铸造数值模拟技术及其在典型铸钢件中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着铸造CAD/CAE实用化技术的日趋成熟,以及商业化铸造软件的逐步应用,将CAD/CAE技术应用于铸造工艺的辅助设计、铸件产品的开发和铸件质量的改进中具有非常重要的经济和学术意义。
     本文分析了铸造CAE数值模拟技术及其发展,研究了铸造模拟过程中流场、温度场、应力场数学模型建立的方法,方程的求解过程,以及影响流场、温度场、应力场因素等。
     通过综合利用铸造工艺的计算机辅助设计、计算机数值模拟技术解决了生产中几个典型铸件的缺陷问题。利用IronCAD实体设计软件对矿山机械定颚铸件、水轮机导叶铸件和水轮机转轮叶片铸件进行了三维实体建模和铸造工艺的计算机辅助设计,运用MAGMAsoft铸造数值模拟软件,对定颚铸件钢水充型过程的流场、导叶铸件凝固过程的温度场、水轮机转轮叶片铸件凝固过程的应力场进行了数值模拟分析。
     应用铸造CAD/CAE软件成功地对下述过程进行了计算机数值模拟及工艺优化的研究:
     1.对定颚铸件钢水充型过程的流场进行了数值模拟,对传统浇注系统和改进后的浇注系统分别进行了模拟分析,结果表明传统浇注系统浇注过程中容易使钢水发生紊流状充型,使铸件表面和内部产生大量的气孔。而改进后的浇注系统不仅使钢水充型平稳,而且实际生产的铸件表面和内部均没有气孔产生。
     2.对导叶铸件凝固过程的温度场进行了数值模拟,有效的预测了导叶铸件容易出现缩孔、缩松的位置,并针对上述铸造缺陷建立了顺序凝固时所需要的温度场,编制出合理的铸造工艺,使实际生产出来的导叶铸件无缩孔、缩松缺陷产生。
     3.对水轮机转轮叶片铸件进行了凝固过程的应力场数值模拟,成功地预测了凝固过程中应力场对叶片铸件变形量的影响,为叶片铸件生产过程中反变形量的施加提供了指导意见。并根据模拟结果进行了实际生产,结果表明,实际生产的叶片铸件的变形量完全在预测结果范围内。
     本文对定颚铸件、导叶铸件和叶片铸件制造过程的CAD/CAE研究,实现了用科技指导生产,为今后将CAD/CAE技术进一步应用到铸造生产中进行了一些有益的探索和尝试。
     总之,将计算机CAD/CAE技术应用在铸造工业中,可以快速、准确、低成本地研究铸造生产全过程。采用这项技术对于彻底改变铸造工艺方案制订中的经验不足,确保铸件质量、节约生产成本、提高铸造生产率乃至推动铸造技术的发展与进步都具有举足轻重的作用和意义。
With casting CAD/CAE practical technology application development and the corresponding commercialized software using wider and wider, the CAD/CAE technology using to product development and quality improving has great economic and academic significance.
     In this paper the casting CAE technology and its development has been analysed. The mathematics model making, the solution of equations and the factors of flow field, temperature field and stress field have been studied.
     The defect problems of some typical castings have been solved using casting CAD/CAE. Three-dimensional modeling of Front-end casting of mining machinery, casting of Vane hydraulic-turbine and Blade casting of hydraulic-turbine runner are built using CAD software IronCAD. The flow field of Front-end casting, temperature field of Vane casting and stress field of Blade casting are simulated using casting numerical simulation software MAGMAsoft.
     The following cast processes was simulated and optimized using CAD/CAE software:
     1. Front-end casting filling course has been simulated using numerical simulation technology. The comparative study of simulation of tradition gating system and improved gating system indicate that tradition gating system has turbulent form filling in molten steel, a large number of gas cavity made in surface and inside of casting. When using improved gating system, not only molten steel fills steady but also there is no gas cavity of casting surface and inside of product.
     2. Temperature field of solidify process of vane casting was simulated. The location of shrinkage cavity and shrinkage porosity was predicted. The temperature field solidified in proper order was set up. The appropriate foundry technique according to it used in vane casting production and there is not shrinkage cavity and shrinkage porosity.
     3. The stress field simulation during solidify process of hydraulic-turbine runner blade casting was made. The deformation of casting caused by stress field was predicted. Following the result the oppose deformation allowance in the production process of the blade casting was added. According to the result of simulation the blade casting was made, which deformation totally in the range of predict.
     Using CAD/CAE technology studied Front-end casting, Vane casting and Blade casting making process. The results direct production successful. With science exploration and application trying for CAD/CAE and technology, it goes on some beneficial technology to cast producing in the future.
     CAD/CAE technology application in cast industry studies the whole course of cast production speediness, nicety and low cost. This technology changes the experimental reliance of the casting technology scheme making. It assures casting quality, saves casting cost and raises casting productivity. It can also promote cast technological progress.
引文
[1]柳百成等.新一代材料精确成型技术[M].机械工程技术前沿,北京:机械工业出版社,1996.
    [2]Kramer B M.A Key Element on the Government Manufacturing Infrastructure Strategy[J].National Science Foundation.1996(5):16-20P.
    [3]Diego S.Proceedings of International Conference on Modeling of Casting[J].Welding and Advanced Solidification Processes.1998(Ⅷ):7-12P.
    [4]Xiong S,Liu B.Study on numerical simulation of mold-filling and solidification process of shaped casting[J].Chinese J.Of Mechanical Engineering.1999(1):4-9P.
    [5]孙小波,安阁英.用直接差分法实现铸件凝固进程三维数值模拟软件及软件研究[J].铸造.1996(8):23-26页.
    [6]闻星火,荆涛,贾宝仟等.基于柱坐标系的凝固模拟系统研究[J].铸造.1997(10):6-9页.
    [7]刘瑞祥,陈立亮,林汉同等.铸钢件流动与传热耦合计算数值模拟[J].铸造.1998(6):18-21页.
    [8]Yang B J,liu W T,su J Y.Simulation and Experimental Investigation of the Solidification of Centrifugally-Cast Cylinder Sleeves[J].AFS Transaction.1994,10(6):763-768P.
    [9]Midea T,schmidt D.Casting Simulation Software Survey[J].Modern Casting.1999(89):47-51P.
    [10]曾健,王家弟,卢晨等.UG和PROCAST之间的图形数据交换研究[J].铸造.1999(12):11-14页.
    [11]杨屹,蒋玉明,刘立菱等.铸件凝固过程中热应力场及热裂的数值模拟研究分析[J].铸造技术.2000(2):36-39页.
    [12]孙立斌张光跃,柳百成等.铸造模拟技术在铸钢件上的应用[J].热加工工艺.2000(3):52-54页.
    [13]付广瑞,刘金义等.利用凝固模拟辅助铸造工艺设计[J].铸造.1999(2):22-25页.
    [14]刘烨,刘瑞祥,周建新等.凝固模拟的可视化研究[J].铸造.2000,49(6):340-343页.
    [15]Baicheng L,Al S H E.Process in numerical simulation of solidification process of shaped casting[J].J.of Mater.Sci.Technol.1995,11(5):312-324P.
    [16]张毅.铸件凝固数值模拟及铸造工艺CAD现代进展[J].铸造.1987(6):8-12页.
    [17]L B.Progress in Solidification Modeling of Cast Iron in China[C].1999.
    [18]Estrin L.A Deeper Look at Casting Solidification Software[J].Modem Casting.1994,84(7):20-24P.
    [19]M T,D S.Simulation Software Survey[J].Modem Casting.1999,89(5):47-51P.
    [20]许俊杰,赵国平,蒋宗宇.铸造CAD应用及研究进展[J].江苏理工大学学报.1998,19(2):53-58页.
    [21]袁浩扬.铸件形成过程传热与流动耦和数值模拟的研究[D].上海:华中理工大学,1995.
    [22]李荣德.铸造CAD/CAM的发展与展望[J].沈阳工业大学学报.1991,13(2):15-18页.
    [23]李新亚,李宝东,祝强.铸造行业国内外生产技术现状及发展方向[J].铸造.1999(5):3-11页.
    [24]杨弋涛,陈萌,邵光杰.铸造模拟在大型复杂铸铁件上的实用研究[J].铸造.2005,54(3):265-267页.
    [25]曹文龙.铸造工艺学[M].北京:机械工业出版社,1988:221-223页.
    [26]柳百成.铸件充型凝固过程数值模拟国内外研究进展[J].铸造技术.1999(8):17-20页.
    [27]李强.铸件充型过程三维流场数值模拟[D].哈尔滨:哈尔滨工业大学,2002.
    [28]Stoehr R A,Hwang W S.Modeling the Flow of Molten Metal Having a Free Surface during Entry into Molds[C].Warrendale;PA:The Metallurgical Society of AIME,1983.
    [29]Stoehr R A,Wang C.Coupled heat transfer and fluid flow in the filling of castings[J].AFS Transactions.1988(3):733-740P.
    [30]Lin H J,Hwang W S.Three dimensional fluid flow simulation for mold filling[J].AFS Transactions.1989(6):855-862P.
    [31]Yeh J L,Hjong S,Hwang W S.Improved 3-D mold filling model for complex castings and experimental verification[J].AFS Transactions.1993(7):1055-1061P.
    [32]Estfin L.A deeper look at casting solidification software[J].Modem Casting.1994,84(7):20-24P.
    [33]Midea T C,Schmidt D.1999 Casting simulation software survey[J].Modern Casting.1999,89(5):47-51P.
    [34]Wang J Q.Mold Filling and Temperature Fields[D].Technical University of DENMARK,1988.
    [35]王致清.流体力学基础[M].北京:高等教育出版社,1987.
    [36]楼志诚.冶金传输现象的基本原理与方法[M].上海:上海科学技术出版社,1997.
    [37]熊守美,许庆彦,康进武.铸造过程模拟仿真技术[M].北京:机械工业出版社,2004.
    [38]荆涛.凝固过程数值模拟[M].北京:机械工业出版社,1999:50-68.
    [39]柳百成,荆涛等.铸造工程的模拟仿真与质量控制[M].北京:机械工 业出版社,2001:88-96页.
    [40]Liu B C,Kang J W,Xiong S M.A study on the numerical simulation of thermal stress during the solidification of shaped casting[J],science and technology of advanced material.2001(2):157-164P.
    [41]王助成.有限单元法[M].北京:清华大学出版社,2003:102-108.
    [42]孔祥谦.有限单元法在传热学中的应用(第三版)[M].北京:科学出版社,1998:89-102页.
    [43]李文珍,柳百成,王春乐.铸钢件缩孔缩松形成预测的试验研究[J].铸造技术.1995(4):37-41页.
    [44]康进武,熊守美,柳百成.采用多热节和即补即缩方法预测铸钢件缩孔的研究[J].2000,8(49):478-481页.
    [45]贾宝仟,熊守美,柳百成.铸件凝固过程孤立域动态划分及缩孔缩松数值模拟[J].铸造技术.1996(5):15-17页.
    [46]田学雷,李光友,李成栋等.铸钢件缩松判据的改进[J].铸造.2001,6(50):346-348页.
    [47]熊守美,许庆彦,康进武.铸造过程模拟仿真技术[M].北京:机械工业出版社,2004:46-55页.
    [48]殷绥域.弹塑性力学[M].武汉:中国地质大学出版社,1990:76-90页.
    [49]王延露.基于MAGMAsoft的铸造充型凝固过程分析与研究[D].兰州:兰州理工大学,2006.
    [50]MAGMASOFT.4.2使用说明书[S].德国,2002.
    [51]肖荣存,陈立亮,刘瑞祥.铸造冒口CAD设计模块的研究开发[J].特种铸造及有的合金.2000(1):42-44页.
    [52]关润浩.铸钢件凝固控制及冒口设计[M].北京:冶金工业出版社,1987.
    [53]曲为涛.铸造工艺学[M].西安:西安工业大学出版社,1996.
    [54]黄天佑.材料加工工艺[M].北京:清华大学出版社,2004.
    [55]廖广兰,周建兴,刘瑞祥.通用型浇注系统CAD模块的开发[J].现代铸 铁.2000(1):42-43页.
    [56]李魁盛.铸造工艺设计基础[M].北京:机械工业出版社,1983.
    [57]夏巨堪,张启勋.材料成型工艺[M].北京:机械工业出版社,2004.
    [58]曹文龙.铸造工艺学[M].北京:机械工业出版社,1998:21-224.
    [59]Hu B H,Hao S W,Niu X P,et al.Optimization of mould design in die casting of Pewter parts through numerical simulation[C].Singapore:1997.
    [60]Niu X P,Hao S W,B.h.Hu K K S T,et al.Application of numerical simulation in die casting processes[C].Australia:1997.
    [61]魏兵,袁森,张卫华.铸件均衡凝固技术及其应用[M].北京:机械工业出版社,1998:153-168页.
    [62]王智平,杨磊.基于Magmasoft铸造过程的计算机辅助设计[J].新技术新工艺.2007(9):52-54页.
    [63]熊六一,陈阵.运用均衡凝固理论解决燃气轮机壳体铸件的缩孔和缩松缺陷[J].铸造技术.2006,27(3):215-216页.
    [64]曹昆,姚志民.水轮机原理及水力设计[M].北京:清华大学出版社,1991:219-221页.
    [65]王蕴莹.水轮机[M].北京:中国水利水电出版社,1993:20-23页.
    [66]李宏英,赵成志.铸造工艺设计[M].北京:机械工业出版社,2005:185-186页.
    [67]王立滨,董文刚,刘莉杰.大型水轮机不锈钢导叶铸造工艺研究[J].电站系统工程.1998,14(3):61-63页.
    [68]G T B.Issues in thermal-mechanical modeling of casting processes[C].1995.
    [69]柳百成.铸造工程的模拟仿真与质量控制[M].北京:机械工业出版社,2001:202-221页.
    [70]陈立亮.材料加工CAD/CAE/CAM技术基础[M].北京:机械工业出版社,2006.
    [71]A R,E H,E E H.Numerical calculation of microsegregation in coarsened dendritic microstructures[J].Materials Science and Technology.1986,2(11):1149-1155P.
    [72]Shoumei X,Baicheng L,Riming Z,et al.Numerical simulation and analysis of residual stress inmachine tool bed casting[J].Tsinghua Science and Technology.1996(6):184-189P.
    [73]L P A,D P R.Numerical simulation of solidification and thermal stresses during solidification of a restrained bar test casting[J].AFS Transactions.1992(100):593-600P.
    [74]徐瑞.材料科学中数值模拟与计算[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [75]郭戈,乔俊飞,王伟.铸坯凝固过程计算机模拟[J].中国有色金属学报.1999,9(2):339-344页.
    [76]王贞凯,胡章洪.水轮机叶片光电经纬仪测量及其数据处理技术[J].东方电气评论.2004,18(3):137-140页.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700