胰岛素介导SHR VSMC增殖的基因外修饰机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、研究背景
     大量研究证实高血压合并糖尿病及高胰岛素血症的病人,发生心脑血管并发症的风险大大高于单纯高血压病人,动物实验与基础研究证实:1、胰岛素可诱发实验动物动脉硬化的发生;2、在超生理浓度下,胰岛素刺激血管平滑肌细胞的增生和迁移;3、长期给与外源胰岛素导致脂异常与动脉壁增厚;4、胰岛素输注加速了输注动脉的粥样硬化。提示胰岛素抵抗及其代偿性的高胰岛素血症是冠心病的重要危险因素,在冠心病和血管增生性疾病的预防和治疗过程中也说明高胰岛素血症在血管增生性病变中发生重要作用。积极改善胰岛素抵抗和高胰岛素血症,对以上的疾病将起到积极的防治作用。
     二、研究目的
     明确结构基因外修饰对血管平滑肌细胞增殖及表型转换的影响,找出胰岛素介导血管平滑肌细胞异常增殖时基因外改变(结构基因外修饰)调控细胞增殖的变化规律及结构基因外修饰和细胞增殖相关基因表达差异之间的内在联系及作用机制,揭示血管平滑肌细胞增殖的机制,为血管增生性疾病的防治寻求新的理论和实验依据。
     三、研究内容
     1.胰岛素促SHR VSMCs增殖的MAPK机制。
     2.丁酸钠阻断HDAC后组蛋白超乙酰化对SHR VSMCs增殖的影响。
     3.胰岛素对组蛋白乙酰化的影响,PD98059阻断MAPK通路后组蛋白乙酰化的改变。
     4.胰岛素对HDAC1的作用及PD98059阻断MAPK后对这种作用的影响。
     5.丁酸钠导致的组蛋白超乙酰化对MAPK通路的影响。
     6.胰岛素对增殖相关因子PDGF基因转录及蛋白表达的影响及PD98059和丁酸钠对胰岛素的这种作用的影响。
     7.胰岛素对VSMCs表型相关蛋白质α-SM actin、OPN表达的影响及PD98059和丁酸钠对其的作用。
     8.胰岛素、PD98059、丁酸钠对PDGF和α-SM actin DNA启动子甲基化的影响。
     四、研究方法
     1.原代培养SHR VSMCs。
     2. H3-TdR掺入、MTT法、细胞计数法、流式细胞仪检测VSMCs的增殖情况。
     3.建立胰岛素促VSMCs增殖的浓度曲线。
     4.以胰岛素及PD98059干预VSMC后观察VSMCs增殖的情况,免疫印迹和RT-PCR观察MAPK蛋白质表达及mRNA表达的变化。
     5.丁酸钠干预VSMCs后对胰岛素促VSMC增殖作用的影响。
     6.免疫印迹检测胰岛素、PD98059、丁酸钠对VSMCs HDAC1及组蛋白乙酰化的影响。
     7.免疫印迹检测胰岛素、PD98059、丁酸钠对MAPK表达的影响,RT-PCR检测其对MAPK基因转录的作用。
     8.免疫印迹检测胰岛素、PD98059、丁酸钠对PDGF和α-SM actin表达的影响,RT-PCR检测其对PDGF和α-SM actin基因转录的作用。
     9.特异性甲基化DNA PCR检测胰岛素、PD98059、丁酸钠对PDGF和α-SM actin DNA启动子甲基化的影响。
     五、研究结果
     1.胰岛素能够明显促进MAPK的表达及SHR VSMCs增殖,且这种作用能被PD98059阻断。
     2.丁酸钠能抑制胰岛素促进SHR VSMCs增殖的作用。
     3.胰岛素促进HDAC1的表达,丁酸钠明显抑制HDAC1的表达,PD98059对HDAC1的表达无明显影响。
     4.免疫印迹显示胰岛素促进组蛋白H3乙酰化,而PD98059抑制胰岛素的这种作用。
     5.胰岛素上调PDGF的表达,同时下调α-SM actin的表达。该作用可被PD98059和丁酸钠阻断。
     6.胰岛素促进MAPK、PDGF基因的转录,同时抑制α-SM actin基因的转录,该作用可被PD98059和丁酸钠阻断。
     7. PDGF DNA启动子在SHR VSMCs中生理情况下处于非甲基化状态,胰岛素、PD98059对其非甲基化状态没有影响,但丁酸钠可以使PDGF DNA启动子发生甲基化。
     8.α-SM actin DNA启动子在SHR VSMCs中生理情况下处于非甲基化状态,胰岛素、PD98059、丁酸钠对其非甲基化状态均没有产生影响。
     六、结论
     1.胰岛素介导SHR VSMCs增殖经由MAPK信号传导途径。
     2.组蛋白乙酰化的改变参与了胰岛素介导SHR VSMCs增殖的过程,且这种过程通过MAPK信号传导途径。
     3.胰岛素介导SHR VSMCs增殖没有α-SM actin及PDGF DNA启动子甲基化状态的改变参与,但丁酸钠抑制SHR VSMCs增殖可能涉及PDGF DNA启动子的甲基化改变。
1. Background
     Previous studies show that the risk of cardiovascular complications in hypertensive patients with diabetes and hyperinsulinemia is much high. Animal experiments and basic researches have documented that 1) atherosclerosis could be induced by insulin in laboratory animals; 2) the proliferation and migration of vascular smooth muscle cells (VSMC) are increased by insulin at super-physiological concentrations; 3) long-term application of insulin leads to abnormal lipid metabolism and thickening of artery vessel wall; 4) infusion of insulin accelerates the progress of atherosclerosis in the infused artery. All the above-mentioned studies indicate that insulin resistance and compensatory hyperinsulinemia are the major risk factors for coronary heart disease. Moreover, prevention and treatment of coronary heart disease and vascular proliferative disease also show the importance of hyperinsulinemia in the process of vascular proliferative lesions. Improvement of the insulin sensitivity would be benefit to protect from coronary artery disease and other vascular diseases.
     2. Objectives
     This study is to identify the effects of epigenetic modification on proliferation and phenotype conversion of vascular smooth muscle cells, to investigate the role of cell proliferation mediated by insulin-induced epigenetic modification, the internal relations and the mechanisms of different expressions between epigenetic modification and cell proliferation related genes, and to reveal the mechanisms of proliferation of vascular smooth muscle cells, to explore new theoretical and experimental basis for prevention and control of vascular proliferative diseases.
     3. Study contents
     1) The role of MAPK in the proliferation of VSMCs induced by insulin.
     2) Effect of histone super-acetylation on proliferation of VSMCs after blockade of HDAC with sodium butyrate.
     3) Effect of insulin on histone acetylation and investigation of histone acetylation after blockade of MAPK with PD98059.
     4) Effect of insulin on HDAC1 with or without blockade of MAPK with PD98059.
     5) Effect of histone super-acetylation-induced by sodium butyrate on MAPK pathway.
     6) Effect of insulin on genetic transcription and protein expression of proliferation related gene PDGF before and after treatment of PD98059 and sodium butyrate.
     7) Effect of insulin on expressions ofα-SM actin and OPN before and after treatment of PD98059 and sodium butyrate.
     8) Effect of insulin, PD98059 and sodium butyrate on promoter methylation of PDGF andα-SM actin DNA.
     4. Methods and materials
     1) Primary culture of VSMCs from SHRs.
     2) Proliferation of VSMCs determined by H3-TdR, MTT, cytometry and flow cytometry.
     3) Establishment of concentration curve of insulin-mediated proliferation of VSMCs.
     4) To observe the effects of insulin and PD98059 on VSMCs proliferation and MAPK expression determined by immunoblotting and RT-PCR.
     5) Effect of sodium butyrate on proliferation of VSMCs induced by insulin.
     6) Effect of insulin, PD98059 and sodium butyrate on HDAC1 and histone acetylization of VSMCs determined by immunoblotting.
     7) Effect of insulin, PD98059 and sodium butyrate on MAPK protein and mRNA expressions determined by immunoblotting and RT-PCR.
     8) Effect of insulin, PD98059 and sodium butyrate on PDGF andα-SM actin protein and mRNA expressions determined by immunoblotting and RT-PCR.
     9) Effect of insulin, PD98059 and sodium butyrate on promoter methylation of PDGF andα-SM actin DNA determined by specific DNA methylation PCR.
     5. Results
     1) Insulin increased MAPK expression and proliferation of VSMCs, which was blocked by PD98059.
     2) Sodium butyrate inhibited the insulin-mediated proliferation of VSMCs.
     3) Insulin increased, while sodium butyrate decreased HDAC1 expression, PD98059 had no effect on HDAC1 expression.
     4) Insulin increased, while PD98059 decreased the acetylation of histone H3 determined by immunoblotting.
     5) Insulin up-regulated the expression of PDGF, down-regulatedα-SM actin expression, which was blocked by PD98059 and sodium butyrate.
     6) Insulin increased the genetic transcription of MAPK and PDGF, decreased the gene transcription ofα-SM actin, which was blocked by PD98059 and sodium butyrate.
     7) PDGF DNA promoter was non-methylation in physical condition in VSMCs from SHRs; sodium butyrate, instead of PD98059 and insulin, increased methylation of PDGF DNA.
     8)α-SM actin DNA promoter was non-methylation status in physical condition in VSMCs from SHRs; sodium butyrate, PD98059 and insulin had no effect on this non-methoylation status.
     6. Conclusions
     1) The MAPK pathway is involved in the insulin-mediated proliferation of VSMCs from SHRs
     2) Histone acetylation is engaged into the insulin-mediated proliferation of VSMCs from SHRs, MAPK pathway is involved into this action.
     3) Proliferation of VSMCs from SHRs induced by insulin is not related toα-SM actin and PDGF DNA promoter methylation but effect of sodium butyrate on proliferation of VSMCs from SHRs might be related to PDGF DNA promoter methylation.
引文
我国人群高血压(Essential Hypertension, EH)的患病率呈持续增长趋势,2002年卫生部组织的全国居民27万人营养和健康状况调查资料显示,随着我国居民膳食结构的改变,人群中慢性非传染性疾病患病率迅速上升,我国18岁以上居民EH患病率达18.8%,估计全国患病人数1.6亿多。与1991年相比,患病率上升了31%[1、2]。我国目前每15秒就有一人死于心脑血管病,心脑血管病的总发病率和死亡率已接近发达国家。2004年卫生部统计资料表明心脑血管病死亡率占死亡构成的44.4%,居死亡原因首位,EH为死亡的第一位危险因素。EH和相关疾病造成的经济负担巨大,2003年统计显示我国EH直接医疗费为300亿元,EH和相关疾病造成的直接和间接的耗费每年估计为3000亿元[1、2]。冠心病合并糖尿病患者中伴高血压、脑卒中、高脂血症家族史较非糖尿病冠心病患者现况调查发现空腹胰岛素水平最高组的既往心梗发生率和冠脉造影证实的冠脉明显狭窄均显著高于空腹胰岛素水平最低组[3]。大量研究证实高血压合并糖尿病及高胰岛素血症的病人,发生心脑血管并发症的风险大大高于单纯高血压病人,动物实验与基础研究证实:1、胰岛素可诱发实验动物动脉硬化的发生;2、在超生理浓度下,胰岛素刺激血管平滑肌细胞的增殖和迁移;3、长期给予外源胰岛素导致脂异常与动脉壁增厚;4、胰岛素输注加速了输注动脉的粥样硬化。提示胰岛素抵抗及其代偿性的高胰岛素血症是冠心病的重要危险因素,在冠心病和血管增生性疾病的预防和治疗过程中也说明高胰岛素血症在血管增生性病变中发生重要作用。积极改善胰岛素抵抗和高胰岛素血症,对以上的疾病产生将起到积极的防治作用。
    在以往对胰岛素引起血管平滑肌细胞(VSMC)异常增殖的研究中发现,自发性高血压大鼠(SHR)血管平滑肌细胞内胰岛素介导的PKC亚型(ɑ、β、δ)可从胞浆转位到膜上,并使丝裂原活化蛋白激酶(MAPK)的活性增加,即激活PKC-MAPK细胞信号传导途径,使细胞内原癌基因c-fos表达增加,进一步用基因芯片和二维蛋白电泳技术发现VSMC经胰岛素刺激后的增殖不仅是单一原癌基因c-fos表达增高,而是多种与VSMC增殖及相关基因表达差异有关。实验证实胰岛素-MAPK介导VSMC异常增殖及表型转换
    1.中国高血压防治指南修订委员会。中国高血压防治指南(2005年修订版)[J]。高血压杂志,2005,134:2-41.
    2.卫生部,科技部,国家统计局。中国居民营养与健康状况调查报告-2002[R].北京:人民卫生出版社,2005:1-25
    3. Willa A H. Asians,Insulin Resistance,and PPAR reprinted from Dr.Hsyeh’s review article which appeared in Diabetes Care.2001;24:2-19
    4. Thomas J C,David A. Translating the Histone Code.Science 2001;293:1074-1080
    5. Maleki S,Keeney S. Modifying histone and initiating meiotic remodelination;new answers to an old question.Cell.2004;118(4):404-406
    6. Mohd Sarip A,Verrijzer C P. A higer order of silence.Science 2004; 306 (5701):1484 -1485
    7. Ngyen T T,chok,Stratton S A,Barton M C. Transcription factor interactions and chromatin modification associated with p53-mediated,developmental repression of the alpha-fetoprotein gene.Mol Cell Biol,2005,25(6):2147-2157.
    8. She J, Hovhannisyan H,Lian J B. Transcriptional induction of the osteocakin gene during ostepblast differentiation involves acetylation of histones H3 and H4.Mol Endocrinol.2003,9:13-21.
    9. Roh T Y,Cuddapah S,Zhao K. Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping.Gene Rev,2005,19(5):542-552.
    10. Xiang-Jiao Yang,Edward S. Collaborative spirit of histone deacetylases in regulating chromatin structure and gene expression. Genetics & Development,2003,13:143-153.
    11. Aoyama T, Okamoto T, Kohno Y, et al. Cell-specific epigenetic regulation of ChM-I gene expression: crosstalk between DNA methylation and histone acetylation. Biochem-Biophys-Res-Commun. 2008 , 365(1): 124-130
    12. Yasuda K, Yashiro M, Sawada T, et al. ERas oncogene expression and epigenetic regulation by histone acetylation in human cancer cells. Anticancer-Res. 2007 ,27(6B): 4071-4075.
    13. A.Ramirez T, Brocher J, Stopper H, et al. Sodium arsenite modulates histone acetylation, histone deacetylase activity and HMGN protein dynamics in human cells.2008 ,117(2): 147-157
    14. Urov F D. Chromatin remodeling as a guide ti transcriptional regulatory net works in mammals. J cell Biochem.2003,88(4):683-694.
    15. Braastad C D, Horhannisyan H, Van Wijnen A J, et al. Functional characterization of a human histone gene chister cluplication. Gene 2004,342(1):35-40.
    16. Stegar D J, Hasuell E S, Miller A L, et al. Regulation of chromatin remodeling by inositol polyphosphates. Science,2003,299:114-116.
    17. Anton E, Peter B. Histone acetylation:a switch between repressive and permissive chromation. EMBO.2002,3:224-229.
    18. Annyya R, Aroora B, Shivendra D,et al. MAPkinase signling in diverse effects of ethanol. Life Sciences,2004,74(19):2339-2364.
    19. Alison L,Clayton, Lonis C,et al. MAPkinase-mediated phosphoacetylation of histone H3 and inducible gene regulation.FEBS Letters,2003,546:51-58.
    1. Lu SY, Zhu MZ, Wang DS et al. Inhibition of the proliferation of smooth muscle cells from human coronary bypass vessels by vasonatrin peptide[J]. Physiol Res 2004,53:387-393.
    2. Hu ZW, Shi XY, Lin RZ et al. 1-Adrenergic receptor stimulation of mitogenesis in human vascular smooth muscle cells: role of tyrosine protein kinases and calcium in activation of mitogen-activated protein kinase[J]. J Pharmacol Exp Ther 1999,290:28-37。
    3. Lin H, Lee JL, Hou HH et al. Molecular mechanisms of the antiproliferative effect of beraprost, a prostacyclin agonist, in murine vascular smooth muscle cells[J]. J Cell Physiol 2008,214:434-441.
    4. Okamoto H, Fujioka Y, Takahashi A et al. Trichostatin A, an inhibitor of histone deacetylase, inhibits smooth muscle cell proliferation via induction of p21(WAF1) [J]. J Atheroscler Thromb 2006,13:183-191.
    5. Wang JY, Chuang HN, Chiu JH et al. Effects of Scutellaria baicalensis Georgi on macrophage-hepatocyte interaction through cytokines related to growth control of murine hepatocytes[J]. Exp Biol Med (Maywood) 2006,231:444-455.
    6. Rudling-M; Olivecrona-H; Eggertsen-G;, et al. Regulation of rat hepatic low density lipoprotein receptors. In vivo stimulation by growth hormone is not mediated by insulin-like growth factor I. J Clin Invest. 1996 Jan 15; 97(2): 292-299.
    1. DiBona GF. Sympathetic nervous system and the kidney in hypertension[J]. Curr Opin Nephrol Hypertens 2002,11:197-200.
    2. Raizada MK, Der Sarkissian S. Potential of gene therapy strategy for the treatment of hypertension[J]. Hypertension 2006,47:6-9.
    3. Lu SY, Zhu MZ, Wang DS, et al. Inhibition of the proliferation of smooth muscle cells from human coronary bypass vessels by vasonatrin peptide[J]. Physiol Res 2004,53:387-393.
    4. Hu ZW, Shi XY, Lin RZ, et al. 1-Adrenergic receptor stimulation of mitogenesis in human vascular smooth muscle cells: role of tyrosine protein kinases and calcium in activation of mitogen-activated protein kinase[J]. J Pharmacol Exp Ther 1999,290:28-37
    5. Lin H, Lee JL, Hou HH, et al. Molecular mechanisms of the antiproliferative effect of beraprost, a prostacyclin agonist, in murine vascular smooth muscle cells[J]. J Cell Physiol 2008,214:434-441.
    6. Okamoto H, Fujioka Y, Takahashi A, et al. Trichostatin A, an inhibitor of histone deacetylase, inhibits smooth muscle cell proliferation via induction of p21(WAF1) [J]. J Atheroscler Thromb 2006,13:183-191.
    7. Wang JY, Chuang HN, Chiu JH, et al. Effects of Scutellaria baicalensis Georgi on macrophage-hepatocyte interaction through cytokines related to growth control of murine hepatocytes[J]. Exp Biol Med (Maywood) 2006,231:444-455.
    8. Rose R. Atherosclereosis and inflammatory disease [J ] . N Eng J Med 1999 ,340 (2) :1152126.
    9.王虹(综述) ,高秀梅(审校)。血管平滑肌细胞增殖调控机制研究进展。医学综述2004,10(6):328-330
    10. Grewe P , Deneke T , Machraou IA. Acute andchronic tissue response to coronary stent imp lantation.Pathologic findings in human specimen [ J ]. J Am CollCardiol, 2000 , 35 (1) : 157 - 163.
    11. Farb A , Sangiorgi G, Carter AJ, et al. Pathologyof acute and chronic coronary stenting in humans [ J ].Circulation , 1999 , 99 (1) : 44 - 52.
    12. Doronzo G, Russo I, Mattiello L, et al. Insulin activates hypoxia-inducible actor-1alpha in human and rat vascular smooth muscle cells via phosphatidylinositol-3 kinase and mitogen-activated protein kinase pathways: impairment in insulin resistance owing to defects in insulin signalling. Diabetologia. 2006, 49(5): 1049-1063
    13. Allen RT, Krueger KD, Dhume A, et al. Sustained Akt/PKB activation and transient attenuation of c-jun N-terminal kinase in the inhibition of apoptosis by IGF-1 in vascular smooth muscle cells. Apoptosis. 2005, 10(3): 525-535
    14. Kanda Y, Watanabe Y. Thrombin-induced glucose transport via Src-p38 MAPK pathway in vascular smooth muscle cells. Br-J-Pharmacol. 2005, 146(1): 60-67
    15. Doronzo G, Russo I, Mattiello L, et al. Insulin activates vascular endothelial growth factor in vascular smooth muscle cells: influence of nitric oxide and of insulin resistance. Eur-J-Clin-Invest. 2004, 34(10): 664-673
    16. Hayashi K, Shibata K, Morita T, et al. Insulin receptor substrate-1/SHP-2 interaction, a phenotype-dependent switching machinery of insulin-like growth factor-I signaling in vascular smooth muscle cells. J-Biol-Chem. 2004, 279(39): 40807-40818
    17. Stawowy P, Kallisch H, Kilimnik A, et al. Proprotein convertases regulate insulin-like growth factor 1-induced membrane-type 1 matrix metalloproteinase in VSMCs via endoproteolytic activation of the insulin-like growth factor-1 receptor. Biochem- Biophys-Res-Commun. 2004, 321(3): 531-538
    18. Jacob A, Smolenski A; Lohmann SM, et al. MKP-1 expression and stabilization and cGK Ialpha prevent diabetes- associated abnormalities in VSMC migration. Am-J-Physiol-Cell-Physiol. 2004, 287(4): C1077-1086
    19. Bruemmer D, Yin F, Liu,J, et al. Expression of minichromosome maintenance proteins in vascular smooth muscle cells is ERK/MAPK dependent. Exp-Cell-Res. 2003, 290(1):
    28-37
    20. Dimova EY, Kietzmann T. The MAPK pathway and HIF-1 are involved in the induction of the human PAI-1 gene expression by insulin in the human hepatoma cell line HepG2. Ann N Y Acad Sci. 2006 ,1090: 355-367
    21. Tomas A, Yermen B, Min L;et al. Regulation of pancreatic beta-cell insulin secretion by actin cytoskeleton remodelling: role of gelsolin and cooperation with the MAPK signalling pathway. J-Cell-Sci. 2006; 119(Pt 10): 2156-2167
    22. Lee SM, Alam R, Ho CJ, et al. Involvement of p42/44 MAPK in the effects of ethanol on secretion of insulin-like growth factor (IGF)-I and insulin-like growth factor binding protein (IGFBP)-1 in primary cultured rat hepatocytes. Int J Neurosci. 2007,117(2): 187-201
    23. Dang ZC; Lowik CW. Removal of serum factors by charcoal treatment promotes adipogenesis via a MAPK-dependent pathway. Mol Cell Biochem. 2005, 268(1-2): 159-167
    24. Radhakrishnan Y, Maile LA, Ling Y, et al. Insulin like growth factor-I stimulates Shc dependent PI 3-Kinase activation via Grb2 associated p85 in vascular smooth muscle cells. J Biol Chem. 2008 Apr 16. [Epub ahead of print]。
    25. Niu XL, Li J, Hakim ZS, et al. Leukocyte antigen-related deficiency enhances insulin-like growth factor-1 signaling in vascular smooth muscle cells and promotes neointima formation in response to vascular injury. J Biol Chem. 2007, 282(27):19808-19819.
    26. Doronzo G, Russo I, Mattiello L, et al. Insulin activates hypoxia-inducible factor-1alpha in human and rat vascular smooth muscle cells via phosphatidylinositol-3 kinase and mitogen-activated protein kinase pathways: impairment in insulin resistance owing to defects in insulin signalling. Diabetologia. 2006, 49(5):1049-1063.
    27. Kanda Y, Watanabe Y. Thrombin-induced glucose transport via Src-p38 MAPK pathway in vascular smooth muscle cells. Br J Pharmacol. 2005, 146(1):60-67
    28. Lai K, Wang H , Lee WS , et al. Mitogen2 activated protein kinase phosphatase21 in rat arterial smooth musclecell proliferation[ J ]. J Clin Invest, 1996, 98 ( 7) : 1560 -1567
    29. Susan M, Keenan A, CL Ieford B, et al. Cyclin2 dependent kinase 2 nucleocytop lasmic translocation isregulated by extracellular regulated kinase [ J ]. J Biol Chem , 2001, 276 (25) : 22404 - 22409.
    30.廖华,糜涛,郭小梅。血管平滑肌细胞增殖信号转导通路与血管再狭窄防治。医药导报。2007,26(2):116-119
    31.王旭开,王燕,杨成明,等。调控胰岛素致自发性高血压大鼠VSMC增殖的蛋白。中国病理生理杂志。2006,22(6):1061-1065
    32.王旭开,王燕,傅春江,等。胰岛素对SHR大鼠血管平滑肌细胞体外增殖相关基因表达的影响。高血压杂志。2004,12(5):461-465
    1. Feihl F, Liaudet L, Levy Bi, et al. Hypertension and microvascular remodelling[J]. Cardiovasc Res. 2008 , Mar 4; [Epub ahead of print]。
    2. Mulvany MJ. Small artery remodelling in hypertension: causes, consequences and therapeutic implications[J]. Med Biol Eng Comput. 2008 Jan 29; [Epub ahead of print]。
    3. Sowers J R. Insulin resistance and hypertension[J]. Am J Physiol Heart Circ Physiol, 2004,286:H1597-H1602.
    4. Anfossi G, Russo I, Doronzo G, et al. Relevance of the vascular effects of insulin in the rationale of its therapeutical use[J]. Cardiovasc Hematol Disord Drug Targets. 2007,7:228-249.
    5. Fraga MF,Esteller M.Towards the human cancer epigenome:a first draft of histone modifications.[J] Cell Cycle,2005,4(10):1377-1381.
    6. Kouzarides Histone acetylases and deacetylases in cell proliferation.[J]Curr Opin Genet Dev,1999,9:40-48.
    7. Lu SY, Zhu MZ, Wang D S, et al. Inhibition of the proliferation of smooth muscle cells from human coronary bypass vessels by vasonatrin peptide[J]. Physiol Res 2004,53:387-393.
    8. Hu ZW, Shi XY, Lin RZ, et al. 1-Adrenergic receptor stimulation of mitogenesis in human vascular smooth muscle cells: role of tyrosine protein kinases and calcium in activation of mitogen-activated protein kinase[J]. J Pharmacol Exp Ther 1999,290:28-37。
    9. Lin H, Lee JL, Hou HH, et al. Molecular mechanisms of the antiproliferative effect of beraprost, a prostacyclin agonist, in murine vascular smooth muscle cells[J]. J Cell Physiol 2008,214:434-441.
    10. Okamoto H, Fujioka Y, Takahashi A et al. Trichostatin A, an inhibitor of histone deacetylase, inhibits smooth muscle cell proliferation via induction of p21(WAF1) [J]. J Atheroscler Thromb 2006,13:183-191.
    11. Wang JY, Chuang HN, Chiu JH, et al. Effects of Scutellaria baicalensis Georgi on macrophage-hepatocyte interaction through cytokines related to growth control ofmurine hepatocytes[J]. Exp Biol Med (Maywood) 2006,231:444-455.
    12. Allfrey V G, Faulkner R, Mirsky A E. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis.[J].Proc Natl Acad Sci USA,1964,51:786-794
    13. Sun ZW, Allis CD. Ubiquitination of histone H2B regulates,H3 methylation and gene silencing in yeast.[J].Nature,2002,418:104-108.
    14. Fu XH, Liu DP, Liang CC. Chromatin structure and transcriptional regulation of theβ-globin locus. Exp Cell Res,2002,278(1):1-11.
    15. Roth SY, Denu JM. Allis C D. Histone Acetyltransferase. Annu Rev Biochem. 2001,70:81-120
    16. Cheung P, Allis CD, Sassone Corsi P. Signaling to chromatin through histone modifications[J]. Cell 2000,103:263-271.
    17. Berger SL. Histone modifications in transcriptional regulation. Curr Opin Genet,2002,12:142-148.
    18. Zhang Y, Reinberg D. Transcriptional regulation by histone methylation:interplay between different covalent modifications of the core histone tails. Genes,2001,15:2343-2360.
    19. Sewack GF. Elis TW, Hansen U. Binding of TATA binding Protein to a naturally positioned nucleosome is facilitade by histone acetylation[J]. Mol Cell Biol. 2001,21:1404-1415
    20. Kozarides T. Histone acetylases and dacetylases in cell proliferation[J].Curr Opin Genet Dev.1999,9:40-48
    21.安丽娜,王树人。组蛋白乙酰化/去乙酰化与染色质结构及基因转录调控的关系。国外医学遗传学分册,2005(28)3:133-138
    22. Howe L, Ranalli TA, Allis CD,et al. Transcriptionally active X enopus laevis somatic
    5S ribosomal RNA genes are packaged with hyperacetylated histone H4,whereas transcriptionally silent oocyte genes are not[J]. J Biol Chem.1998,273:20693-20696.
    23. Pollard KJ, Peterson CL. Chromatin remodeling: amarriage between teo families[J]. Bio Essays,1998,20:771-780.
    24. Rice JC, David AG,. Histone methylation versus histone acetylation:new insights into epigenetic regulation. Curr Opin Cell Biol,2001,13(3):263-273.
    25. Zhao Q, Cumming H, Cerruti L, et al. Site-specific acetylation of the fetal globin activator NF-E4 prevents its ubiquitination and regulates its interaction with the histone deacetylase,HDAC1.J Biol Chem,2004,279(40):41477-41486
    26. A.Ramirez T, Brocher J,Stopper H,et al. Sodium arsenite modulates histone acetylation, histone deacetylase activity and HMGN protein dynamics in human cells. Chromosoma.2008 ;117(2): 147-157
    27. Brown CR, Kennedy CJ, Delmar VA,et al. Global histone acetylation induces functional genomic reorganization at mammalian nuclear pore complexes. Genes Dev. 2008 ; 22(5): 627-639
    28. Yasuda K, Yashiro M, Sawada T;et al. ERas oncogene expression and epigenetic regulation by histone acetylation in human cancer cells. Anticancer Res. 2007 ; 27(6B): 4071-4075.
    29. Lee KS, Kim DW, Kim JY;et al. Caspase-dependent apoptosis induction by targeted expression of DEK in drosophila involves histone acetylation inhibition. J Cell Biochem. 2008 ; 103(4): 1283-1293.
    30. Shao Y, Lu J, Cheng C, et al. Reversible Histone Acetylation Involved in Transcriptional Regulation of WT1 Gene. Acta Biochim Biophys Sin (Shanghai). 2007; 39(12): 931-938
    31. Zhao J, Huang WG, He J;et al. Diallyl disulfide suppresses growth of HL-60 cell through increasing histone acetylation and p21WAF1 expression in vivo and in vitro. Acta Pharmacol Sin. 2006; 27(11): 1459-1466.
    32. Fang Z, Fu Y, Liang Y; Increased expression of integrin beta1 subunit enhances p21WAF1/Cip1 transcription through the Sp1 sites and p300-mediated histone acetylation in human hepatocellular carcinoma cells. J Cell Biochem. 2007; 101(3): 654-664
    33. Aoyama T, Okamoto T, Kohno Y;et al. Cell-specific epigenetic regulation of ChM-I gene expression: crosstalk between DNA methylation and histone acetylation. Biochem Biophys Res Commun. 2008; 365(1): 124-130
    34. Guo JJ, Huang Y, Zhang J,et al The relationship between histone acetylation modification and IFN-gamma responsive gene regulation. Zhonghua Gan Zang Bing Za Zhi. 2006; 14(7): 525-528
    35. Evans P M, Zhang W, Chen X. Kruppel-like factor 4 is acetylated by p300 and regulates gene transcription via modulation of histone acetylation. J Biol Chem. 2007, 282(47): 33994-34002。
    36. Rada Iglesias A, Enroth S, Ameur A, et al. Butyrate mediates decrease of histone acetylation centered on transcription start sites and down-regulation of associated genes. Genome Res. 2007, 17(6): 708-719.
    37. Shahbazian MD, Grunstein M. Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem. 2007; 76: 75-100
    38. Romanski A, Bacic B, Bug G,et al. Use of a novel histone deacetylase inhibitor to induce apoptosis in cell lines of acute lymphoblastic leukemia[J]. Haematoogic. 2004, 89(4):419-426.
    39. Entin Meer M, Rephaeli A, Yang X,et al. Butyric acid prodrugs are histone deacetylase inhibitors that show antineoplastic activity and radiosensitizing capacity in the treatment of malignant gliomas[J]. Mol Cancer Ther,2005,4(12):1952-1961
    40. Ellis DJ, Lawman ZK;et al. Histone acetylation is not an accurate predictor of gene expression following treatment with histone deacetylase inhibitors. Biochem Biophys Res Commun. 2008; 367(3): 656-62
    41. Luongo D, Mazzerella G,Della RF, et al. Down regulation of ERK1 and ERK2 activity during differentiation of the intestinal celline HT-29[J].Mol Cell Biochem, 2002, 231 (12):43-50.
    42. Gaschott T,Werz O,Steinmeyer A,et al.Butyrate induced differentiation of Caco-2cells is mediated by vitamin D receptor[J].Biochem Biophys Res Commun,2001, 288(3):690-696.
    43. Rada Iglesias A, Enroth S, Ameur A,et al. Butyrate mediates decrease of histone acetylation centered on transcription start sites and down-regulation of associated genes. Genome Res. 2007, 17(6): 708-719.
    1. Rudling M, Olivecrona H, Eggertsen G, et al. Regulation of rat hepatic low density lipoprotein receptors. In vivo stimulation by growth hormone is not mediated by insulin-like growth factor I. J-Clin-Invest. 1996 Jan 15; 97(2): 292-299
    2. Kozarides T. Histone acetylases and dacetylases in cell proliferation[J].Curr Opin Genet Dev.1999,9:40-48
    3. Ranganna K, Yousefipour Z, Yatsu FM, et al. Gene expression profile of butyrate-inhibited vascular smooth muscle cell proliferation。Mol-Cell-Biochem. 2003; 254(1-2): 21-36
    4. Ranganna K, Mathew OP, Yatsu FM, et al. Involvement of glutathione/glutathione S-transferase antioxidant system in butyrate-inhibited vascular smooth muscle cell proliferation。FEBS[J]. 2007 Nov; 274(22): 5962-5978
    5. Sassi Y, Lipskaia L, Vandecasteele G, et al. Multidrug resistance-associated protein 4 regulates cAMP-dependent signaling pathways and controls human and rat SMC proliferation. J Clin Invest, 2008,118(8):2747-2757.
    6. Sengupta N, Vinod PK, Venkatesh KV. Crosstalk between cAMP-PKA and MAP kinase pathways is a key regulatory design necessary to regulate FLO11 expression. Biophys Chem, 2007,125(1):59-71.
    7. Adler EM, Gough NR, Ray LB. 2005: signaling breakthroughs of the year. Sci STKE, 2006,2006(316):eg1.
    8. Hunter T. Signaling--2000 and beyond. Cell, 2000,100(1):113-127.
    9. Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev, 2004,84(3):767-801.
    10. Kawai-Kowase K, Owens GK. Multiple repressor pathways contribute to phenotypic switching of vascular smooth muscle cells. Am J Physiol Cell Physiol, 2007,292(1):C59-69.
    11. Yoshida T, Gan Q, Owens GK. Kruppel-like factor 4, Elk-1, and histone deacetylases cooperatively suppress smooth muscle cell differentiation markers in response to oxidized phospholipids. Am J Physiol Cell Physiol, 2008.
    12. Yoshida T, Gan Q, Shang Y, et al. Platelet-derived growth factor-BB represses smoothmuscle cell marker genes via changes in binding of MKL factors and histone deacetylases to their promoters. Am J Physiol Cell Physiol, 2007,292(2):C886-895.
    13. Shang Y, Yoshida T, Amendt BA, et al. Pitx2 is functionally important in the early stages of vascular smooth muscle cell differentiation. J Cell Biol, 2008,181(3):461-473.
    14. McDonald OG, Wamhoff BR, Hoofnagle MH, et al. Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo. J Clin Invest, 2006,116(1):36-48.
    15. McDonald OG, Owens GK. Programming smooth muscle plasticity with chromatin dynamics. Circ Res, 2007,100(10):1428-1441.
    16. Petit MM, Lindskog H, Larsson E, et al. Smooth muscle expression of lipoma preferred partner is mediated by an alternative intronic promoter that is regulated by serum response factor/myocardin. Circ Res, 2008,103(1):61-69.
    17 Li J, Zhu X, Chen M, et al. Myocardin-related transcription factor B is required incardiac neural crest for smooth muscle differentiation and cardiovascular development[J]. Proc Natl Acad Sci USA, 2005,102: 8916-8921.
    18 Vindis C, Escargueil-Blanc I, Elbaz MD et al.Esensitization of platelet-derived growth factor receptor-beta by oxidized lipids in vascular cells and atherosclerotic lesions: prevention by aldehyde scavengers[J].Circ Res,2006,98(6):785-792.
    19王云雅,汪静,邓敬兰,等.放射性PDGFR反义寡核苷酸对血管平滑肌细胞增殖和凋亡的影响[J].心脏杂志,2006,18(4):388-390.
    20. Huang S, Shu L, Dilling MB, et al. Sustained activation of the JNK cascade and rapamycin-induced apoptosis are suppressed by p53/p21(Cip1). Mol Cell, 2003,11(6):1491-1501.
    1. Bochaton-Piallat ML, Gabbiani G. Modulation of smooth muscle cell proliferation and migration: role of smooth muscle cell heterogeneity. Handb Exp Pharmacol, 2005(170):645-63.
    2. Moura R, Tjwa M, Vandervoort P, et al. Thrombospondin-1 activates medial smooth muscle cells and triggers neointima formation upon mouse carotid artery ligation. Arterioscler Thromb Vasc Biol, 2007,27(10):2163-9.
    3. Louis H, Lacolley P, Kakou A, et al. Early activation of internal medial smooth muscle cells in the rabbit aorta after mechanical injury: relationship with intimal thickening and pharmacological applications. Clin Exp Pharmacol Physiol, 2006,33(1-2):131-8.
    4. Lavezzi AM, Ottaviani G, Matturri L. Biology of the smooth muscle cells in human atherosclerosis. APMIS, 2005,113(2):112-21.
    5. Smiraglia DJ, Kulawiec M, Bistulfi GL, et al. A novel role for mitochondria in regulating epigenetic modification in the nucleus. Cancer Biol Ther, 2008,7(8):1182-90.
    6. Beier V, Mund C, Hoheisel JD. Monitoring methylation changes in cancer. Adv Biochem Eng Biotechnol, 2007,104:1-11.
    7. Vertino P M, Sekowski J A, Coll J M, et al. DNMT1 is a componet of a multiprotein DNA replication complex. Cell Cycle,2002,1(6):416-423
    8. Okano M, Bell DW, Haber DA,et al. DNA methyltransferases DNMT3a and DNMT3b are essential for de novo methylation and mammalian development. Cell,1999,99(3):247-257
    9. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet, 2002,3(6):415-28.
    10. Sawan C, Vaissiere T, Murr R, et al. Epigenetic drivers and genetic passengers on the road to cancer. Mutat Res, 2008,642(1-2):1-13.
    11. Rodenhiser DI. Epigenetic contributions to cancer metastasis. Clin Exp Metastasis, 2008.
    12. Pipes GC, Creemers EE, Olson EN. The myocardin family of transcriptional coactivators: versatile regulators of cell growth, migration, and myogenesis. GenesDev, 2006,20(12):1545-56.
    13. Reinhardt B, Winkler M, Schaarschmidt P, et al. Human cytomegalovirus-induced reduction of extracellular matrix proteins in vascular smooth muscle cell cultures: a pathomechanism in vasculopathies?. J Gen Virol, 2006,87(Pt 10):2849-2858.
    14. Mayer W, Niveleau A, Walter J, et al. Demethylation of the zygotic paternal genome. Nature, 2000,403(6769):501-502.
    15. Zaitseva I, Zaitsev S, Alenina N, et al. Dynamics of DNA-demethylation in early mouse and rat embryos developed in vivo and in vitro. Mol Reprod Dev, 2007,74(10):1255-1261.
    16. Xu Y, Zhang JJ, Grifo JA, et al. DNA methylation patterns in human tripronucleate zygotes. Mol Hum Reprod, 2005,11(3):167-171.
    17. Ghoshal K, Bai S. DNA methyltransferases as targets for cancer therapy. Drugs Today (Barc), 2007,43(6):395-422.
    18. Kisseljova NP, Kisseljov FL. DNA demethylation and carcinogenesis. Biochemistry (Mosc), 2005,70(7):743-752.
    19. Gaudet F, Hodgson JG, Eden A, et al. Induction of tumors in mice by genomic hypomethylation. Science, 2003,300(5618):489-492.
    20. Howard G, Eiges R, Gaudet F, et al. Activation and transposition of endogenous retroviral elements in hypomethylation induced tumors in mice. Oncogene, 2008,27(3):404-408.
    21. Hiltunen MO, Turunen MP, Hakkinen TP, et al. DNA hypomethylation and methyltransferase expression in atherosclerotic lesions. Vasc Med, 2002,7(1):5-11.
    22. Laukkanen MO, Mannermaa S, Hiltunen MO, et al. Local hypomethylation in atherosclerosis found in rabbit ec-sod gene. Arterioscler Thromb Vasc Biol, 1999,19(9):2171-2178.
    23.王云雅,汪静,邓敬兰,等.放射性PDGFR反义寡核苷酸对血管平滑肌细胞增殖和凋亡的影响[J].心脏杂志,2006,18(4):388-390.
    24. De Feo M, Forte A, Onorati F, et al. Rat carotid arteriotomy: c-myc is involved in negative remodelling and apoptosis. J Cardiovasc Med (Hagerstown), 2006,7(1):61-67.
    25. Artese L, Ucchino S, Piattelli A, et al. Factors associated with apoptosis insymptomatic and asymptomatic carotid atherosclerotic plaques. Int J Immunopathol Pharmacol, 2005,18(4):645-653.
    26. Kanazawa S, Miyake T, Kakinuma T, et al. The expression of platelet-derived growth factor and connective tissue growth factor in different types of abdominal aortic aneurysms. J Cardiovasc Surg (Torino), 2005,46(3):271-278.
    27. Nykanen AI, Krebs R, Tikkanen JM, et al. Combined vascular endothelial growth factor and platelet-derived growth factor inhibition in rat cardiac allografts: beneficial effects on inflammation and smooth muscle cell proliferation. Transplantation, 2005,79(2):182-189.
    28. Kuo HK, Griffith JD, Kreuzer KN. 5-Azacytidine induced methyltransferase-DNA adducts block DNA replication in vivo. Cancer Res, 2007,67(17):8248-8254.
    29. Baylin SB. DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol, 2005,2 Suppl 1:S4-11.
    30. Ehrlich M. DNA methylation in cancer: too much, but also too little. Oncogene, 2002,21(35):5400-5413.
    31. Kanai Y. Alterations of DNA methylation and clinicopathological diversity of human cancers. Pathol Int, 2008,58(9):544-558.
    32. Yu N, Wang M. Anticancer drug discovery targeting DNA hypermethylation. Curr Med Chem, 2008,15(14):1350-1375.
    33.黄琼晓,金帆,黄荷风。DNA甲基化的研究方法学[J]。国外医学遗传学分册,2004,27(6):354-358.
    1. Owens GK. Molecular control of vascular smooth muscle cell differentiation and phenotypic plasticity. Novartis Found Symp, 2007,283:174-91; discussion 191-193, 238-241.
    2. Mitra AK, Gangahar DM, Agrawal DK. Cellular, molecular and immunological mechanisms in the pathophysiology of vein graft intimal hyperplasia. Immunol Cell Biol, 2006,84(2):115-124.
    3. Hilker M, Tellmann G, Buerke M, et al. Proliferative activity in stenotic human aortocoronary bypass grafts. Cardiovasc Pathol, 2002,11(5):284-290.
    4. Bochaton-Piallat ML, Gabbiani G. Modulation of smooth muscle cell proliferation and migration: role of smooth muscle cell heterogeneity. Handb Exp Pharmacol, 2005(170):645-663.
    5. Hao H, Gabbiani G, Bochaton-Piallat ML. Arterial smooth muscle cell heterogeneity: implications for atherosclerosis and restenosis development. Arterioscler Thromb Vasc Biol, 2003,23(9):1510-1520.
    6. Yoshida T, Owens GK. Molecular determinants of vascular smooth muscle cell diversity. Circ Res, 2005,96(3):280-291.
    7. Siow RC, Mallawaarachchi CM, Weissberg PL. Migration of adventitial myofibroblasts following vascular balloon injury: insights from in vivo gene transfer to rat carotid arteries. Cardiovasc Res, 2003,59(1):212-221.
    8. Iwata H, Sata M. Potential contribution of bone marrow-derived precursors to vascular repair and lesion formation: lessons from animal models of vascular diseases. Front Biosci, 2007,12:4157-4167.
    9. Majesky MW. Developmental basis of vascular smooth muscle diversity. Arterioscler Thromb Vasc Biol, 2007,27(6):1248-1258.
    10. Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev, 2004,84(3):767-801.
    11. Pipes GC, Creemers EE, Olson EN. The myocardin family of transcriptional coactivators: versatile regulators of cell growth, migration, and myogenesis. GenesDev, 2006,20(12):1545-1556.
    12. Reinhardt B, Winkler M, Schaarschmidt P, et al. Human cytomegalovirus-induced reduction of extracellular matrix proteins in vascular smooth muscle cell cultures: a pathomechanism in vasculopathies?. J Gen Virol, 2006,87(Pt 10):2849-2858.
    13. Lin SJ, Shyue SK, Shih MC, et al. Superoxide dismutase and catalase inhibit oxidized low-density lipoprotein-induced human aortic smooth muscle cell proliferation: role of cell-cycle regulation, mitogen-activated protein kinases, and transcription factors. Atherosclerosis, 2007,190(1):124-134.
    14. Mayr M, Zampetaki A, Sidibe A, et al. Proteomic and metabolomic analysis of smooth muscle cells derived from the arterial media and adventitial progenitors of apolipoprotein E-deficient mice. Circ Res, 2008,102(9):1046-1056.
    15. Kawai-Kowase K, Owens GK. Multiple repressor pathways contribute to phenotypic switching of vascular smooth muscle cells. Am J Physiol Cell Physiol, 2007,292(1):C59-69.
    16. Yoshida T, Gan Q, Owens GK. Kruppel-like factor 4, Elk-1, and histone deacetylases cooperatively suppress smooth muscle cell differentiation markers in response to oxidized phospholipids. Am J Physiol Cell Physiol, 2008.
    17. Yoshida T, Gan Q, Shang Y, et al. Platelet-derived growth factor-BB represses smooth muscle cell marker genes via changes in binding of MKL factors and histone deacetylases to their promoters. Am J Physiol Cell Physiol, 2007,292(2):C886-895.
    18. Shang Y, Yoshida T, Amendt BA, et al. Pitx2 is functionally important in the early stages of vascular smooth muscle cell differentiation. J Cell Biol, 2008,181(3):461-473.
    19. McDonald OG, Wamhoff BR, Hoofnagle MH, et al. Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo. J Clin Invest, 2006,116(1):36-48.
    20. McDonald OG, Owens GK. Programming smooth muscle plasticity with chromatin dynamics. Circ Res, 2007,100(10):1428-1441.
    21. Petit MM, Lindskog H, Larsson E, et al. Smooth muscle expression of lipoma preferred partner is mediated by an alternative intronic promoter that is regulated by serum response factor/myocardin. Circ Res, 2008,103(1):61-69.
    22. Mitra S, Beach C, Feng GS, et al. SHP-2 is a novel target of Abl kinases during cell proliferation. J Cell Sci, 2008,121(Pt 20):3335-3346.
    23. Radhakrishnan Y, Maile LA, Ling Y, et al. Insulin-like growth factor-I stimulates Shc-dependent phosphatidylinositol 3-kinase activation via Grb2-associated p85 in vascular smooth muscle cells. J Biol Chem, 2008,283(24):16320-16331.
    24. Halka AT, Turner NJ, Carter A, et al. The effects of stretch on vascular smooth muscle cell phenotype in vitro. Cardiovasc Pathol, 2008,17(2):98-102.
    25. Lieskovska J, Ling Y, Badley-Clarke J, et al. The role of Src kinase in insulin-like growth factor-dependent mitogenic signaling in vascular smooth muscle cells. J Biol Chem, 2006,281(35):25041-25053.
    26. Rudijanto A. The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis. Acta Med Indones, 2007,39(2):86-93.
    27. Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature, 2001,410(6824):37-40.
    28. Dardik A, Yamashita A, Aziz F, et al. Shear stress-stimulated endothelial cells induce smooth muscle cell chemotaxis via platelet-derived growth factor-BB and interleukin-1alpha. J Vasc Surg, 2005,41(2):321-331.
    29. Asada H, Paszkowiak J, Teso D, et al. Sustained orbital shear stress stimulates smooth muscle cell proliferation via the extracellular signal-regulated protein kinase 1/2 pathway. J Vasc Surg, 2005,42(4):772-780.
    30. Sassi Y, Lipskaia L, Vandecasteele G, et al. Multidrug resistance-associated protein 4 regulates cAMP-dependent signaling pathways and controls human and rat SMC proliferation. J Clin Invest, 2008,118(8):2747-2757.
    31. Sengupta N, Vinod PK, Venkatesh KV. Crosstalk between cAMP-PKA and MAP kinase pathways is a key regulatory design necessary to regulate FLO11 expression. Biophys Chem, 2007,125(1):59-71.
    32. Adler EM, Gough NR, Ray LB. 2005: signaling breakthroughs of the year. Sci STKE, 2006,2006(316):eg1.
    33. Hunter T. Signaling--2000 and beyond. Cell, 2000,100(1):113-127.
    34. McKenna LB, Zhou GL, Field J. Isoform-specific functions of Akt in cell motility. Cell Mol Life Sci, 2007,64(21):2723-2725.
    35. Vega F, Medeiros LJ, Leventaki V, et al. Activation of mammalian target of rapamycin signaling pathway contributes to tumor cell survival in anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Cancer Res, 2006,66(13):6589-6597.
    36. Benetti L, Roizman B. Protein kinase B/Akt is present in activated form throughout the entire replicative cycle of deltaU(S)3 mutant virus but only at early times after infection with wild-type herpes simplex virus 1. J Virol, 2006,80(7):3341-3348.
    37. McBride SH, Falls T, Knothe Tate ML. Modulation of stem cell shape and fate B: mechanical modulation of cell shape and gene expression. Tissue Eng Part A, 2008,14(9):1573-1580.
    38. Bhadriraju K, Yang M, Alom Ruiz S, et al. Activation of ROCK by RhoA is regulated by cell adhesion, shape, and cytoskeletal tension. Exp Cell Res, 2007,313 (16):3616-3623.
    39. Mekontso-Dessap A, Kirsch M, Guignambert C, et al. Vascular-wall remodeling of 3 human bypass vessels: organ culture and smooth muscle cell properties. J Thorac Cardiovasc Surg, 2006,131(3):651-658.
    40. Schmidt A, Lorkowski S, Seidler D, et al. TGF-beta1 generates a specific multicomponent extracellular matrix in human coronary SMC. Eur J Clin Invest, 2006,36(7):473-482.
    41. Geng YJ, Libby P. Progression of atheroma: a struggle between death and procreation. Arterioscler Thromb Vasc Biol, 2002,22(9):1370-1380.
    42. Comoglio PM, Boccaccio C, Trusolino L. Interactions between growth factor receptors and adhesion molecules: breaking the rules. Curr Opin Cell Biol, 2003,15(5):565-571.
    43. Ogita H, Ikeda W, Takai Y. Roles of cell adhesion molecules nectin and nectin-like molecule-5 in the regulation of cell movement and proliferation. J Microsc, 2008,231(3):455-465.
    44. Nakanishi H, Takai Y. Frabin and other related Cdc42-specific guanine nucleotide exchange factors couple the actin cytoskeleton with the plasma membrane. J Cell Mol Med, 2008,12(4):1169-1176.
    45. Honda T, Shimizu K, Kawakatsu T, et al. Cdc42 and Rac small G proteins activated by trans-interactions of nectins are involved in activation of c-Jun N-terminal kinase, butnot in association of nectins and cadherin to form adherens junctions, in fibroblasts. Genes Cells, 2003,8(5):481-491.
    46. Jagadeesha DK, Lindley TE, Deleon J, et al. Tempol therapy attenuates medial smooth muscle cell apoptosis and neointima formation after balloon catheter injury in carotid artery of diabetic rats. Am J Physiol Heart Circ Physiol, 2005,289(3):H1047-1053.
    47. Apenberg S, Freyberg MA, Friedl P. Shear stress induces apoptosis in vascular smooth muscle cells via an autocrine Fas/FasL pathway. Biochem Biophys Res Commun, 2003,310(2):355-359.
    48. Rupinder SK, Gurpreet AK, Manjeet S. Cell suicide and caspases. Vascul Pharmacol, 2007,46(6):383-393.
    49. Kumar S. Caspase function in programmed cell death. Cell Death Differ, 2007,14(1):32-43.
    50. Kanzaki T, Otabe M. Latent transforming growth factor-beta binding protein-1, a component of latent transforming growth factor-beta complex, accelerates the migration of aortic smooth muscle cells in diabetic rats through integrin-beta3. Diabetes, 2003,52(3):824-828.
    51. Resch ZT, Simari RD, Conover CA. Targeted Disruption of the PAPP-A Gene is Associated with Diminished Smooth Muscle Cell Response to Insulin-like Growth Factor-I and Resistance to Neointimal Hyperplasia Following Vascular Injury. Endocrinology. 2006.
    52. Zhou W, Lin PH, Bush RL, et al. Management of in-sent restenosis after carotid artery stenting in high-risk patients. J Vasc Surg, 2006,43(2):305-312.
    53. Huang S, Shu L, Dilling MB, et al. Sustained activation of the JNK cascade and rapamycin-induced apoptosis are suppressed by p53/p21(Cip1). Mol Cell, 2003,11(6):1491-1501.
    1. Shah SH. Gene polymorphisms and susceptibility to coronary artery disease. Pediatr Blood Cancer, 2007,48(7):738-741.
    2. Nordlie MA, Wold LE, Kloner RA. Genetic contributors toward increased risk for ischemic heart disease. J Mol Cell Cardiol, 2005,39(4):667-679.
    3. Levonen AL, Vahakangas E, Koponen JK, et al. Antioxidant gene therapy for cardiovascular disease: current status and future perspectives. Circulation, 2008, 117(16): 2142-2150.
    4. Rissanen TT, Yla-Herttuala S. Current status of cardiovascular gene therapy. Mol Ther, 2007,15(7):1233-1247.
    5. Monraats PS, Pires NM, Schepers A, et al. Tumor necrosis factor-alpha plays an important role in restenosis development. FASEB J, 2005,19(14):1998-2004.
    6. Monraats PS, Pires NM, Agema WR, et al. Genetic inflammatory factors predict restenosis after percutaneous coronary interventions. Circulation, 2005,112 (16):2417-2425.
    7. Sagoo GS, Tatt I, Salanti G, et al. Seven Lipoprotein Lipase Gene Polymorphisms, Lipid Fractions, and Coronary Disease: A HuGE Association Review and Meta-Analysis. Am J Epidemiol, 2008.
    8. Monraats PS, Rana JS, Nierman MC, et al. Lipoprotein lipase gene polymorphisms and the risk of target vessel revascularization after percutaneous coronary intervention. J Am Coll Cardiol, 2005,46(6):1093-1100.
    9. Monraats PS, de Vries F, de Jong LW, et al. Inflammation and apoptosis genes and the risk of restenosis after percutaneous coronary intervention. Pharmacogenet Genomics, 2006,16(10):747-754.
    10. Fraga MF, Ballestar E, Paz MF, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A, 2005,102(30):10604-10609.
    11. Kaminsky Z, Petronis A, Wang SC, et al. Epigenetics of personality traits: an illustrative study of identical twins discordant for risk-taking behavior. Twin Res Hum Genet, 2008,11(1):1-11.
    12. Fukuda H, Sano N, Muto S, et al. Simple histone acetylation plays a complex role in the regulation of gene expression. Brief Funct Genomic Proteomic, 2006,5(3):190-208.
    13. Verdone L, Agricola E, Caserta M, et al. Histone acetylation in gene regulation. Brief Funct Genomic Proteomic, 2006,5(3):209-221.
    14. Rasheed WK, Johnstone RW, Prince HM. Histone deacetylase inhibitors in cancer therapy. Expert Opin Investig Drugs, 2007,16(5):659-678.
    15. Santini V, Gozzini A, Ferrari G. Histone deacetylase inhibitors: molecular and biological activity as a premise to clinical application. Curr Drug Metab, 2007,8(4):383-393.
    16. Kiernan R, Bres V, Ng RW, et al. Post-activation turn-off of NF-kappa B-dependent transcription is regulated by acetylation of p65. J Biol Chem, 2003,278(4):2758-2766.
    17. Nozell S, Laver T, Moseley D, et al. The ING4 tumor suppressor attenuates NF-kappaB activity at the promoters of target genes. Mol Cell Biol, 2008,28(21):6632-6645.
    18. Zhong H, May MJ, Jimi E, et al. The phosphorylation status of nuclear NF-kappa B determines its association with CBP/p300 or HDAC-1. Mol Cell, 2002,9(3):625-636.
    19. de Ruijter AJ, van Gennip AH, Caron HN, et al. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J, 2003,370(Pt 3):737-749.
    20. Gallinari P, Di Marco S, Jones P, et al. HDACs, histone deacetylation and gene transcription: from molecular biology to cancer therapeutics. Cell Res, 2007,17(3):195-211.
    21. Shankar S, Srivastava RK. Histone deacetylase inhibitors: mechanisms and clinical significance in cancer: HDAC inhibitor-induced apoptosis. Adv Exp Med Biol, 2008,615:261-298.
    22. Okamoto H, Fujioka Y, Takahashi A, et al. Trichostatin A, an inhibitor of histone deacetylase, inhibits smooth muscle cell proliferation via induction of p21(WAF1). J Atheroscler Thromb, 2006,13(4):183-191.
    23. Mnjoyan ZH, Dutta R, Zhang D, et al. Paradoxical upregulation of tumor suppressor protein p53 in serum-stimulated vascular smooth muscle cells: a novel negative-feedback regulatory mechanism. Circulation, 2003,108(4):464-471.
    24. Kusama H, Kikuchi S, Tazawa S, et al. Tranilast inhibits the proliferation of human coronary smooth muscle cell through the activation of p21waf1. Atherosclerosis, 1999,143(2):307-313.
    25. Lee B, Kim CH, Moon SK. Honokiol causes the p21WAF1-mediated G(1)-phase arrest of the cell cycle through inducing p38 mitogen activated protein kinase in vascular smooth muscle cells. FEBS Lett, 2006,580(22):5177-5184.
    26. Kato S, Ueda S, Yamaguchi M, et al. Overexpression of p21Waf1 induces apoptosis in immortalized human vascular smooth muscle cells. J Atheroscler Thromb, 2003,10(4):239-245.
    27. Patel VI, Daniel S, Longo CR, et al. A20, a modulator of smooth muscle cell proliferation and apoptosis, prevents and induces regression of neointimal hyperplasia. FASEB J, 2006,20(9):1418-1430.
    28. Yan C, Wang H, Toh Y, et al. Repression of 92-kDa type IV collagenase expression by MTA1 is mediated through direct interactions with the promoter via a mechanism, which is both dependent on and independent of histone deacetylation. J Biol Chem, 2003,278(4):2309-2316.
    29. Mitani Y, Oue N, Hamai Y, et al. Histone H3 acetylation is associated with reduced p21(WAF1/CIP1) expression by gastric carcinoma. J Pathol, 2005,205(1):65-73.
    30. Gomez-Duran A, Ballestar E, Carvajal-Gonzalez JM, et al. Recruitment of CREB1 and histone deacetylase 2 (HDAC2) to the mouse Ltbp-1 promoter regulates its constitutive expression in a dioxin receptor-dependent manner. J Mol Biol, 2008,380(1):1-16.
    31. Foulds CE, Nelson ML, Blaszczak AG, et al. Ras/mitogen-activated protein kinase signaling activates Ets-1 and Ets-2 by CBP/p300 recruitment. Mol Cell Biol, 2004,24(24):10954-10964.
    32. Goel A, Janknecht R. Acetylation-mediated transcriptional activation of the ETS protein ER81 by p300, P/CAF, and HER2/Neu. Mol Cell Biol, 2003,23(17): 6243-6254.
    33. Moodie FM, Marwick JA, Anderson CS, et al. Oxidative stress and cigarette smoke alter chromatin remodeling but differentially regulate NF-kappaB activation and proinflammatory cytokine release in alveolar epithelial cells. FASEB J, 2004,18(15): 1897-1899.
    34. Schmeck B, Lorenz J, N'guessan PD, et al. Histone acetylation and flagellin are essential for Legionella pneumophila-induced cytokine expression. J Immunol, 2008,181(2):940-947.
    1. Chen WQ, Zhang Y, Zhang M, et al. Establishing an animal model of unstable atherosclerotic plaques. Chin Med J (Engl), 2004,117(9):1293-1298.
    2. Chung B, Wong V. Pediatric stroke among Hong Kong Chinese subjects. Pediatrics, 2004,114(2):e206-212.
    3. Kaitosaari T, Ronnemaa T, Raitakari O, et al. Effect of 7-year infancy-onset dietary intervention on serum lipoproteins and lipoprotein subclasses in healthy children in the prospective, randomized Special Turku Coronary Risk Factor Intervention Project for Children (STRIP) study. Circulation, 2003,108(6):672-677.
    4. Fadini GP, Agostini C, Sartore S, et al. Endothelial progenitor cells in the natural history of atherosclerosis. Atherosclerosis, 2007,194(1):46-54.
    5. Bochaton-Piallat ML, Gabbiani G. Modulation of smooth muscle cell proliferation and migration: role of smooth muscle cell heterogeneity. Handb Exp Pharmacol, 2005(170):645-663.
    6. Moura R, Tjwa M, Vandervoort P, et al. Thrombospondin-1 activates medial smooth muscle cells and triggers neointima formation upon mouse carotid artery ligation. Arterioscler Thromb Vasc Biol, 2007,27(10):2163-2169.
    7. Louis H, Lacolley P, Kakou A, et al. Early activation of internal medial smooth muscle cells in the rabbit aorta after mechanical injury: relationship with intimal thickening and pharmacological applications. Clin Exp Pharmacol Physiol, 2006,33(1-2):131-138.
    8. Lavezzi AM, Ottaviani G, Matturri L. Biology of the smooth muscle cells in human atherosclerosis. APMIS, 2005,113(2):112-121.
    9. Yacyshyn VJ, Thatipelli MR, Lennon RJ, et al. Predictors of failure of endovascular therapy for peripheral arterial disease. Angiology, 2006,57(4):403-417.
    10. Bhoday J, de Silva S, Xu Q. The molecular mechanisms of vascular restenosis: Which genes are crucial?. Curr Vasc Pharmacol, 2006,4(3):269-275.
    11. Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet, 2008,9(6):465-476.
    12. Figueroa ME, Reimers M, Thompson RF, et al. An integrative genomic andepigenomic approach for the study of transcriptional regulation. PLoS ONE, 2008,3(3):e1882.
    13. Smiraglia DJ, Kulawiec M, Bistulfi GL, et al. A novel role for mitochondria in regulating epigenetic modification in the nucleus. Cancer Biol Ther, 2008,7(8): 1182-1190.
    14. Beier V, Mund C, Hoheisel JD. Monitoring methylation changes in cancer. Adv Biochem Eng Biotechnol, 2007,104:1-11.
    15. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet, 2002,3(6):415-428.
    16. Sawan C, Vaissiere T, Murr R, et al. Epigenetic drivers and genetic passengers on the road to cancer. Mutat Res, 2008,642(1-2):1-13.
    17. Rodenhiser DI. Epigenetic contributions to cancer metastasis. Clin Exp Metastasis, 2008.
    18. Mayer W, Niveleau A, Walter J, et al. Demethylation of the zygotic paternal genome. Nature, 2000,403(6769):501-502.
    19. Zaitseva I, Zaitsev S, Alenina N, et al. Dynamics of DNA-demethylation in early mouse and rat embryos developed in vivo and in vitro. Mol Reprod Dev, 2007,74(10):1255-1261.
    20. Xu Y, Zhang JJ, Grifo JA, et al. DNA methylation patterns in human tripronucleate zygotes. Mol Hum Reprod, 2005,11(3):167-171.
    21. Ghoshal K, Bai S. DNA methyltransferases as targets for cancer therapy. Drugs Today (Barc), 2007,43(6):395-422.
    22. Kisseljova NP, Kisseljov FL. DNA demethylation and carcinogenesis. Biochemistry (Mosc), 2005,70(7):743-752.
    23. Gaudet F, Hodgson JG, Eden A, et al. Induction of tumors in mice by genomic hypomethylation. Science, 2003,300(5618):489-492.
    24. Howard G, Eiges R, Gaudet F, et al. Activation and transposition of endogenous retroviral elements in hypomethylation induced tumors in mice. Oncogene, 2008,27(3):404-408.
    25. Miller JW, Borowsky AD, Marple TC, et al. Folate, DNA methylation, and mouse models of breast tumorigenesis. Nutr Rev, 2008,66 Suppl 1:S59-64.
    26. Laird PW. Mouse models in DNA-methylation research. Curr Top Microbiol Immunol, 2000,249:119-134.
    27. Ehrlich M. DNA methylation in cancer: too much, but also too little. Oncogene, 2002,21(35):5400-5413.
    28. Hiltunen MO, Turunen MP, Hakkinen TP, et al. DNA hypomethylation and methyltransferase expression in atherosclerotic lesions. Vasc Med, 2002,7(1):5-11.
    29. Laukkanen MO, Mannermaa S, Hiltunen MO, et al. Local hypomethylation in atherosclerosis found in rabbit ec-sod gene. Arterioscler Thromb Vasc Biol, 1999,19(9):2171-2178.
    30. Ying AK, Hassanain HH, Roos CM, et al. Methylation of the estrogen receptor-alpha gene promoter is selectively increased in proliferating human aortic smooth muscle cells. Cardiovasc Res, 2000,46(1):172-179.
    31. Kim J, Kim JY, Song KS, et al. Epigenetic changes in estrogen receptor beta gene in atherosclerotic cardiovascular tissues and in-vitro vascular senescence. Biochim Biophys Acta, 2007,1772(1):72-80.
    32. Nakamura Y, Suzuki T, Miki Y, et al. Estrogen receptors in atherosclerotic human aorta: inhibition of human vascular smooth muscle cell proliferation by estrogens. Mol Cell Endocrinol, 2004,219(1-2):17-26.
    33. De Feo M, Forte A, Onorati F, et al. Rat carotid arteriotomy: c-myc is involved in negative remodelling and apoptosis. J Cardiovasc Med (Hagerstown), 2006,7(1): 61-67.
    34. Artese L, Ucchino S, Piattelli A, et al. Factors associated with apoptosis in symptomatic and asymptomatic carotid atherosclerotic plaques. Int J Immunopathol Pharmacol, 2005,18(4):645-653.
    35. Kanazawa S, Miyake T, Kakinuma T, et al. The expression of platelet-derived growth factor and connective tissue growth factor in different types of abdominal aortic aneurysms. J Cardiovasc Surg (Torino), 2005,46(3):271-278.
    36. Nykanen AI, Krebs R, Tikkanen JM, et al. Combined vascular endothelial growth factor and platelet-derived growth factor inhibition in rat cardiac allografts: beneficial effects on inflammation and smooth muscle cell proliferation. Transplantation, 2005,79(2):182-189.
    37. Kuo HK, Griffith JD, Kreuzer KN. 5-Azacytidine induced methyltransferase-DNA adducts block DNA replication in vivo. Cancer Res, 2007,67(17):8248-8254.
    38. Baylin SB. DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol, 2005,2 Suppl 1:S4-11.
    39. Kanai Y. Alterations of DNA methylation and clinicopathological diversity of human cancers. Pathol Int, 2008,58(9):544-558.
    40. Yu N, Wang M. Anticancer drug discovery targeting DNA hypermethylation. Curr Med Chem, 2008,15(14):1350-1375.
    41. Bartkova J, Horejsi Z, Koed K, et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature, 2005,434(7035):864-870.
    42. Arvanitis DA, Flouris GA, Spandidos DA. Genomic rearrangements on VCAM1, SELE, APEG1and AIF1 loci in atherosclerosis. J Cell Mol Med, 2005,9(1):153-159.
    43. Inafuku M, Toda T, Iwasaki H, et al. Analysis of microsatellite instability and loss of heterozygosity in human aortic atherosclerotic lesions. Rinsho Byori, 2004,52(12): 961-965.
    44. Jiang M, Ma N, Vassylyev DG, et al. RNA displacement and resolution of the transcription bubble during transcription by T7 RNA polymerase. Mol Cell, 2004,15(5):777-788.
    45. Lee J, Chastain PD 2nd, Griffith JD, et al. Lagging strand synthesis in coordinated DNA synthesis by bacteriophage t7 replication proteins. J Mol Biol, 2002,316(1): 19-34.
    46. Franke J, Gehlen J, Ehrenhofer-Murray AE. Hypermethylation of yeast telomerase RNA by the snRNA and snoRNA methyltransferase Tgs1. J Cell Sci, 2008.
    47. Xin H, Liu D, Songyang Z. The telosome/shelterin complex and its functions. Genome Biol, 2008,9(9):232.
    48. Minamino T, Komuro I. Role of telomeres in vascular senescence. Front Biosci, 2008,13:2971-2979.
    49. Minamino T, Komuro I. The role of telomerase activation in the regulation of vascular smooth muscle cell proliferation. Drug News Perspect, 2003,16(4):211-216.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700