluation indicator, which finally improves the analysis accuracy of the model.
     Based on above researches, we execute experimental validation of these approaches. At the same time, we give the relevant applications of the error evaluation indicator and its related analysis information on the generation of the analysis oriented multi-resolution model and the analysis based product detailed design.
引文
[I]Zeid I, CAD/CAM theory and practice, McGraw-Hill Higher Education,1991.
    [2]Lee KW, Chong TH, Park GJ. Development of a methodology for a simplified finite element model and optimum design. Computers & Structures,2003,81(14):1449-1460.
    [3]Groover MP, Zimmers EW, CAD/CAM:Computer-aided design and manufacturing, Prentice-Hall Englewood Cliffs, NJ,1984.
    [4]Cubberly WH, Bakerjian R, DESK EDITION:Tool and manufacturing engineers handbook, Sme,1989.
    [5]Han W, A posteriori error analysis via duality theory:with applications in modeling and numerical approximations, Springer,2005.
    [6]Mocko GM, Fenves SJ, Standards NIo, Technology, A Survey of Design-analysis Integration Issues, Citeseer,2003.
    [7]Shapiro V, Tsukanov I, Grishin A. Geometric issues in computer aided design/computer aided engineering integration. Journal of Computing and Information Science in Engineering,2011, 11(2):1-13.
    [8]Gordon S. An analyst's view:STEP-enabled CAD-CAE integration.2001:16-19.
    [9]Lee SH. A CAD-CAE integration approach using feature-based multi-resolution and multi-abstraction modelling techniques. Computer-Aided Design,2005,37(9):941-955.
    [10]Gao S, Hu C, Zhu H, Xian C, Chen X. A CAD/CAE Integration Framework for Simulation Driven Design.
    [11]Hsiung CH. The Reusable Engineering Analysis Preprocessing Methodology to Support Design-Analysis Integration. Doctoral Thesis Proposal, Georgia Institute of Technology, Atlanta,1998.
    [12]Deng YM, Britton G, Lam Y, Tor S, Ma Y. Feature-based CAD-CAE integration model for injection-moulded product design. International journal of production research,2002,40(15): 3737-3750.
    [13]Deng YM, Lam Y, Tor S, Britton G. A CAD-CAE integrated injection molding design system. Engineering with Computers,2002,18(1):80-92.
    [14]Gujarathi G, Ma YS. Generative CAD and CAE integration using common data model. IEEE, 2010:586-591.
    [15]Lee S, Lee K, Lee K. Feature-based multiresolution and multi-abstraction non-manifold modeling system to provide integrated environment for design and analysis of injection molding products.2005.
    [16]Lee SH. Feature-based multiresolution modeling of solids. ACM Transactions on Graphics (TOG),2005,24(4):1417-1441.
    [17]Shephard M, Beall M, O'Bara R, Webster B. Toward simulation-based design. Finite Elements in Analysis & Design,2004,40(12):1575-1598.
    [18]Bazilevs Y, Calo V, Cottrell J, Evans J, Hughes T, Lipton S, Scott M, Sederberg T. Isogeometric analysis using T-splines. Computer Methods in Applied Mechanics and Engineering,2010, 199(5-8):229-263.
    [19]Kim S, Lee K, Hong T, Kim M, Jung M, Song Y. An integrated approach to realize multi-resolution of B-rep model. Proceedings of the 2005 ACM symposium on Solid and physical modeling, ACM, Cambridge, Massachusetts,2005:153-162.
    [20]Kim S, Lee K, Hong T, Jung M. Modeling in Multi-Resolution and Its Applications. Journal of Computer Science and Technology,2006,21(2):272-278.
    [21]Hamdi M, Aifaoui N, Benamara A. Design and analysis integration model based on idealization of CAD geometry.
    [22]Armstrong CG. Modelling requirements for finite-element analysis. Computer-Aided Design, 1994,26(7):573-578.
    [23]Saad Y, Iterative methods for sparse linear systems, Society for Industrial Mathematics,2003.
    [24]Thakur A, Banerjee AG, Gupta SK. A survey of CAD model simplification techniques for physics-based simulation applications. Computer-Aided Design,2009,41(2):65-80.
    [25]White DR., Saigal S, Owen SJ. Meshing complexity of single part CAD models. Citeseer,2003: 121-134.
    [26]Sheen DP, Son T, Myung DK, Ryu C, Lee SH, Lee K, Yeo TJ. Solid deflation approach to transform solid into mid-surface. Proceedings of TMCE 2008 Symposium,2008.
    [27]Sheen DP, Son T, Myung DK, Ryu C, Lee SH, Lee K, Yeo TJ. Transformation of a thin-walled solid model into a surface model via solid deflation. Computer-Aided Design,2010,42(8): 720-730.
    [28]Li B, Liu J. Detail feature recognition and decomposition in solid model. Computer-Aided Design,2002,34(5):405-414.
    [29]Sheffer A, Bercovier M, Blacker TD, Clements J. Virtual topology operators for meshing. International Journal of Computational Geometry and Applications,2000,10(3):309-331.
    [30]Sheffer A. Model simplification for meshing using face clustering. Computer-Aided Design, 2001,33(13):925-934.
    [31]Turk G. Re-tiling polygonal surfaces. Computer Graphics-New York-Association for Computing Machiery,1992,26(2):55-55.
    [32]Volpin O, Sheffer A, Bercovier M, Joskowicz L. Mesh simplification with smooth surface reconstruction. Computer-Aided Design,1998,30(11):875-882.
    [33]Lee YG, Lee K. Geometric detail suppression by the Fourier transform. Computer Aided Design, 1998,30(9):677-694.
    [34]Venkataraman S, Sohoni M, Rajadhyaksha R. Removal of blends from boundary representation models. ACM,2002:83-94.
    [35]Klein R, Liebich G, Straβer W. Mesh Reduction with Error Control.1996.
    [36]Lan Z, Ruofeng T, Tianyang D, Jinxiang D. Brep model simplification for feature suppressing using local error evaluation. Computer Supported Cooperative Work in Design,2005. Proceedings of the Ninth International Conference on,2005:772-776.
    [37]Foucault G, Cuilliere J-C, Francois V, Leon J-C, Maranzana R. Adaptation of CAD model topology for finite element analysis. Computer-Aided Design,2008,40(2):176-196.
    [38]Veron P, Leon J. Shape preserving polyhedral simplification with bounded error. Computers & Graphics,1998,22(5):565-585.
    [39]He T, Hong L, Kaufman A, Varshney A, Wang S. Voxel based object simplification. Proceedings of the 6th conference on Visualization'95, IEEE Computer Society,1995.
    [40]Thibault WC, Naylor BF. Set operations on polyhedra using binary space partitioning trees. ACM SIGGRAPH Computer Graphics,1987,21(4):153-162.
    [41]Dey S, Shephard M, Georges M. Elimination of the adverse effects of small model features by the local modification of automatically generated meshes. Engineering with Computers,1997, 13(3):134-152.
    [42]Dey S, Shephard MS, Georges MK. Elimination of the adverse effects of small model features by the local modification of automatically generated meshes. Engineering with Computers, 1997,13(3):134-152.
    [43]Shephard MS, Beall MW, O'Bara RM. Revisiting the elimination of the adverse effects of small model features in automatically generated meshes. Citeseer,1998:119-131.
    [44]Nooruddin FS, Turk G. Simplification and repair of polygonal models using volumetric techniques. Visualization and Computer Graphics, IEEE Transactions on,2003,9(2):191-205.
    [45]Huang P, Wang CCL. Volume and complexity bounded simplification of solid model represented by binary space partition. ACM,2010:177-182.
    [46]Andujar C, Brunet P, Ayala D. Topology-reducing surface simplification using a discrete solid representation. ACM Transactions on Graphics (TOG),2002,21(2):88-105.
    [47]Cutler B, Dorsey J, McMillan L. Simplification and improvement of tetrahedral models for simulation. Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing, ACM, Nice, France,2004:93-102.
    [48]Lee KY, Armstrong CG, Price MA, Lamont JH. A small feature suppression/unsuppression system for preparing B-rep models for analysis. Proceedings of the 2005 ACM symposium on Solid and physical modeling, ACM, Cambridge, Massachusetts,2005:113-124.
    [49]刘晓平.有限元仿真分析软件中建模的多态机理研究.系统仿真学报,2007,19(003):538-542.
    [50]Koo S, Lee K. Wrap-around operation to make multi-resolution model of part and assembly. Computers & Graphics,2002,26(5):687-700.
    [51]Seo J, Song Y, Kim S, Lee K, Choi Y, Chae S. Wrap-around operation for multi-resolution CAD model. Computer-Aided Design & Applications,2005,2(1-4):67-76.
    [52]Kim S, Lee K, Hong T, Kim M, Jung M, Song Y. An integrated approach to realize multi-resolution of B-rep model. ACM,2005:153-162.
    [53]Zhu H, Menq C. B-Rep model simplification by automatic fillet/round suppressing for efficient automatic feature recognition. Computer-Aided Design,2002,34(2):109-123.
    [54]Venkataraman S, Sohoni M. Reconstruction of feature volumes and feature suppression. ACM, 2002:60-71.
    [55]Mobley A, Carroll M, Canann S. An object oriented approach to geometry defeaturing for finite element meshing. Citeseer,1998.
    [56]Tautges T. Automatic detail reduction for mesh generation applications. Citeseer,2001: 407-418.
    [57]Gao S, Zhao W, Lin H, Yang F, Chen X. Feature suppression based CAD mesh model simplification. Computer-Aided Design,2010,42(12):1178-1188.
    [58]Sun R, Gao S, Zhao W. An approach to B-rep model simplification based on region suppression. Computers & Graphics,2010,34(5):556-564.
    [59]孙锐,李明,高曙明.相交过渡的识别与抑制算法.计算机辅助设计与图形学学报,2010,22(10):1639-1646.
    [60]Foucault G, Marin P, Leon JC. Mechanical criteria for the preparation of finite element models. 13th International Meshing Roundtable, Williamsburg (USA),2004:413-426.
    [61]Armstrong C, McKeag R, Ou H. Price M. Geometric processing for analysis. IEEE,2002: 45-56.
    [62]Cook RD, Concepts and applications of finite element analysis, A1 bazaar,2007.
    [63]Blum H. A transformation for extracting new descriptors of shape. Models for the perception of speech and visual form,1967,19(5):362-380.
    [64]Blum H. Biological shape and visual science (Part I). Journal of theoretical Biology,1973, 38(2):205-287.
    [65]Ramanathan M, Gurumoorthy B. Constructing medial axis transform of planar domains with curved boundaries. Computer-Aided Design,2003,35(7):619-632.
    [66]Ramanathan M, Gurumoorthy B. Generating the Mid-Surface of a Solid using 2D MAT of its Faces. Computer-Aided Design and Applications,2004:665-673.
    [67]Ramanathan M, Gurumoorthy B. Constructing medial axis transform of extruded and revolved 3D objects with free-form boundaries. Computer-Aided Design,2005,37(13):1370-1387.
    [68]Rezayat M. Midsurface abstraction from 3D solid models:general theory and applications. Computer-Aided Design,1996,28(11):905-915.
    [69]Kennedy P, Yu H. Plastic CAE analysis of solid geometry. SOCIETY OF PLASTICS ENGINEERS INC,1997:666-669.
    [70]Chong CS, Senthil Kumar A, Lee KH. Automatic solid decomposition and reduction for non-manifold geometric model generation. Computer-Aided Design,2004,36(13):1357-1369.
    [71]Lockett HL, Guenov MD. Graph-based feature recognition for injection moulding based on a mid-surface approach. Computer-Aided Design,2005,37(2):251-262.
    [72]Lee H, Nam YY, Park SW. Graph-based midsurface extraction for finite element analysis. IEEE, 2007:1055-1058.
    [73]Ryu C, Lee SH, Lee K. Dimension Reduction of Solid Models by Mid-Surface Generation.
    [74]Robinson T, Armstrong C, McSparron G, Quenardel A, Ou H, McKeag R. Automated mixed dimensional modelling for the finite element analysis of swept and revolved CAD features. ACM,2006:117-128.
    [75]Sheen DP, Son T, Ryu C, Lee SH, Lee K. Dimension reduction of solid models by mid-surface generation. International Journal of CAD/CAM,2009,7(1):1-16.
    [76]Armstrong C, Bridgett S, Donaghy R, McCune R, McKeag R, Robinson D. Techniques for interactive and automatic idealisation of CAD models. Numerical grid generation in computational field simulations; Proceedings of the 6th International Conference, Univ. of Greenwich, London, United Kingdom,1998:643-662.
    [77]Robinson TT, Armstrong CG, McSparron G, Quenardel A, Ou H, McKeag RM. Automated mixed dimensional modelling for the finite element analysis of swept and revolved CAD features. Proceedings of the 2006 ACM symposium on Solid and physical modeling, ACM, Cardiff, Wales, United Kingdom,2006:117-128.
    [78]陆明万,徐鸿.分析设计中若干重要问题的讨论(二).压力容器,2006,23(002):28-32.
    [79]Dabke P, Prabhakar V, Sheppard S. Using features to support finite element idealizations. Computers in Engineering,1994,1(3):1-14.
    [80]卓家寿,力学建模导论,科学出版社,2007.
    [81]徐荣桥,结构分析的有限元法与MATLAB程序设计,人民交通出版社,2006.
    [82]李书杰.基于误差分析和特征替换的模型态生成方法研究.合肥工业大学,2008.
    [83]刘晓平,李书杰,吴敏.有限元领域中多态模型误差分析方法.Journal of software, supplement,2008,19(zk):173-181.
    [84]Fine L, Remondini L, Leon J-C. Automated generation of FEA models through idealization operators. International Journal for Numerical Methods in Engineering,2000,49(1-2):83-108.
    [85]Zienkiewicz O, Zhu J. Adaptivity and mesh generation. International Journal for Numerical Methods in Engineering,1991,32(4):783-810.
    [86]Coorevits P, Ladeveze P, Pelle JP. An automatic procedure with a control of accuracy for finite element analysis in 2D elasticity. Computer Methods in Applied Mechanics and Engineering, 1995,121(1-4):91-120.
    [87]Mocko G, Panchal J, Fernandez M, Peak R, Mistree F. Towards reusable knowledge-based idealizations for rapid design and analysis.2004.
    [88]Oden J, Prudhomme S. Estimation of modeling error in computational mechanics. Journal of Computational Physics,2002,182(2):496-515.
    [89]Shephard M. Idealization in engineering modeling and design. Research in Engineering Design, 1990,1(3):229-238.
    [90]Ainsworth M, Oden JT. A posteriori error estimation in finite element analysis. Computer Methods in Applied Mechanics and Engineering,1997,142(1-2):1-88.
    [91]Zienkiewicz O. The background of error estimation and adaptivity in finite element computations. Computer Methods in Applied Mechanics and Engineering,2006,195(4-6): 207-213.
    [92]Prudhomme S, Oden JT, Westermann T, Bass J, Botkin ME. Practical methods for a posteriori error estimation in engineering applications. International Journal for Numerical Methods in Engineering,2003,56(8):1193-1224.
    [93]Turevsky I, Gopalakrishnan SH, Suresh K. Defeaturing:A posteriori error analysis via feature sensitivity. International Journal for Numerical Methods in Engineering,2008,76(9): 1379-1401.
    [94]Suresh K. Size, Material, and Shape Sensitivities of Boundary Value Problems:A Primer. Update,2007.
    [95]Gopalakrishnan SH, Suresh K. A formal theory for estimating defeaturing-induced engineering analysis errors. Computer-Aided Design,2007,39(1):60-68.
    [96]Gopalakrishnan SH, Suresh K. Estimating the impact of large design changes on field problems. ACM,2007:205-215.
    [97]Ferrandes R, Marin PM, Leon JC, Giannini F. A posteriori evaluation of simplification details for finite element model preparation. Computers & Structures,2009,87(1-2):73-80.
    [98]Ferrandes R, Marin P, Leon J, Giannini F. Evaluation of simplification details for an adaptive shape modelling of components.2006.
    [99]Marin P. Influence of geometrical simplification on the accuracy of the finite element computation.2004.
    [100]Becker R, Kapp H, Rannacher R. Adaptive finite element methods for optimal control of partial differential equations:Basic concept. SIAM Journal on Control and Optimization,2001,39(1): 113-132.
    [101]Becker R, Rannacher R. An optimal control approach to a posteriori error estimation in finite element methods. Acta Numerica,2001,10(1):1-102.
    [102]Timoshenko S, Woinowsky-Krieger S, Woinowsky S, Theory of plates and shells, McGraw-Hill New York,1959.
    [103]Ciarlet PG, Plates and junctions in elastic multi-structures:an asymptotic analysis, Masson, 1990.
    [104]Fine L, Remondini L, Leon JC. Automated generation of FEA models through idealization operators. International Journal for Numerical Methods in Engineering,2000,49(1-2):83-108.
    [105]Ainsworth M, Arnold M. Computable error bounds for some simple dimensionally reduced models on thin domains. IMA Journal of Numerical Analysis,2001,21(1):81-105.
    [106]Vemaganti K. Local error estimation for dimensionally reduced models of elliptic boundary value problems. Computer Methods in Applied Mechanics and Engineering,2003,192(1-2): 1-14.
    [107]Vemaganti K, Billade N. Local error estimation for dimensional reduction:Application to special geometries. Communications in Numerical Methods in Engineering,2004,20(4): 323-333.
    [108]Repin S. A posteriori error estimation for hierarchic models of elliptic boundary value problems on thin domains. SI AM Journal on Numerical Analysis,1996,33(1):221-246.
    [109]Repin S, Sauter S, Smolianski A. A posteriori estimation of dimension reduction errors for elliptic problems on thin domains. SIAM Journal on Numerical Analysis,2005,42(4): 1435-1451.
    [110]Billade N, Vemaganti K. Hierarchical models of thin elastic structures:Overview and recent advances in error estimation and adaptivity. Computer Methods in Applied Mechanics and Engineering,2007,196(37-40):3508-3523.
    [111]Sinha M, Suresh K. Simplified engineering analysis via medial mesh reduction. ACM,2005: 207-212.
    [112]Suresh K. Skeletal reduction of boundary value problems. International Journal for Numerical Methods in Engineering,2006,66(4):722-739.
    [113]Robinson T, Fairey R, Armstrong C, Ou H, Butlin G, Automated Mixed Dimensional Modelling with the Medial Object, in,2008, pp.281-298.
    [114]Robinson T, Fairey R, Armstrong C, Ou H, Butlin G. Automated mixed dimensional modelling with the medial object. Proceedings of the 17th International Meshing Roundtable, Springer, 2008:281-298.
    [115]Babuska I, Suri M. The p and hp versions of the finite element method, basic principles and properties. SIAM review,1994,36(4):578-632.
    [116]Babuska I, Schwab C. A posteriori error estimation for hierarchic models of elliptic boundary value problems on thin domains. SIAM Journal on Numerical Analysis,1996,33(1):221-246.
    [117]Stein E, Riiter M, Ohnimus S. Adaptive finite element analysis and modelling of solids and structures. Findings, problems and trends. International Journal for Numerical Methods in Engineering,2004,60(1):103-138.
    [118]Stein E, Ruter M, Ohnimus S. Error-controlled adaptive goal-oriented modeling and finite element approximations in elasticity. Computer Methods in Applied Mechanics and Engineering,2007,196(37-40):3598-3613.
    [119]Stein E, Ohnimus S. Coupled model-and solution-adaptivity in the finite-element method. Computer Methods in Applied Mechanics and Engineering,1997,150(1-4):327-350.
    [120]Schwab C. A-posteriori modeling error estimation for hierarchic plate models. Numerische Mathematik,1996,74(2):221-259.
    [121]Ainsworth M. A posteriori error estimation for fully discrete hierarchic models of elliptic boundary value problems on thin domains. Numerische Mathematik,1998,80(3):325-362.
    [122]Zboinski G. Adaptive hpq finite element methods for the analysis of 3D-based models of complex structures. Part 1. Hierarchical modeling and approximations. Computer Methods in Applied Mechanics and Engineering,2010,199(45-48):2913-2940.
    [123]Zboinski G.3D-based hp-adaptive first-order shell finite element for modelling and analysis of complex structures—Part 2:Application to structural analysis. International Journal for Numerical Methods in Engineering,2007,70(13):1546-1580.
    [124]Zboinski G, Jasinski M.3D-based hp-adaptive first-order shell finite element for modelling and analysis of complex structures—Part 1:The model and the approximation. International Journal for Numerical Methods in Engineering,2007,70(13):1513-1545.
    [125]Zboinski G. An algorithm of a family of 3D-based, solid-to-shell transition, hpq/hp-adaptive finite elements. Journal of Theoretical and Applied Mechanics 2000,38(4):791-806.
    [126]Zboinski G. A posteriori error estimation for hp-approximation of the 3D-based first order shell model. Part 1. Theoretical aspects. Applied Mathematics, Informatics and Mechanics,2003, 8(1):104-125.
    [127]纪爱敏,机械CAE分析原理及工程实践,机械工业出版社,2009.
    [128]Wu B, Lim C, Li Z. A finite element algorithm for reanalysis of structures with added degrees of freedom. Finite Elements in Analysis and Design,2004,40(13-14):1791-1801.
    [129]Wu B, Li Z. Reanalysis of structural modifications due to removal of degrees of freedom. Acta Mechanica,2005,180(1):61-71.
    [130]CAO W, WU H, JIANG Y, LIU Y, GAO S. Automated Generation of Analysis Feature Model for Interaction of CAD and FEA. Proceedings of ASME DETC/CIE,2009.
    [131]Gui W, Babuska I. The h, p andh-p versions of the finite element method in 1 dimension. Numerische Mathematik,1986,49(6):613-657.
    [132]Babuska I, Szabo BA, Katz IN. The p-version of the finite element method. SIAM Journal on Numerical Analysis,1981,18(3):515-545.
    [133]Szabo B, Duster A, Rank E, The p-Version of the Finite Element Method, in:Encyclopedia of Computational Mechanics, John Wiley & Sons, Ltd,2004.
    [134]Wu B, Li Z. Static reanalysis of structures with added degrees of freedom. Communications in Numerical Methods in Engineering,2005,22(4):269-281.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700