分析特征建模中的若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在对产品进行CAE分析时,首先需要基于设计结果进行分析几何建模。然而由于分析几何建模的复杂性,目前分析几何建模过程仍离不开工程师的经验和大量的手工交互,阻碍了设计分析过程的快速迭代。为了提高分析几何建模的智能化和自动化程度,本文围绕分析特征建模的若干关键问题展开研究,主要研究工作包括:
     1、基于特征的分析几何表示
     提出分析特征模型,利用分析特征表示分析几何中涉及分析语义的局部几何形状,并建立设计几何模型与分析几何模型底层几何元素的关联,以有效支持分析几何模型的自动创建以及设计几何与分析几何的双向互动。
     2、基于边界表示的分析特征模型生成
     针对边界表示模型,提出自动生成分析特征模型的方法。该方法通过面对匹配识别可降维区域,充分利用凹边信息提高面对匹配效率、减少分割次数,并基于凹边的连接信息对中面进行合理延拓和裁剪。
     3、基于特征转换的分析特征模型生成
     针对特征表示模型,提出基于特征转换的分析特征模型生成方法。利用扫成体将三维的可降维区域识别和简化几何提取问题转化为二维问题以提高效率。此外,基于正特征剩余体分解扫成体,扩大可降维区域识别的范围。最后对可降维区域的误判和漏判情况进行处理,以保证特征转换结果的正确性。
     4、旋转对称特征的对称单元及其网格的自动生成
     针对旋转对称模型,提出一种构造其对称单元特征的方法。该方法利用一种改进的Delaunay细分算法,仅对局部网格进行细分,通过在细分过程中加入移动三角形或四面体操作,允许对称边界的变动,以便维护对称边界的一致性,同时保证对称边界上边和面的Delaunay属性。本文证明了二维情况下该方法生成的对称单元网格单元数目是最小数目的常数倍,即对称单元是最优的。
During the process of design and analysis, the analysis geometric model is usually generated from the design geometric model by simplification methods. However, due to the absence of an analysis geometric representation capable of supporting the seamless integration of CAD and CAE, and methods for the effective generation of the analysis geometric model, manual work and engineering experiences are still needed in the analysis geometric modeling process. This situation severely hinders the fast iteration of the design-analysis cycle. To solve these problems, a feature based analysis geometric representation is proposed in this paper, and their modeling methods are studied. Main contributions of this paper include:
     1. Feature based analysis geometric representation.
     The analysis feature model is proposed. Analysis features are defined to capture analysis semantics involved in the analysis modeling process. Low level associations between the design geometric model and the analysis geometric model are also included in the analysis feature model. With such information, the analysis feature model can enable the automated generation of the analysis model and bi-directional interaction between the design model and the analysis model.
     2. Generation of analysis feature models from boundary representation models.
     An approach to automated generation of analysis feature models from boundary representation models is proposed. Thin regions are identified by paring faces. Information about concave edges is utilized to improve the effectiveness of face paring, to reduce the number of times of volume decomposition, and to guide the extending and trimming of mid-surfaces.
     3. Generation of analysis feature models by feature conversion.
     An approach to automated generation of analysis feature models from design feature models is proposed. The problems of thin region recognition and idealized geometry extraction in3D are reduced to corresponding2D problems by taking advantage of swept volumes. The range of thin region recognition is enlarged by decomposing remnants of additive features into swept volumes. Missed and wrongly recognized thin regions are also processed, assuring correctness of the results.
     4. Construction of optimal symmetry cells for symmetry features.
     An approach is proposed to constructing optimal symmetry cells for rotationally symmetric models. A symmetry cell mesh is constructed using a modified Delaunay refinement mesh generation algorithm. The algorithm operates just on a local mesh. By introducing move of triangles and tetrahedrons, the symmetry boundaries of the local mesh are allowed to change, so as to maintain the consistency of the symmetry boundaries, and to guarantee the Delaunayness of the symmetry edges and faces. The symmetry cell mesh in2D case is proved to be optimal in the sense that its number of elements is within a constant factor of the smallest number.
引文
[1]Lee K. CAD/CAM/CAE系统原理:Principles of CAD/CAM/CAE systems [M].袁清珂,张湘伟等译.北京:电子工业出版社,2006.
    [2]Mocko G M, Fenves S J. A Survey of Design-Analysis Integration Issues [R/OL]. NISTIR 6996,2003. http://citeseerx.ist.psu.edu/viewdoc/download?doi= 10.1.1.161.1879&rep=rep 1&t ype=pdf.
    [3]Bazilevs Y, Calo V, Cottrell J, et al. Isogeometric analysis using T-splines [J]. Computer Methods in Applied Mechanics and Engineering,2010,199(5-8): 229-263.
    [4]Armstrong C G. Modeling Requirements for Finite-Element Analysis [J]. Computer-Aided Design,1994,26(7):573-578.
    [5]Sutherland I E. Sketch pad:a man-machine graphical communication system [C]. DAC '64 Proceedings of the SHARE design automation workshop. New York: ACM,1964:6.329-6.346.
    [6]Versprille K J. Computer-Aided Design Applications of the Rational B-Spline Approximation Form [D]. New York:Syracuse University,1975.
    [7]Lane J M, Riesenfeld R F. A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1980,2(1):35-46.
    [8]Requicha A A G, Voelcker H B. Constructive solid geometry:TM-25 [R]. New York:Production Automation Project, University of Rochester,1977.
    [9]Requich A A G, Voelcker H B. Solid modeling:Current status and research directions [J]. IEEE Computer Graphics and Applications,1983,3(7):25-37.
    [10]Baumgart B G. Winged edge polyhedron representation [R]. California:Stanford University,1972.
    [11]Braid I C. The synthesis of solids bounded by many faces [J]. Communications of the ACM,1975,18(4):209-216.
    [12]Shah J J. Assessment of features technology [J]. Computer-Aided Design,1991, 23(5):331-343.
    [13]Shah J J, Mantyla M. Parametric and Feature-Based CAD/CAM:Concepts, Techniques and Applications [M]. New York:John Wiley & Sons,1995.
    [14]Requicha A A G. Representations for rigid solid:theory, methods, and systems [J]. ACM computing surveys,1980,12(4):437-464.
    [15]Spatial Corporation [EB/OL]. http://www.spatial.com/
    [16]CAM-I's Illustrated Glossary of Workpiece Form Features [R]. Computer Aided Manufacturing-International, Incorporated,1979.
    [17]Van'T Erve A H. Generative Computer Aided Process Planning for Part Manufacturing:An Expert System Approach [D]. The Netherlands:University of Twente,1988.
    [18]Shah J J. Philosophical Development of Form Feature Concept [R]. CAM-Ⅰ Report P-90-PM-02,1990.
    [19]Salomons O W, van Houten F J A M, Kals H J J. Review of Research in Feature-Based Design [J]. Journal of Manufacturing Systems,1993,12(2): 113-132.
    [20]Solidworks [EB/OL]. http://www.solidworks.com/
    [21]Han J. Survey of Feature Research:Technical Report IRIS-96-346 [R]. USC, USA:Institute for Robotics and Intelligent Systems,1996.
    [22]高曙明.自动特征识别技术综述[J].计算机学报,1998,21(3):281-288.
    [23]Babic B, Nesic N, Miljkovic Z. A review of automated feature recognition with rule-based pattern recognition [J]. Computers in Industry,2008,59(4):321-337.
    [24]Henderson M R, Anderson D C. Computer recognition and extraction of form features:a CAD/CAPP link [J]. Computers in Industry,1984(5):329-339.
    [25]Chang T C. Expert Process Planning for Manufacturing [M]. Addison-Wesley Publishing Company,1990.
    [26]Vandenbrande J H, Requicha A A G. Spatial reasoning for the automatic recognition of machinable features in solid models [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15(12):1-17.
    [27]Tseng Y J, Joshi S B. Recognition of interacting rotational and prismatic machining features from 3D mill-turn parts [J]. International Journal of Production Research,1998,36(11):3147-3165.
    [28]Shah J J. Feature transformations between application-specific feature spaces [J]. Computer-Aided Engineering Journal,1988,5(6):247-255.
    [29]Falcidieno B, Giannini F, Porzia C, et al. A uniform approach to represent features in different application contexts [J]. Computers in Industry,1992,19(2):175-184.
    [30]陈正鸣.基于局部特征识别的特征有效性维护和特征模型转换研究[D].杭州:浙江大学,2001.
    [31]Shah J J, Hsiao D, Leonard J. A systematic approach for design-manufacturing feature mapping [C].//Wilson P R, Wozny M J, and Pratt M J (Eds.). IFIP TC5/WG5.2 Working Conference on Geometric Modeling for Product Realization. Amsterdam, The Netherlands:North-Holland Publishing Co.,1992:205-221.
    [32]Shapiro V, Tsukanov I, Grishin A. Geometric issues in computer aided design/computer aided engineering integration [J]. Journal of Computing and Information Science in Engineering,2011,11(2):021-005.
    [33]Gao S. Real-time exchange of CAD models based on neutral modelling commands [J]. International Journal of Product Lifecycle Management,2010 4(4):331-337.
    [34]Didari S, Harris T A L, Huang W, et al. Feasibility of periodic surface models to develop gas diffusion layers:A gas permeability study [J]. International Journal of Hydrogen Energy,2012,37(19):14427-14438.
    [35]SpaceClaim Corporation [EB/OL]. http://www.spaceclaim.com/en/.
    [36]Liang Y, Liu Y, Kwong C K, et al. Learning the "Whys":Discovering Design Rationale Using Text Mining-An Algorithm Perspective [J]. Computer-Aided Design,2012,44(10):916-930.
    [37]Kim D B, Leong S, Chen C. An Overview of Sustainability Indicators and Metrics for Discrete Part Manufacturing [C]. Proc. of ASME DETC/CIE2012. Chicago, Illinois, USA:ASME,2012.
    [38]纪爱敏.机械CAE分析原理及工程实践[M].北京:机械工业出版社,2009.
    [39]Courant R. variational methods for the solution of problems of equilibrium and vibrations [J]. Bulletin of the American Mathematical Society,1943,49:1-23.
    [40]Reddy J N. An Introduction to the Finite Element Method [M]. New York: McGraw-Hill Inc.,1993.
    [41]Bathe K J. Finite Element Procedures [M]. New Jersey:Prentice Hall,1996.
    [42]Vogelius M, Babuska I. On a Dimensional Reduction Method I:The Optimal Selection of Basis Functions [J]. Mathematics of Computation,1981,37(155): 31-46.
    [43]Vogelius M, Babuska I. On a Dimensional Reduction Method Ⅱ:Some Approximation-Theoretic Results [J]. Mathematics of Computation,1981, 37(155):47-68.
    [44]Vogelius M, Babuska I. On a Dimensional Reduction Method Ⅲ:A Posterior Error Estimation and an Adaptive Approach [J]. Mathematics of Computation, 1981,37(156):361-384.
    [45]Glockner P G. Symmetry in structural mechanics [J]. Journal of the Structural Division,1973,99(1):71-89.
    [46]Bossavit A. Symmetry, groups, and boundary value problems:a progressive introduction to noncommutative harmonic analysis of partial differential equations in domains with geometrical symmetry [J]. Computer Methods in Applied Mechanics and Engineering,1986,56:167-215.
    [47]Bathe K J, Bolourchi S. Large displacement analysis of three-dimensional beam structures [J]. International Journal for Numerical Methods in Engineering,1979, 14(7):961-986.
    [48]Bathe K J, Dvorkin E N. A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation [J]. International Journal for Numerical Methods in Engineering,1985,21(2):367-383.
    [49]Bathe K J, Dvorkin E N. A formulation of general shell elements-the use of mixed interpolation of tensorial components [J]. International Journal for Numerical Methods in Engineering,1986,22(3):697-722.
    [50]Chapelle D, Bathe K J. Fundamental considerations for the finite element analysis of shell structures [J]. Computers & Structures,1998,66(1):19-36.
    [51]Bossavit A. Boundary Value Problems with Symmetry and Their Approximation by Finite Elements [J]. SIAM Journal on Applied Mathematics,1993,53(5): 1352-1380.
    [52]Zingoni A. A group-theoretic formulation for symmetric finite elements [J]. Finite Elements in Analysis and Design,2005,41(6):615-35.
    [53]Kaveh A, Fazli H. Graph coloration and group theory in dynamic analysis of symmetric finite element models [J]. Finite Elements in Analysis and Design, 2007,43(11&12):901-11.
    [54]Shewchuk J R. Unstructured Mesh Generation [M].//Naumann U, Schenk O. Combinatorial Scientific Computing. Chapman and Hall/CRC,2012:257-297.
    [55]Benzley S E, Perry E, Merkley K, et al. A comparison of all hexagonal and all tetrahedral finite element meshes for elastic and elasto-plastic analysis [C]. Proceedings,4th International Meshing Roundtable. Sandia National Laboratories,1995:179-191.
    [56]Shepherd J F, Johnson C R. Hexahedral mesh generation constraints [J]. Engineering with Computers,2008,24(3):195-213.
    [57]Cook R D. Finite element modeling for stress analysis [M]. John Wiley & Sons, 1995.
    [58]Cottrell J A, Hughes T J R, Bazilevs Y. Isogeometric Analysis:Toward Integration of CAD and FEM [M]. John Wiley & Sons,2009.
    [59]Shimada K. Current Issues and Trends in Meshing and Geometric Processing for Computational Engineering Analysis [J]. Journal of Computing and Information Science in Engineering,2011,11(2):021008.1-021008.13.
    [60]Pratt M J. Introduction to ISO 10303-the STEP Standard for Product Data Exchange [J]. Journal of Computing and Information Science in Engineering,2001, 1(1):102-103.
    [61]Zhang Y, Zhang C, Wang H P. Interoperation of STEP application protocols for product data management [J]. Concurrent Engineering:Research and Applications, 1998,6(2):161-169.
    [62]ISO 10303-209:2001-Industrial automation systems and integration--Product data representation and exchange--Part 209:Application protocol:Composite and metallic structural analysis and related design [S].2001.
    [63]Hunten K A. CAD/FEA Integration with STEP AP209 Technology and Implementation [C]. MSC 1997 Aerospace Users' Conference Proceedings.1997.
    [64]Shephard M S, Peggy L B, Marcek K G, et al. Framework for the reliable generation and control of analysis idealization [J]. Computer methods in applied mechanics and engineering,1990,82(1-3):257-280.
    [65]Dabke P, Prabhakar V, Sheppard S. Using Features to Support Finite Element Idealizations [C]. Proc. of ASME DETC/CIE1994.1994.
    [66]Cuilliere J C, Maranzana R. Automatic and a priori refinement of three dimensional meshes based on feature recognition techniques [J]. Advances in Engineering Software,1999,30(8):563-573.
    [67]Aifaou N, Deneux D, Benamara A, et al. Mechanical analysis process modeling based on analysis features [C]. International IEEE Conference on Systems, Man and Cybernetics.2002.
    [68]Aifaoui N, Deneux D, Soenen R. Feature-based interoperability between design and analysis processes [J]. Journal of Intelligent Manufacturing,2006,17(1): 13-27.
    [69]Belaziz M, Bouras A, Brun J M. Morphological analysis for product design [J]. Computer-Aided Design,2000,32(5-6):377-388.
    [70]Lee S H. A CAD-CAE integration approach using feature-based multi-resolution and multi-abstraction modelling techniques [J]. Computer-Aided Design,2005, 37(9):941-955.
    [71]Lee S H, Lee K. Simultaneous and incremental feature-based multiresolution modeling with feature operations in part design [J]. Computer-Aided Design, 2012,44(5):457-483.
    [72]Deng Y -M, Britton G A, Lam Y C, et al. Feature-based CAD-CAE integration model for injection-moulded product design [J]. International Journal of Production Research,2002,40(15):3737-3750.
    [73]Smit M S, Bronsvoort W F. Integration of Design and Analysis Models [J]. Computer-Aided Design and Applications,2009,6(6):795-808.
    [74]Hamri O, Leon J-C, Giannini F, et al. Interfacing product views through a mixed shape representation. Part 1:Data structures and operators [J]. International Journal on Interactive Design and Manufacturing,2008,2(2):69-85.
    [75]Hamri O, Leon J-C, Giannini F, et al. Computer Aided Design and Finite Element Simulation Consistency [J]. Journal of Mechanical Engineering,2010, 56(11):728-743.
    [76]Hamri O. CAD-CAE INTEGRATION THROUGH A MIXED SHAPE REPRESENTATION [C]. Proc. of ASME DETC/CIE2011. Washington, DC, USA:ASME,2011-08.
    [77]Gujarathi G P, Ma Y-S. Generative CAD and CAE Integration Using Common Data Model [C].6th annual IEEE Conference on Automation Science and Engineering. Toronto, Ontario, Canada,2010-08.
    [78]Gujarathi G P, Ma Y-S. Parametric CAD/CAE integration using a common data model [J]. Journal of Manufacturing Systems,2011,30(3):118-132.
    [79]Peak R S, Fulton R E, Nishigaki I, et al. Integrating engineering design and analysis using a multi-representation approach [J]. Engineering with Computers, 1998,14(2):93-114.
    [80]Tamburini D R. The Analyzable Product Model Representation to Support Design-Analysis Integration [D]. Atlanta:Georgia Institute of Technology,1999.
    [81]Zeng S, Peak R S, Wilson M W, et al. Analysis Building Blocks-A Rich Information Model Context for Knowledge-Based Finite Element Analysis [C]. Proceedings of Second MIT Conference on Computational Fluid and Solid Mechanics. Cambridge:Massachusetts Institute of Technology,2003-06: 2412-2417.
    [82]Thakur A, Banerjee A G, Gupta S K. A survey of CAD model simplification techniques for physics-based simulation applications [J]. Computer-Aided Design,2009,41(2):65-80.
    [83]Veron P, Leon J C. Shape preserving polyhedral simplification with bounded error [J]. Computers & Graphics,1998,22(5):565-585.
    [84]Fine L, Remondini L, Leon J C. Automated generation of FEA models through idealization operators [J]. International Journal for Numerical Methods in Engineering,2000,49(1-2):83-108.
    [85]Ribelles K, Heckbert P S, Garland M, et al. Finding and removing features from polyhedral [C]. Proceedings of ASME DETC'01.2001.
    [86]Date H, Kanai S, Kishinami T, et al. Flexible feature and resolution control of triangular meshes [C]. Proceedings of the sixth IASTED international conference on visualization, imaging and image processing.2006.
    [87]Jang J, Wonka P, Ribarsky W, et al. Punctuated simplification of man-made objects [J]. The Visual Computer,2006,22(2):136-145.
    [88]Gao S, Zhao W, Lin H, et al. Feature suppression based CAD mesh model simplification [J]. Computer-Aided Design,2010,42,(12):1178-1188.
    [89]Venkataraman S, Sohoni M. Blend recognition algorithm and applications [C].// Anderson D C and Lee K. Proceedings of the sixth ACM symposium on Solid modeling and applications. New York:ACM,2001:99-108.
    [90]Venkataraman S, Sohoni M, Rajadhyaksha R. Removal of blends from boundary representation models [C]. Proceedings of the seventh ACM symposium on Solid modeling and applications. New York:ACM,2002:84-94.
    [91]Zhu H, Menq C H. B-Rep model simplification by automatic fillet/round suppressing for efficient automatic feature recognition [J]. Computer-Aided Design,2002,34(2):109-123.
    [92]崔秀芬,高曙明,周广平.一种高效的过渡特征识别与抑制算法[J].计算机集成制造系统-CIMS,2004,10(1):77-82.
    [93]Li J, Tong G, Shi D. Automatic small blend recognition from B-rep models for analysis [J]. Engineering with Computers,2009,25(3):279-285.
    [94]Venkataraman S, Sohoni M. Reconstruction of feature volumes and feature suppression [C]. Proceedings of the seventh ACM symposium on Solid modeling and applications. New York:ACM,2002:60-71.
    [95]Joshi N, Dutta D. Feature simplification techniques for freeform surface models [J]. Journal of Computing and Information Science in Engineering,2003(3): 177-186.
    [96]Kim S, Lee K, Hong T, et al. An integrated approach to realize multi-resolution of B-Rep model [C]. Proceedings of the 2005 ACM symposium on solid and physical modeling.2005.
    [97]Sun R, Gao S, Zhao W. An approach to B-rep model simplification based on region suppression [J]. Computers & Graphics,2010,34(5):556-564.
    [98]Lee J Y, Lee J H, Kim H, et al. A Cellular topology-based approach to generating progressive solid models from feature-centric models [J]. Computer-Aided Design,2004,36(3):217-229.
    [99]Lee S H. Feature-based multi-resolution modeling of solids [J]. ACM Transactions on Graphics,2005,24(4):1417-1441.
    [100]方萃浩,叶修梓,陈志扬,彭维.三维CAD特征模型的多分辨率造型[J].浙江大学学报:工学版,2007,41(12):1955-1961.
    [101]Lee Y, Lee K. Geometrical detail suppression by the Fourier transform [J]. Computer-Aided Design,1998,30(9):677-693.
    [102]Andujar C, Brunet P, Ayala D. Topology reducing surface simplification using discrete solid representation [J]. ACM Transactions on Graphics,2002, 21(2):88-105.
    [103]Sheffer A. Model simplification for meshing using face clustering [J]. Computer-Aided Design,2001,33(13):925-934.
    [104]Foucault G, Cuilliere J, Francois V, et al. Adaptation of CAD model topology for finite element analysis [J]. Computer-Aided Design,2008,40(2):176-196.
    [105]何晖光,田捷,张晓鹏,赵明昌,李光明.网格模型化简综述[J].软件学报,2002,13(12):2215-2225.
    [106]Blum H. A transformation for extracting new descriptors of shape [J]. Models for the Perception of Speech and Visual Form,1967:362-380.
    [107]Choi H I, Choi S W, Moon H P. Mathematical theory of medial axis transform [J]. Pacific Journal of Mathematics,1997,181(1):57-88.
    [108]Attali D, Boissonnat J, Edelsbrunner H. Stability and Computation of Medial Axes-a State-of-the-Art Report [M].//Moller T, Hamann B, Russell R D. Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration. Berlin:Springer Berlin Heidelberg,2009:109-125.
    [109]Donaghy R J, Cune W M, Bridgett S J, et al. Dimensional reduction of analysis models [C].5th International Meshing Roundtable. Sandia National Laboratories,1996:307-320.
    [110]Armstrong C G, Bridgett S J, Donaghy R J, et al. Techniques for interactive and automatic idealisation of CAD models [C]. Sixth International Conference on Numerical Grid Generation in Computational Field Simulations. London, 1998-07.
    [111]Donaghy R J, Armstrong C G, Price M A. Dimensional reduction of surface models for analysis [J], Engineering with Computers,2000,16(1):24-35.
    [112]Robinson T, Fairey R, Armstrong C, et al. Automated mixed dimensional modelling with the medial object [C]. Proceedings of 17th International Meshing Roundtable. Berlin:Springer Berlin Heidelberg,2008-08:281-298.
    [113]Robinson T T, Armstrong C G, Fairey R. Automated mixed dimensional modeling from 2D and 3D CAD models [J]. Finite Elements in Analysis and Design,2011,47(2):151-165.
    [114]Foskey M, Lin M C, Manocha D. Efficient computation of a simplified medial axis [J]. Journal of Computing and Information Science in Engineering,2003, 3(4):274-284.
    [115]Sud A, Foskey M, Manocha D. Homotopy-preserving medial axis simplification [C]. Proceedings of the 2005 ACM symposium on solid and physical modeling.2005.
    [116]Suresh K. Generalization of the mid-element based dimensional reduction [J]. Journal of Computing and Information Science in Engineering,2003,3(4): 308-314.
    [117]Suresh K. Skeletal reduction of boundary value problems [J]. International Journal for Numerical Methods in Engineering,2006.66(4):722-739.
    [118]Rezayat M. Midsurface abstraction from 3D solid models:general theory and applications [J]. Computer-Aided Design,1996,28(11):905-915.
    [119]Lee H, Nam Y, Park S. Graph-based midsurface extraction for finite element analysis [C]. Proceedings of the 2007 11th International Conference on Computer Supported Cooperative Work in Design.2007:1055-1058.
    [120]Sheen D, Son T, Ryu C, et al. Dimension Reduction of Solid Models by Mid-Surface Generation [J]. International Journal of CAD/CAM,2007,7(1): 71-80.
    [121]Sheen D, Son T, Myung D, et al. Transformation of a thin-walled solid model into a surface model via solid deflation [J]. Computer-Aided Design,2010,42(8): 720-730.
    [122]Ramanathan M, Gurumoorthy B. Generating the Mid-surface of a Solid using 2D MAT of its faces [J]. Computer-Aided Design & Applications,2004,1(1-4): 665-674.
    [123]Chong C S, Kumarb A S, Lee K H. Automatic solid decomposition and reduction for non-manifold geometric model generation [J]. Computer-Aided Design,2004,36(13):1357-1369.
    [124]Fischer A, Smolin A, Elber G. Mid-Surfaces of Profile-based Freeforms for Mold Design [J]. Journal of Manufacturing Science and Engineering,1999, 121(2):202-207.
    [125]Robinson T T, Armstrong C G, Lee K Y, et al. Automatic mixed dimensional finite element modeling of sketch based CAD components [C].13th ACME CONFERENCE. UNIVERSITY OF SHEFFIELD,2005-03.
    [126]Robinson T T, Armstrong C G, McSparron G, et al. Automated mixed dimensional modeling for the finite element analysis of swept and revolved CAD features [C]. Proceedings of the 2006 ACM symposium on Solid and physical modeling.2006:117-128.
    [127]Stolt R. A CAD integrated system for automated idealization of CAD-models for finite element analysis [C]. Proc. of ASME DETC/CIE2005.2005-09: 457-466.
    [128]Stolt R. A sectioning method for constructing the mid-surface of thin-walled die-cast and injection moulded parts [R]. Sweden:Jonkoping University, School of Engineering,2006.
    [129]吴海胖.基于特征的CAD-FEA集成技术研究[D].杭州:浙江大学,2010.
    [130]Yin L, Luo X, Shephard M S. Identifying and Meshing Thin Sections of 3-d Curved Domains [C].14th International Meshing Roundtable. Springer-Verlag, 2005-09:33-54.
    [131]Quadros W R. An approach for extracting non-manifold mid-surfaces of thin-walled solids using chordal axis transform [J]. Engineering with Computers, 2008,24(3):305-319.
    [132]Rosenfeld A. Axial representation of shape [J]. Computer Vision, Graphics, and Image Processing,1986,33(2):156-173.
    [133]Wolter J D, Woo T C, Volz R A. Optimal algorithms for symmetry detection in two and three dimensions [J]. The Visual Computer,1985,1(1):37-48.
    [134]Alt H, Mehlhorn K, Wagener H, et al. Congruence, Similarity, and Symmetries of Geometric Objects [J]. Discrete & Computational Geometry,1988, 3(1):237-256.
    [135]Llados J, Bunke H, Mart E. Finding rotational symmetries by cyclic string matching [J]. Pattern Recognition Letters,1997,18(14):1435-1442.
    [136]Tate S J, Jared G E M. Recognising symmetry in solid models [J]. Computer-Aided Design,2003,35(7):673-692.
    [137]Martinet A, Soler C, Holzschuch N, et al. Accurate detection of symmetries in 3D shapes [J]. ACM Transactions on Graphics,2006,25(2):439-464.
    [138]Li M, Langbein F C, Martin R R. Detecting approximate symmetries of discrete point subsets [J]. Computer-Aided Design,2008,40(1):76-93.
    [139]Zingoni A. Symmetry recognition in group-theoretic computational schemes for complex structural systems [J]. Computers and Structures,2012(94-95): 34-44.
    [140]Ahlander K. Mesh Generation for Symmetrical Geometries [C]. Computational Science and Its Applications-ICCSA 2005 Lecture Notes in Computer Science. Springer Berlin Heidelberg,2005:657-668.
    [141]Suresh K, Sirpotdar A. Automated symmetry exploitation in engineering analysis [J]. Engineering with Computers,2006,21(4):304-311.
    [142]White D R, Saigal S, Owen S J. Meshing complexity of single part CAD models [C]. Proceedings of 12th International Meshing Roundtable. Sandia National Laboratories,2003:121-134.
    [143]Ferrandes R, Marin P, Leon J, et al. A posteriori evaluation of simplification details for finite element model preparation [J]. Computers and Structures,2009, 87(1-2):73-80.
    [144]Tang J, Gao S, Li M. Evaluating defeaturing-induced impact on model analysis [J]. Mathematical and Computer Modelling,2013,57(3-4):413-424.
    [145]唐建国.面向可信分析的CAD模型简化误差评价[D].杭州:浙江大学,2012.
    [146]Gopalakrishnan S, Suresh K. A formal theory for estimating defeaturing-induced engineering analysis errors. Computer-Aided Design,2007, 39(1):60-68.
    [147]Turevsky I, Gopalakrishnan S, Suresh K. Defeaturing:a posteriori error analysis via feature sensitivity [J]. International Journal for Numerical Methods in Engineering,2008,76(9):1379-1401.
    [148]Gopalakrishnan S, Suresh K. Feature sensitivity:a generalization of topological sensitivity [J]. Finite Elements in Analysis and Design,2008,44 (11): 696-704.
    [149]Turevsky I, Gopalakrishnan S, Suresh K. An efficient numerical method for computing the topological sensitivity of arbitrary-shaped features in plate bending [J]. International Journal for Numerical Methods in Engineering,2009, 79(13):1683-1702.
    [150]Li M, Gao S. Estimating defeaturing-induced engineering analysis errors for arbitrary 3D features [J]. Computer-Aided Design,2011,43(12):1587-1597.
    [151]Li M, Gao S, Martin R. Estimating the effects of removing negative features on engineering analysis [J]. Computer-Aided Design,2011,43(11):1402-1412.
    [152]Li M, Gao S, Zhang K. A goal-oriented error estimator for the analysis of simplified designs [J]. Computer Methods in Applied Mechanics and Engineering,2013,255(1):89-103.
    [153]Li M, Gao S, Martin R. Engineering analysis error estimation when removing finite-sized features in nonlinear elliptic problems [J]. Computer-Aided Design, 2013,45(2):361-372.
    [154]Femap [CP/OL]. http://www.plm.automation.siemens.com/en us/products/velocity/femap/.
    [155]HyperMesh [CP/OL]. http://www.altairhyperworks.com/Product.7.HyperMesh.aspx?AspxAutoDetectC ookieSupport=1.
    [156]Ruppert J. A Delaunay refinement algorithm for quality 2-dimensional mesh generation [J]. Journal of Algorithms,1995,18(3):548-585.
    [157]Shewchuk J R. Delaunay Refinement Mesh Generation [D]. Carnegie Mellon University,1997.
    [158]Ungor A. Off-centers:A new type of Steiner points for computing size-optimal quality-guaranteed Delaunay triangulations [J]. Computational Geometry:Theory and Applications,2009,42(2):109-118.
    [159]Lawson C L. Software for C1 Surface Interpolation [M].//Rice J R. Mathematical Software III. New York:Academic Press,1977:161-194.
    [160]Watson D F. Computing the n-dimensional Delaunay Tessellation with Application to Voronoi Polytopes [J]. Computer Journal,1981,24(2):167-172.
    [161]Bowyer A. Computing Dirichlet Tessellations [J]. Computer Journal,1981, 24(2):162-166.
    [162]Zeng W, Shi R, Gu X D. Global Surface Remeshing Using Symmetric Delaunay Triangulation in Uniformization Spaces [C]. Proceedings of the Eighth International Symposium on Voronoi Diagrams in Science and Engineering. Washington, DC:IEEE Computer Society,2011:160-169.
    [163]Triangle [CP/OL]. https://www.cs.cmu.edu/-quake/triangle.html.
    [164]Tetgen [CP/OL]. http://wias-berlin.de/software/tetgen/.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700