雄激素在乳腺癌发生发展中作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳腺癌是女性最常见的恶性肿瘤,在我国,其发病率一直呈上升趋势。影响乳腺癌发生发展的因素很多,性激素是其病因学研究较多的一个方面。
     早在1895年第一次行双侧卵巢切除术治疗晚期乳腺癌时,人们就开始探讨性激素,特别是雌激素对乳腺癌发生发展的作用。从上世纪50年代以来,关于雌激素、雌激素受体、雌激素受体阻断、芳香化酶抑制等方面的研究报道已经很多。流行病学资料显示乳腺癌的危险因素大多与体内激素代谢的改变有关。年轻时的初次全程怀孕、多次生产以及充足的母乳喂养都是防止肿瘤进展的独立保护因素。与之相反,初潮早、绝经晚、绝经后应用激素替代治疗都与乳腺癌危险增加有关,而且这种增加与长期暴露在较高的性激素,特别是雌激素的环境下有关,然而雄激素是否也对乳腺癌的发生发展起作用还有争议,不同的研究有不同的、甚至相反的结论。
     多数的流行病学调查显示雄激素水平升高与绝经后妇女乳腺癌风险增加有关,如Missmer等最新报道认为循环睾丸酮浓度最高1/4者与最低1/4者相比,前者罹患乳腺癌的风险要高2倍。Eliassen对绝经前妇女的研究也发现循环睾丸酮和乳腺癌的发病风险升高有关联。与流行病学资料结果不同,关于雄激素与乳腺癌细胞株增殖关系的研究因很多变量而影响了结果。如雄激素的类型与剂量,特定细胞株的选用等,这些变量都会使雄激素的作用表现不一,有些研究显示促增殖效应,有些就显示为抗增殖效应。动物实验也显示出两种相反的研究结果。而临床当中应用芳香化酶抑制剂治疗乳腺癌取得良好效果,其作用机理就是阻止肾上腺来源的雄激素在靶细胞内转化为雌激素,这从侧面证实了雄激素促进人乳腺癌生长的作用。因此雄激素对乳腺癌的作用到底如何还需要深入研究。
     本研究课题应用酶联免疫吸附试验检测人乳腺癌组织及癌旁乳腺组织中睾丸酮的含量,比较它们的差异,并进一步分析癌组织中睾丸酮的含量与乳腺癌临床生物学特征的关系,结合睾丸酮对人乳腺癌MCF-7细胞株增殖的影响,及睾丸酮对MCF-7荷瘤裸鼠肿瘤生长影响的研究,探讨睾丸酮对乳腺癌发生发展的作用,以期为乳腺癌的治疗和预防提供一个新的指标和思路。
     主要研究内容和结果如下:
     第一部分雄激素在乳腺癌组织中的表达及意义
     目的:探讨雄激素睾丸酮在乳腺癌组织、癌旁2cm及癌旁5cm乳腺组织中的表达情况,并探讨乳腺癌组织中睾丸酮的水平与乳腺癌临床生物学特征的关系。
     方法:应用酶联免疫吸附试验检测30例乳腺癌患者乳腺癌组织、癌旁2cm乳腺组织及癌旁5cm乳腺组织中睾丸酮的含量,进行比较研究,并分析肿瘤组织中睾丸酮含量与乳腺癌的临床生物学特性(月经状况、肿瘤大小、淋巴结状况、TNM分期、组织学分级、病理类型、ER/PR/AR/ Her-2状态等)的关系。
     结果:
     1乳腺癌组织及癌旁乳腺组织中雄激素含量的比较乳腺癌组织中睾丸酮的含量与癌旁2cm和癌旁5cm乳腺组织中睾丸酮含量的比较差异无统计学意义(P=0.215)。绝经前乳腺癌患者乳腺癌组织中睾丸酮的含量低于绝经后患者(P=0.037)。绝经后患者乳腺癌组织中睾丸酮的含量高于癌旁5cm乳腺组织中睾丸酮的含量(P=0.031)。绝经前乳腺癌患者乳腺癌组织中睾丸酮的含量与癌旁乳腺组织中的含量比较差异无统计学意义(P=0.443)。
     2乳腺癌组织雄激素含量与乳腺癌临床生物学特征的关系
     2.1乳腺癌组织中的睾丸酮含量与体重大小不相关,r=-0.158,P=0.402;与年龄不相关,r=0.292,P=0.117;与体重指数(BMI)不相关,r=-0.046,P=0.811。
     2.2乳腺癌组织中睾丸酮的含量与肿瘤组织学分级有关,组织学分级高者睾丸酮含量明显升高,III级者的睾丸酮含量高于II级者和I级者(P=0.001)。而I级与II级患者肿瘤中睾丸酮含量比较差异无统计学意义(P=0.286),这两者与III级比较差异均有统计学意义(P=0.001,P=0.001)。
     2.3乳腺癌组织中睾丸酮的含量与肿瘤大小、淋巴结状况、TNM分期、病理类型无关,P值均大于0.05。
     2.4乳腺癌组织中睾丸酮含量与ER、PR、AR、Her-2免疫组化的表达无关,P值均大于0.05。
     3乳腺癌组织中AR的表达与ER、PR、Her-2的表达比较
     乳腺癌组织中AR的阳性率为86.67%,ER的阳性率为66.67%,两者比较显示正相关(P=0.008);PR的阳性率为60%,与AR比较显示正相关(P=0.018);Her-2的阳性率为80%,与AR比较无关(P=0.388)。
     4乳腺癌组织中AR的表达与临床病理指标的关系
     乳腺癌组织的AR表达与患者的月经状况、病理类型、肿瘤大小、淋巴结转移、TNM分期、分级等无关,P值均大于0.05。
     结论:
     1.绝经后女性乳腺癌患者肿瘤组织中睾丸酮的含量明显高于绝经前女性乳腺癌肿瘤组织中的含量,绝经后乳腺癌患者肿瘤组织中睾丸酮含量明显高于癌旁乳腺组织中的含量,提示睾丸酮在绝经后妇女乳腺癌的发生发展中有一定作用。
     2.乳腺癌组织中睾丸酮的含量与其组织学分级有关,组织学分化III级的睾丸酮含量明显高于I级和II级,表明睾丸酮含量的增加与组织学分化差、恶性程度高的乳腺癌类型有关。
     3.乳腺癌组织中睾丸酮含量的检测可能有助于乳腺癌恶性程度的判断。有助于乳腺癌复发转移风险及预后的判断,有可能提供一个新的内分治疗途径。
     第二部分雄激素对乳腺癌MCF-7细胞株增殖的影响
     目的:研究雄激素对乳腺癌MCF-7细胞增殖的影响,探讨雄激素在乳腺癌发生发展方面的可能作用机制。
     方法:采用MTT法检测雄激素睾丸酮对MCF-7乳腺癌细胞株增殖的影响,采用流式细胞术(Flow cytometry,FCM)分析睾丸酮作用后的乳腺癌细胞周期、凋亡率的情况,并检测分析其中CyclinD1和AR蛋白的表达情况。
     结果:
     1不同浓度睾丸酮对MCF-7乳腺癌细胞株增殖的影响高浓度睾丸酮(10-5 mol /L)作用后,MCF-7乳腺癌细胞株的存活率明显下降,抑制率明显增加,24h、48h、72h的抑制率分别为12.46%、22.21%和44.72%。稍低浓度睾丸酮(10-9 mol /L)可促进MCF-7细胞的生长。10-7 mol /L与10-11 mol /L的睾丸酮既不抑制MCF-7细胞的生长,也不促进其生长。
     2不同浓度睾丸酮对MCF-7细胞周期和凋亡的影响
     2.1作用24h时,高浓度睾丸酮(10-5 mol /L)组的细胞凋亡率升高,并可促使MCF-7乳腺癌细胞从G1期向S期及G2/M过渡,与对照相比差异有统计学意义(P值均小于0.05)。稍低浓度睾丸酮(10-9 mol /L)的细胞凋亡率与对照比差异无统计学意义(P>0.05)。但细胞G0/G1期比率下降,S期及G2/M期比率升高(P值均小于0.05)。
     2.2作用48h时,高浓度睾丸酮(10-5 mol /L)组细胞凋亡率显著升高,但其可促使MCF-7细胞从G1期向S期及G2/M过渡,与对照相比,高浓度睾丸酮组细胞的G0/G1期比率显著下降,S期及G2/M期比率升高(P值均小于0.05)。10-9 mol /L睾丸酮组的细胞凋亡率和细胞周期与对照相比差异均无统计学意义(P值均大于0.05)。
     2.3 10-7 mol /L、10-11 mol /L浓度的睾丸酮对MCF-7细胞的细胞周期及凋亡率均无明显影响(P值均大于0.05)。
     3睾丸酮对MCF-7细胞株中CyclinD1和AR蛋白表达的影响
     3.1 MCF-7细胞经10-5 mol /L睾丸酮处理24h后,CyclinD1蛋白表达量较对照组增加(P <0.05),经10-9 mol /L睾丸酮处理后,CyclinD1蛋白表达量亦有所增加(P <0.05)。而AR蛋白的表达量均无明显变化(P值均大于0.05)。
     3.2 MCF-7细胞经10-5 mol /L睾丸酮处理48h后, CyclinD1蛋白表达量较对照组增加(P <0.05),而AR蛋白表达量较对照组有所下降但差异无统计学意义(P >0.05)。经10-9 mol /L睾丸酮处理后,CyclinD1蛋白表达量较对照组无明显变化(P >0.05),而AR蛋白表达量有所升高,但差异仍无统计学意义,可是与10-5 mol /L睾丸酮处理后的AR蛋白表达量比较明显升高(P <0.05)。
     结论:
     1.睾丸酮对乳腺癌MCF-7细胞的增殖有双向作用。稍低浓度(10-9 mol /L)时表现出促进增殖的作用,更高浓度(10-5 mol /L)时表现出抑制增殖的作用,提示睾丸酮对乳腺癌作用的复杂性。
     2.稍低浓度(10-9 mol /L)睾丸酮可促使乳腺癌MCF-7细胞株表达CyclinD1,加速细胞周期,促进增殖。提示睾丸酮在乳腺癌的发生发展方面确实能发挥促进作用。
     3.更高浓度睾丸酮可抑制乳腺癌细胞株的增殖、促进其凋亡,可能和其促使乳腺癌细胞过度表达CyclinD1有关。提示大剂量雄激素可能在乳腺癌的治疗方面可能起到较好效果。
     4.高浓度睾丸酮可下调乳腺癌细胞株中AR的表达,稍低浓度睾丸酮可上调AR的表达。提示大剂量雄激素可能抑制AR阳性的乳腺肿瘤。
     5.针对睾丸酮对乳腺癌细胞的作用研究,可以部分解释第一部分研究中睾丸酮可能促使肿瘤生长的推测及睾丸酮含量高者肿瘤恶性程度高的现象。
     第三部分雄激素对MCF-7乳腺癌荷瘤裸鼠肿瘤生长的影响
     目的:观察不同剂量丙酸睾丸酮对MCF-7乳腺癌荷瘤裸鼠肿瘤生长的影响,探讨其可能的机制。
     方法:构建MCF-7乳腺癌荷瘤裸鼠模型,再用不同剂量的丙酸睾丸酮(50mg/kg,400mg/kg)及化疗药物进行干预,检测肿瘤的生长情况。用微粒子发光法检测裸鼠血清睾丸酮的含量,用流式细胞术及免疫组化法检测肿瘤中的CyclinD1和AR的表达。
     结果:
     1成功构建MCF-7乳腺癌荷瘤裸鼠模型裸鼠接种MCF-7乳腺癌细胞株后均有肿瘤结节形成,成瘤率达100%,在7d左右开始成瘤,瘤体逐渐增大,移植瘤呈圆形、卵圆形或结节状,瘤体表面光滑。
     2.肿瘤生长状况
     至实验结束时,对照组裸鼠的肿瘤体积为0.2072±0.1100cm3,化疗组裸鼠的肿瘤(0.1795±0.0905cm3)生长相对缓慢,抑瘤率为13.39%。但与对照相比差异无统计学意义(P=0.868)。给予低剂量丙酸睾丸酮组裸鼠的肿瘤体积(0.5613±0.1872cm3)明显增大,与对照组和化疗组相比差异有统计学意义(P值分别为0.047,0.034),促瘤率为170.84%。给予高剂量丙酸睾丸酮组裸鼠的肿瘤生长复杂,3只的肿瘤逐渐缩小,2只的肿瘤逐渐增大,至实验结束时平均体积为0.3366±0.4635cm3,与对照组、化疗组、低剂量丙酸睾丸酮组比较差异均无统计学意义(P值分别为0.443,0.353,0.191)。
     3流式细胞学检查结果
     3.1雄激素受体蛋白的表达:各组肿瘤中AR的表达差异无统计学意义,P=0.177。
     3.2 CyclinD1蛋白的表达:低剂量丙酸睾丸酮组裸鼠肿瘤的CyclinD1的表达量为403.28±31.23,高于其在对照组(358.47±36.44,P=0.035)和化疗组(352.94±19.14,P=0.020)的表达。
     4免疫组化检查结果
     免疫组化检测肿瘤中AR蛋白表达结果显示,AR蛋白主要表达在细胞核,各组比较没有明显差异。CyclinD1在低剂量睾丸酮组肿瘤中呈阳性表达,可见胞核有明显棕黄色颗粒;其在其他各组呈弱阳性表达。
     5血清睾丸酮水平的检测结果
     用药结束后,处死动物时分别检测了各组实验鼠血清睾丸酮水平。对照组血清睾丸酮含量为1.40±0.23ng/ml ,稍低于化疗组的含量(2.38±0.17ng/ml),但差异没有统计学意义,P=0.07。50mg/kg丙酸睾丸酮用药组血清睾丸酮含量明显升高,达到13.50±1.58ng/ml,明显高于对照组和化疗组(P值分别为0.000和0.000)。而400mg/kg丙酸睾丸酮用药组血清睾丸酮含量亦明显升高,达到14.85±0.33ng/ml,明显高于对照组、化疗组和低剂量睾丸酮用药组(P值分别为0.000、0.000和0.019)。
     结论:
     1.低剂量丙酸睾丸酮(50mg/kg)可刺激MCF-7乳腺癌荷瘤裸鼠肿瘤的生长,和对照组相比差异有统计学意义。表明外源性低剂量雄激素有促进乳腺癌生长的作用。
     2.高剂量丙酸睾丸酮(400mg/kg)可抑制MCF-7乳腺癌荷瘤裸鼠肿瘤的生长,但作用结果不完全一致,具体机制有待进一步研究。
     3.低剂量雄激素促进MCF-7乳腺癌荷瘤裸鼠肿瘤的生长,其肿瘤内CyclinD1的表达明显增加,而AR表达无明显变化。表明雄激素促进乳腺癌的生长可能是通过促进CyclinD1的表达引起的。
Breast cancer is the most common type of malignant tumors in women. Its incidence has increased gradually in our country. There are many factors to affect the genesis and development of breast cancer. Sex hormone is one of the factors which have been extensively investigated.
     Beginning with the report of bilateral oophorectomy for advanced breast cancer in 1895, sex hormone, especially estrogen, was focused on to explore its effect on the growth and development of breast cancer. In the 1950s, there has been an enormous number of reports on estrogens, estrogen receptors(ER), ER blockade, aromatization. Most of the established epidemiological risk factors for breast cancer are related to alteration in endogenous hormone metabolis. A young age at first full-term pregnancy, high parity and prolonged duration of breast feeding all independently protect against tumor development. On the contrast, early menarche, late menopause and use of postmenopausal hormone therapy have been known to be associate with increased risk of breast cancer, and the increase is associated with higher sex hormone, especially estrogen. It is still unknown whether androgen is involved in the growth and development of breast cancer. Different studies always show different, or even contrary results.
     In most epidemiological studies on postmenopausal women, elevation of androgen level are found to be associated with the increase of breast cancer. Missmer’s report showed those with the highest fourths testosterone have about 2 times of breast cancer risk than those with the lowest fourths. Eliassen also found the relationship between the blood level of testosterone with the risk of breast cancer in premenopausal women. Different from epidemiological investigations, studies on androgens and breast cancer cell line proliferation have multiple variables that affect the outcome of those studies. The type and the dose of androgens, the particular cell lines used and other variables have demonstrated different effects. Some show stimulating effects, some show antiproliferation effects. Studies on animals also show contrary outcomes. But the fact that aromtase inhibitors, blocker of the transform of estrogen from adrenal androgen, which have shown good effect on breast cancer confirms the stimulating effects of androgen on breast cancer. So the role of androgen on breast cancer still needs further explored.
     In the present study, we used enzyme-linked immunosorbent assay (ELISA) to measure the testosterone concentration in breast cancer and breast tissue, and analyzed the difference between them, detected the relationship between the breast cancer testosterone concentration and clinicobiological features. Then we investigated the influence of testosterone on MCF-7 breast cancer cell line and breast cancer xenograft (MCF-7) in nude mice to detect the role of androgen on the growth and development of breast cancer, to offer a new marker or idea for the treatment and prognosis of breast cancer.
     Part I The significance of androgen in breast cancer tissue Objective: To detect the concentration of testosterone in breast cancer, breast tissue 2cm and 5cm away from the tumor, and analyze the relation between the testosterone concentration and clinicobiological features.
     Methods: ELISA was performed to examine the concentration of testosterone in breast cancer, breast tissue 2cm and 5cm away from the tumor in 30 breast cancer patients. Relationship was analyzed between them and clinicobiological features(menopause status, tumor size, nodal status, TNM stage, histological grade, histological type, ER/PR/AR status). Results:
     1 The difference of testosterone concentration between breast cancer and tissue 2cm and 5cm away from tumor.
     There was no significance in testosterone concentration between breast cancer and breast tissue 2cm and 5cm away from tumor(P=0.215). The testosterone concentration in premenopausal patients was lower than those in postmenopausal patients(P=0.037). In postmenopausal patients, the testos- terone concentration in breast cancer was higher than those in tissue at 5cm from tumor(P=0.031). No significant difference was found between breast cancer and the breast tissue in premenopausal patients(P=0.443).
     2 The relationship between testosterone concentration in breast cancer tissue and clinicobiological features
     2.1 There were no correlation between testosterone concentration in breast cancer tissue with weight (r=-0.158, P=0.402), age (r=0.292, P=0.11), and Body Mass Index(BMI) (r=-0.046, P=0.811).
     2.2 Testosterone concentration in breast cancer tissue was related to histological grade. Testosterone concentration was higher in those with worse grade. Those with grade III had much more testosterone than those with grade I,II (P=0.001). No difference was found between grade I and grade II (P=0.286).
     2.3 No relationship were found between testosterone concentration and tumor size, nodal status, TNM stage, pathological type (P>0.05 for all).
     2.4 No relationship were found between testosterone concentration and the expression of ER, PR, AR, Her-2 (P>0.05 for all).
     3 The relationship between AR and ER, PR, Her-2
     Positive rate of AR in breast cancer was 86.67%, ER was 66.67%, PR was 60%. There were significant relationship between the expression of AR and ER (P=0.008), PR(P=0.018). No significance was found between AR and Her-2(P=0.388) whose positive rate was 80%.
     4 Relationship between the expression of AR and clinibobiological features No relationship were found between the expression of AR and menopausal status, tumor size, pathological type, nodal status, TNM stage and histological grade (P>0.05 for all).
     Conclusions
     1 Testosterone concentration in breast cancer tissue of postmenopausal patients is higher than that in premenopausal patients. Testosterone concentration in breast cancer tissue is higher than that in breast tissue 5cm away from tumor in postmenopausal women, which suggests that testosterone may play a certain role in the genesis and development of breast cancer.
     2 Testosterone concentration in breast cancer tissue is related to histological grading. Testosterone concentration is higher in those with grade III than those with grade I,II. The more involved axillary nodes is companied with the higher testosterone level in primary tumor. All of above suggests that the higher testosterone concentration, the higher malignant of the breast cancer. 3 The testosterone concentration in breast tumors may contribute to the diagnosis of the malignant status, to the diagnosis of recurrence and metastasis risk and prognosis. It may provide a novel endotherapy approach for breast cancer.
     Part II The influence of androgen on MCF-7 breast cancer cell line
     Objective: To study the influence of androgen on MCF-7 breast cancer cell line and explore the mechanism that how androgen affect the genesis and growth of breast cancer.
     Methods: MTT was used to measure the proliferation of MCF-7 after stimulated with testosterone. Flow cytometry(FCM) was used to analyze the breast cancer cell cycle, apoptosis rate and the expression of CyclinD1 and androgen receptor(AR).
     Results:
     1 Influence of testosterone at different concentration on the proliferation of MCF-7 breast cancer cell line
     The survival rate of MCF-7 cells exposed to 10-5 mol /L testosterone decreased significantly and inhibition rate increased markedly. The inhibitory rate was 12.46%,22.21%,44.72% in 24, 48, 72 h respectively. Cultures of MCF-7 cells exposed to 10-9 mol /L testosterone had cell growth compared with control cultures. Cultures of MCF-7 cells exposed to 10-7 mol /L and 10-11 mol /L testosterone showed neither proliferation nor inhibition in any time.
     2 Influence of testosterone at different concentration on the MCF-7 cell cycle and apoptosis
     2.1 After 24 h, high concentration testosterone(10-5 mol /L) increased the apoptosis rate of MCF-7 cells and impeded the progression of G1 cells into S phase and G2/M phase compared with control cultures(P<0.05 for all). No difference of apoptosis rate was found between the 10-9 mol /L testosterone pretreatment group and control group, but low concentration(10-9 mol /L) testosterone decreased the proportions of G1 phase cells and increase the proportions of S phase and G2/M phase cells(P<0.05 for all).
     2.2 After 48h, 10-5 mol /L testosterone induced apoptosis of MCF-7 cells increasely, but it also decreased the proportions of G1 phase and increase the proportions of S phase and G2/M phase (10-5 mol /L). No difference was found between 10-9 mol /L testosterone group and control group.
     2.3 10-7 mol /L and 10-11 mol /L testosterone showed little influence on cell cycle and apoptosis of MCF-7 cells(P>0.05 for all).
     3 Influence of testosterone on the expression of CyclinD1 and AR of MCF-7 cells
     3.1 After 24h, Cultures of MCF-7 cells exposed to 10-5 mol /L and 10-9 mol /L testosterone exhibited increased expression of CyclinD1 compared with control cultures (P<0.05 , both). There was no difference of AR in all groups. (P>0.05 for all).
     3.2 After 48h, Cultures of MCF-7 cells exposed to 10-5 mol /L testosterone exhibited increased expression of CyclinD1 compared with control cultures (P<0.05). 10-9 mol /L testosterone showed no influence on CyclinD1. AR was found increased slightly(P>0.05) in 10-9 mol /L testosterone group. There was a significant difference of AR between 10-5 mol /L testosterone group and 10-9 mol /L testosterone group(P<0.05).
     Conclusions:
     1 Testosterone has bidirective effect on breast cancer cells. Lower concentration testosterone (10-9 mol /L) may stimulate MCF-7 cells proli- feration. Higher concentration testosterone(10-5 mol /L) may inhibite MCF-7 cells proliferation, which shows the complex effect of testosterone on breast cancer.
     2 Lower concentration testosterone(10-9 mol /L) may increases the expression of CyclinD1 and impeds cell cycle, improves proliferation, which suggests that testosterone play a positive role on the genesis and development of breast cancer.
     3 Higher concentration testosterone may inhibite the proliferation of MCF-7 cells, induce apoptosis which maybe relate to the overexpression of CyclinD1. High dose androgen may be useful for the treatment to breast cancer.
     4 Higher concentration testosterone may down-regulate the expression of AR in breast cancer cells whereas lower concentration testosterone may up-regulate it, which suggests that high dose androgen may inhibite the proliferation of breast caner with positive AR.
     5 This study may partly explain the hypothesis that higher concentration of testosterone may promote the proliferation of breast cancer and the pheno- menon that the more testosterone in tumor the worse malignance of tumor.
     Part III Influence of androgen on the growth of human breast cancer xenograft (MCF-7) in nude mice
     Objective: To investigate the effect of testosterone propionate (TP) at different dose on the growth of MCF-7 xenograft tumor in nude mice and to explore its may-be mechanism.
     Methods: To establish the transplanted MCF-7 tumors in nude mice. Then to investigate the growth of transplanted tumors intervented by testosterone propionate at different dose (50mg/kg, 400mg/kg) and chemotherapic agent. Microparticle cheniluminescance immunoassay was performed to measure the level of serum testosterone of nude mice. FCM and immunohistochemical staining (IHC) was performed to examine the expression of CyclinD1 and AR in the transplanted tumors.
     Results:
     1 To establish the transplanted MCF-7 tumors in nude mice successfully About in 7 days, transplanted tumor by MCF-7 cells could be found in nude mice. The tumor all developed gradually into a smooth, circle or oval nodules.
     2 Growth status of transplanted tumors
     The volume of transplanted tumors in chemotherapy group were slightly nonsignificantly decreased compared with control group (P=0.868). The volume of transplanted tumor in low dose TP group increased significantly compared with control group and chemotherapy group(P=0.047, P=0.034 respectively). The growth of transplanted tumors in high dose TP group was complex. 3 transplanted tumors was gradually reduced, 3but 2 transplanted tumors became bigger obviously. There was no significant difference between high dose TP group and the other groups (P>0.05 for all).
     3 Results of the expression of AR and CyclinD1 by FCM
     3.1 No significant difference of AR expression was found among the four groups(P>0.05 for all) .
     3.2 The expression of CyclinD1 in transplanted tumor in low dose TP group (403.28±31.23) was higher than those in control group (358.47±36.44,P=0.035) and chemotherapy group (352.94±19.14,P=0.020). 4 Results of the expression of AR and CyclinD1 by IHC AR protein was mainly expressed in the cell nucleus. No difference of AR expression was found among the four groups. Positive expression of CyclinD1 was found in low dose TP group and weakly expression in other groups.
     5 Results of serum testosterone in nude mice transplanted by breast cancer xenograft (MCF-7).
     Testosterone level in control group (1.40±0.23ng/ml) was non- significantly lower than that in chemotherapy group (2.38±0.17ng/ml, P=0.07). The testosterone level in low dose TP (50mg/kg) group (13.50±1.58ng/ml) was obviously increased compared with control group and chemotherapy group (P=0.000, P=0.000). The highest testosterone level was found in high dose TP (400mg/kg) group (14.85±0.33ng/ml), which was significantly higher than the other three groups(P=0.000, P=0.000, P=0.019 respectively).
     Conclusion:
     1 Low dose TP can stimulate the MCF-7 transplanted tumor which suggests than low dose androgen may promote the growth of breast cancer.
     2 High dose TP shows inconsistent effect on the MCF-7 transplanted tumor which still needs further approach.
     3 The growth of transplanted tumor in low dose TP with higher expression of CyclinD1 which means that the positive effect of androgen on breast cancer maybe trigger by CyclinD1.
引文
1 Bulbrook RD, Hayward JL, Wang DY, et al. Identification of women with a high risk of breast cancer. Breast Cancer Res Treat, 1986,7(suppl.):5~10
    2 Eliassen AH, Missmer SA, Tworoger SS, et al. Endogenous steroid hormone concentrations and risk of breast cancer among premenopausal women. 2006, J Natl Cancer Inst,2006, 98(19): 1406~1415
    3 Missmer SA, Eliassen AH, Barbieri RL, et al. Endogenous estrogen, androgen, and progesterone concentrations and breast cancer risk among postmenopausal women. J Natl Cancer Inst, 2004,96(24): 1856~1865
    4吴赛珠主编,性激素平衡紊乱与疾病,北京:人民军医出版社, 2005年第一版, 13~21
    5 Sieri S, Krogh V, Bolelli G, et al. Sex hormone levels, breast cancer risk, and cancer receptor status in postmenopausal women: the ORDET Cohort. Cancer Epidemiol Biomarkers Prev, 2009,18(1):169~176
    6 Eliassen AH, Missmer SA, Tworoger SS. Endogenous steroid hormone concentrations and risk of breast cancer among premenopausal women. J Natl Cancer Inst, 2006,98(19):1406~1415
    7 Berrino F, Muti P, Micheli A, et al. Serum sex hormone levels after menopause and subsequent breast cancer. J Natl Cancer Inst,1996, 88(3):291~296
    8 Key T, Verkasalo PK, Banks E. Epidemiology of breast cancer. Lancet Oncology, 2001,2(3): 133~140
    9 Kaaks R, Rinaldi S, Key TJ, et al. Postmenopausal serum androgens, oestrogens and breast cancer risk: the European prospective investigation into cancer and nutrition. Endocr Relat Cancer. 2005, 12(11): 1071~1082
    10 Norman AW, Litwack G: Hormones. San Diego, CA: Academic Press, 1987,453~458
    11 Zumoff B, Strain GW, Miller LK, et al. Twenty-four-hour mean plasma testosterone concentration declines with age in normal premenopausal women. J Clin Endocrinol Metab,1995,80(4): 1429~1430
    12 Ancroft J, Cawood EH. Androgens and the menopause: a study of 40-60-year-old women. Clin Endocrinol, 1996,45(5): 577~587
    13 Labrie F, Belanger A, Cusan L, et al. Marked decline in serum concentrations of adrenal C19 sex streoid precursors and conjugated androgen metabolites during aging. J Clin Endocrinol Metab, 1997,82(8): 2396~2402
    14 Longcope C, Franz C, Morello C, et al. Steroid and gonadotropin levels in women during the perimenopausal years. Maturitas, 1986,8(3): 189~196
    15 Burger HG, Dudley EC, Cui J, et al. A prospective longitudinal study of serum testosterone, dehydroepiandrosterone sulfate, and sex hormon- bingding globulin levels through the menopause transition. J Clin Endocrinol Metab, 2000,85(8): 2832~2838
    16 Rannevik G, Jeppsson S, Johnell O, et al. A longitudinal study of the perimenopausal transition: altered profiles of steroid and pituitary hormones, SHBG and bone mineral density. Maturitas, 1995,21(2):103~113
    17 Kenemans P, Bosman A. Breast cancer and post-menopausal hormone therapy. J Clin Endocrinol Metab,2003,17(1): 123~137
    18 Schairer C, Perssin I, Falkeborn M, et al. Breast cancer risk associated with gynecologic surgery and indications for such surgery. Int J Cancer, 1997,70(2): 150~154
    19 Thijssen JH, van Landeghem AA, Poortman J. Uptake and concentration of steroid hormones in mammary tissues. Ann N Y Acad Sci, 1986,464(1): 106~116
    20 Wang B, Mi M, Wang J, et al. Does the increase of endogenous steroid hormone levels also affect breast cancer risk in Chinese women? A case-control study in Chongqing, China. Int J Cancer, 2009,124(8): 1892~1899
    21孙秀,李海平,李云涛,等.血清睾酮水平与绝经后乳腺癌转移复发及预后的关系.山东医药,2009,49(36):36~37
    22 Ogawa Y, Hai E, Matsumoto K, et al. Androgen receptor expression in breast cancer: relationship with clinicopathological factors and biomarkers. Int J Clin Oncol, 2008,13(5):431~435
    23 Agrawal A K, Jilen M, Grzebieniak Z, et al. Androgen receptors as a prognostic and predictive factor in breast cancer. Folia Histochem Cytobiol, 2008, 46(3):269~276
    1 Toniolo PG, Levitz M, Zeleniuch-Jacquotte A, et al. A prospective study of endogenous estrogens and breast cancer in postmenopausal women. J Natl Cancer Inst, 1995,87(2): 190~197
    2 Hankinson SE, Willett WC, Manson JE, et al. Plasma sex steroid hormone levels and risk of breast cancer in postmenopausal women. J Natl Cancer Inst, 1998,90(9):1292~1299
    3 Eisen A, Weber BL. Recent advances in breast cancer biology. Curr Opin Oncol, 1998,10(6): 486~491
    4 Labrie F, Luu-the V, Labrie C, et al. Endocrine and intracrine sources of androgens in women: inhibition of breast cancer and other roles of androgens and their precusor dehydroepiandrostreone. Endocrine Rev, 2003, 24(2): 152~182
    5 Poulin R, Baker D, Labrie F. Androgens inhibit basal and estrogen-induced cell proliferation in the ZR-75-1 human breast cancer cell line. 1988, Breast Cancer Res Treat, 1988,12(2): 213~225
    6 Ingle J, Twito D, Schaid D, et al. Combination hormonal therapy with tamoxifen plus fluoxymesterone versus tamoxifen alone in postmenopausal women with metastatic breast cancer. An updated analysis. Cancer, 1991,67(4):886~891
    7 Hackenberg R, Hofmann J, Holzel F, et al. Stimulatory effects of androgen and antiandrogen on the in vitro proliferation of human mammary carcinoma cells. J Cancer Res Clin Oncol, 1988,114(16): 593~601
    8 Birrell SM, Bentel JM, Hickey TE, et al. Androgens induce divergent proliferative responses in human breast cancer cell lines. J Steroid Biochem Mol Biol, 1995,52(5): 459~467
    9 Pines J. Cyclins, CDKs and cancer. Semin Cancer Biol, 1995,6(2): 63~72
    10 Recchia AG, Musti AM, Lanzino M, et al. A cross-talk between the androgen receptor and the epidermal growth factor receptor leads to p38MARK-dependent activation of mTOR and CyclinD1 expression inprostate and lung cncer cells. Int J Biochem Cell Biol, 2009,41(3):603-614
    11 Kaaks R, Rinaldi S, Key T J, et al. Postmenopausal serum androgens, oestrogens and breast cancer risk: the European prospective investigation into cancer and nutrition. Endocrine- Related Cancer, 2005,12(4): 1071~1082
    12 Toth-Fejel S, Cheek J, Calhoun K, et al. Estrogen and androgen receptors as comediators of breast cancer cell proliferation. Arch Surg, 2004,139(1): 50~54
    13 Lin HY, Sun M, Lin C, et al. Androgen-induced human breast cancer cell proliferation is mediated by discrete mechanisms in estrogen receptor-alpha- positive and–negative breast cancer cells. J Steroid Biochem Mol Biol, 2009, 113(3-5):182~188
    14 Braunstein GD. Safety of testosterone treatment in post-menopausal women. Fertil Steril, 2007,88(1):1~17
    15 Gooren LJ, Giltay EJ, Bunck MC. Long-term treatment of transsexuals with cross-sex hormones: extensive personal experience. J Clin Endocrinol Metab, 2008,93(1):19~25
    16 Liu T, Niu Y, Feng Y, et al. Methylation of CpG islands of p16(INK4a) and cyclinD1 overexpression associated with progression of intraductal proliferative lesions of the breast. Hum Pathol, 2008,39(11):1637~1646
    17 de Jong JS, van Diest PJ, Michalides RJ, et al. Concerted overexpression of the genes endcoding p21 and cyclin D1 is associated with growth inhibition and differentiation in various carcinomas. Mol Pathol, 1999,52(4): 78~83
    18 Greeve MA, Allan RK, Harvey JM, et al. Inhibition of MCF-7 breast cancer cell proliferation by 5α-dihydrotestosterone; a role for p21Cip1/Waf1.J Mole Endoc, 2004,32(6):793~810
    19汪涌,邵晨,张运涛,等.雄激素对前列腺癌细胞的双向作用及其机制.中华实验外科杂志,2007,24(1):87~88
    20 Gopal K, Nauder F, Michele L, et al.Human megakaryocytes and platelets contain the estrogen receptorβand androgen receptor (AR): testosteroneregulates AR expression. Blood, 2000, 95(4):2289~2296
    21汪涌,邵晨,师长宏,等.雄激素依赖性前列腺癌细胞在其雄激素受体阻断后细胞周期基因表达的改变.中华实验外科杂志,2004,21(11): 1337~1338
    1 Hodgson T, Braunstein G. Physiological effects of androgens in women. In: Weisberg R, ed. Androgen excess disorders in women: Polycystic ovary syndrome and other disorders, 2nd edn. Totowa: Humana Press;2006:49~62
    2 King RJB. A discussion of the roles of oestrogen and progestin in human mammary carcinogenesis. J Steroid Biochem Mol Biol, 1991,39(5B): 811~818
    3 Chilvers CE, Smith SJ. The effect of patterns of oral contraceptive use on breast cancer risk in young women. Br J Cancer,1994,69(5):922~923
    4 Colditz GA, Egan KM, Stampfer MJ. Hormone replacement therapy and risk of breast canc:Results from epidemiologic studies. Am J Obstet Gynecol, 1993,168(5): 1473~1480
    5 Eliassen AH, Missmer SA, Tworoger SS, et al. Endogenous steroid hormone concentrations and risk of breast cancer among premenopausal women. J Natl Cancer Inst, 2006,98(19):1406~1415
    6 Missmer SA, Eliassen AH, Barbieri RL, et al. Endogenous estrogen, androgen, and progesterone concentrations and breast cancer risk among postmenopausal women. J Natl Cancer Inst, 2004,96(24): 1856~1865
    7 Holfing M, Hirschberg AL, Skoog L, et al. Testosterone inhibits estrogen/ progestogen-induced breast cell proliferation in postmenopausal women. Menopause, 2007,14(2): 183~190
    8 The Endogenous Hormones and Breast Cancer Collaborative Group. Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies. J Natl Cancer Inst, 2002, 94(8): 606~616
    9 Sherwin BB, Gelfand MM. The role of androgen in the maintenance of sexual functioning in oophorectomized women. Psychosom Med, 1987, 49(4): 397~409
    10 Padero MC, Bhasin S, Friedman TC. Androgen supplementation in older women: too much hype, not enough data. J Am Geriatr Soc. 2002,50(6): 1131~1140
    11 Watts NB, Notelovitz M, Timmons MC, et al. Comparison of oral estrogens and estrogens plus androgen on bone mineral density, menopausal symptoms, and lipid-lipoprotein profiles in surgical menopause. Obstet Gynecol, 1995,85(4): 529~539
    12 Morales AJ, Haubrich RH, Hwang JY, et al. The effect of six months treatment with a 100 mg daily dose of dehydroepiandrosterone(DHEA) on circulating sex steroids, body composition and muscle strength in age-advanced men and women. Clin Endocrinol,1998,49(4): 421~432
    13 Tamimi RM, Hankinson SE, Chen WY, et al. Combined estrogen and testosterone use and risk of breast cancer in postmenopausal women. Arch Intern Med, 2006,166(14): 1483~1489
    14陈健,桂治宁,曾熙兰.性激素对裸鼠移植性人前列腺癌(PC-3m)生长和雄激素受体水平的影响.标记免疫分析与临床, 1996,3(3):142~145
    15黄继汉,黄晓晖,陈志扬等.药理试验中动物间和动物与人体间的等效剂量换算.中国临床药理学与治疗学,2004,9(9): 1069~1072
    16 Gleave M, Hsieh JT, Gao CA, et al. Acceleration of human prostate cancer growth in vivo by factors produced by prostate and bone fibroblasts. Cancer Res, 1991,51(7): 3753~3761
    17 Veronesi U, Goldhirsch A, Yarnold J. Breast cancer. Oxford Textbook of Oncology, in Peckham M, Pinedo H, Veronesi U. Oxford University Press, New York, NY, 1243~1289
    18 Dao TL.The role of ovarian steroid hormones in mammary carcinogenesis. Hormones and breast cancer, Pike MC, Siiteri PK, Welsch CW editions. Banbury Report N0.8 Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 281~295
    19汪涌,邵晨,张运涛,等.雄激素对前列腺癌细胞的双向作用及其机制.中华实验外科杂志,2007,24(1):87~88
    20 McCormick DL, Adamowski CB, Fiks A, et al. Lifetime dose-response relationships for mammary tumor induction by a single administration of N-methyl-N-nitrosourea. Cancer Res, 1981,41(5): 1690~1694
    21 Xie B, Tsao SW, Wong YC. Induction of high incidence of mammary tumour in female Noble rats with a combination of 17β-oestradiol and testosterone. Carcinogenesis, 1999,20(6):1069~1078
    22 Huggins C, Briziarelli G, Sutton HJ. Rapid induction of mammary carcinoma in the rat and the influence of hormone on the tumors. J Exp Med, 1959, 109(1): 25~42
    23 Costlow ME, Buschow RA, McGulre WL. Prolactin receptors and androgen-induced regression of 7,12-dimethylbenz(a) anthracene- inducd mammary carcinoma. Cancer Res, 1976,36(9): 3324~3329
    24 Tormey DC, Lippman ME, Edwards BK, et al. Evaluation of tamoxifen doses with and without fluoxymesterone in advanced breast cancer. Amm Intern Med, 1983,98(2):139~144
    25 Belanger B, Belanger A, Labrie F, et al. Comparison of residual C-19 steroids in plasma and prostatic tissue of human, rat and guinea pig after castration: unique importance of extratesticular androgens in men. J Steroid Biochem, 1989,32(5): 695~698
    1 Labrie F, Belanger A, Cusan L, et al. Marked declined in serum concentrations of adrenal C19 sex steroid pricursors and conjugatedandrogen metabolites during aging. J Clin Endocrinol Metab, 1997, 82(8);2396~2402
    2 Labrie F, Belanger A, Cusan L, et al. Marked declined in serum concentrations of adrenal C19 sex steroid pricursors and conjugated androgen metabolites during aging. J Clin Endocrinol Metab, 1997, 82(8);2396~2402
    3 Notelovitz M. Androgen effects on bone and muscle. Fertil Steril, 2002,77(Suppl4):34~41
    4 Alexandersen P, Christiansen C. The aging male: testosterone deficiency and testosterone replacement. An up-date. Athero- sclerosis, 2004,173(2): 157~169
    5 Ershler WB, Keller ET. Age-associated increased interlerkin-6 gene expression, late-life diseases, and frailty. Anu Rev Med, 2000,51(1): 245~270
    6吴赛珠主编,性激素平衡紊乱与疾病.北京人民军医出版社,2005年第一版,13~17
    7 Burger HG, Dudley EC, Cui J, et al. A prospective longitudinal study of serum testosterone, dehydroepiandrosterone sulfate, and sex hormone- binding globulin levels through the menopause transition. J Clin Endocrinol Metab, 2000,85(8): 2832~2838
    8 Longcope C, Hunter R, Franz C. Steroid secretion by the postmenopausal ovary. Am J Obstet Gynecol, 1980,138(5): 564~568
    9 Sluijmer AV, Heineman MJ, Koudstaal J, et al. Relationship between ovarian production of estrone, estradiol, testosterone, and androstenedione and the ovarian degree of stromal hyperplasia in postmenopausal women. Menopause,1998,5(4): 207~210
    10 Sluijmer AV, Heineman MJ, DeJong FH, et al. Endocrine activity of the postmenopausal ovary: the effects of pituitary down- regulation and oophorectomy. J Clin Endocrinol Metab, 1995,80(7): 2163~2167
    11 Couzinet B, Meduri G, Lecce MG, et al. The postmenopausal ovary is not a major androgen-prosucing gland. J Clin Endocrinol Metab, 2001, 86(10):5060~5066
    12 Simpson ER, Davis SR. Aromatase and the regulation of estrogen biosynthesis: some new perspectives. Endocrinology, 2001, 142(11): 4589~ 4594
    13 Fernand L, Van L, Claude L, et al. Endocrine and intracrine suouces of androgens in women: inhibition of breast cancer and other roles of androgens and their precursor dehydroepiandrosterone. Endocrine Reviews, 2003,24(2): 152~182
    14 Jiroutek MR, Chen MH, Johnston CC, et al. Changes in reproductive hormones and sex hormone-binding globulin in a group of postmenopausal women measured over 10 years. Menopause, 1998, 5(2): 90~94
    15 Munnoz-Torres M, Jodar E, Quesada M, et al. Bone mass in androgen- insensitivity syndrome: response to hormonal replacement therapy. Calcif Tissue Int,1995,57(2):94~96
    16 Slemenda C, Longcope C, Peacock M, et al. Sex steroids, bone mass, and bone loss.A prospective study of pre-,prei-, and postmenopausal women. J Clin Invest, 1996,97(1):14~21
    17 Barrett-Connor E, Young R, Notelovitz M, et al. A two-year, double-blind comparison of estrogen-androgen and conjugated estrogens in surgically menopausal women. J Reprod Med, 1999,44(12): 1012~1020
    18 Watts NB, Notelovitz M, Timmons MC, et al. Comparison of oral estrogens and estrogens plus androgen on bone mineral density, menopausal symptoms, and lipid-lipoprotein profiles in surgical menopause. Obstet Gynecol, 1995,85(4): 529~537
    19 Pye JK, Mansel RE, Hughes LE. Clinical experience of drug treatments for mastalgia. Lancet, 1985,2(8451): 373~377
    20 Sherwin BB, Gelfand MM. Effects of parenteral administration of estrogen and androgen on plasma hormone levels and hot flushes in the surgical menopause. Am J Obstet Gynecol, 1984,148(5): 552~557
    21 Toniolo PG, Levitz M, Zeleniuch-Jacquotte A, et al. A prospective study of endogenous estrogens and breast cancer in postmenopausal women. J NatlCancer Inst, 1995,87(2): 190~197
    22 Hankinson SE, Willett WC, Manson JE, et al. Plasma sex steroid hormone levels and risk of breast cancer in postmenopausal women. J Natl Cancer Inst, 1998,90(9):1292~1299
    23 Cauley JA, Lucas FL, Kuller LH, et al. Elevated serum estradiol and testosterone concentrations are associated with a high risk for breast cancer. Annals of Internal Medicine. 1999,130(4):270~277
    24 Missmer SA, Eliassen AH, Barieri RL, et al. Endogenous estrogen, androgen , and progesterone concentrations and breast cancer risk among postmenopausal women. J Natl Cancer Inst, 2004,96(24):1856~1865
    25 Eliassen AH, Missmer SA, Tworoger SS. Endogenous steroid hormone concentrations and risk of breast cancer among premenopausal women. J Natl Cancer Inst, 2006,98(19):1406~1415
    26 Sieri S, Krogh V, Bolelli G, et al. Sex hormone levels, breast cancer risk, and cancer receptor status in postmenopausal women: the ORDET Cohort. Cancer Epidemiol Biomarkers Prev, 2009,18(1):169~176
    27王平,张鹏,秦慧莲等.雄激素及其拮抗剂对MCF-7乳腺癌细胞株雄激素受体表达的影响.上海医科大学学报,1998,25(6): 419~421
    28 Toth-Fejel S, Cheek J, Calhoun K, et al. Estrogen and androgen receptors as comediators of breast cancer cell proliferation. Arch Surg, 2004,139(1): 50~54
    29 Bruder JM, Sobed L, Oettel M. Dehydroepiandrosterone stimulates the estrogen response element. J Steroid Biochem Mol Biol, 1997,62(5-6): 461~466
    30 Boccuzzi G, Tamago E, Brignardello E, et al. Growth inhibition of DMBA-induced rat mammary carcinomas by the antiandrogen flutamide. J Cancer Res Clin Oncal, 1995,121(3):150~154
    31 Le Bail JC, Allen K, Nicolas JC, et al. Dehydroepiandrosterone sulfate estrogenic action at its physiological plasma concentration in human breast cancer cell lines. Anticancer Res, 1998,18(3A):1683~1688
    32 Xie B,Tsao S.W., Wang Y.C. Induction of high incidence of mammarytumour in female Noble rats with a combination of 17β-oestradiol and testosterone. Carcinogenesis, 1999,20(6): 1069~1078
    33 Morris K, Toth-Fejel S, Schmidt J, et al. High dehydroepiandrosterone- sulfate predicts breast cancer progression during new aromatase inhibitor therapy and simulates breast cancer cell growth in tissue culture: A renewed role for adrenalectomy. Surgery, 2001,130(6): 947~953
    34 Brennan MJ, Wang DY, Hayward JL, et al. Urinary and plasma androgens in benign breast disease. Possible relation to breast cancer. Lancet, 1973,1(7812): 1076~1079
    35 Gammon MD, Thompson WD. Polycystic ovaries and the risk of breast cancer. Am J Epidemiol, 1991,134(8): 818~824
    36 Anderson KE, Sellers TA, Chen PL, et al. Association of Sterin-Levental syndrome with the incidence of postmenopausal breast carcinoma in a large prospective study of women in Iowa. Cancer,1997,79(3): 494~499
    37 Ingle J, Twito D, Schaid D, et al. Combination hormonal therapy with tamoxifen plus fluoxymesterone versus tamoxifen alone in postmenopausal women with metastatic breast cancer. An updated analysis. Cancer, 1991, 67(4):886~891
    38 Gordan GS. Anabolic-androgenic steroids. In: Handbook of experimental pharmacology. New York: Springer-Verlag, 1976, 499~513
    39 Bryan RM, Mercer RJ, Bennett RC, et al. Androgen receptors in breast cancer. Cancer,1984,54(11): 2436~2440
    40 Lacassagne A. Hormonal pathogenesis of adenocarcinoma of the breast. Am J Cancer, 1936,27(2): 217~228
    41 Huggins C, Briziarelli G, Sutton HJ. Rapid induction of mammary carcinoma in the rat and the influence of hormone on the tumors. J Exp Med, 1959, 109(1): 25~42
    42 Labrie F, Luu-the V, Labrie C, et al. Endocrine and intracrine sources of androgens in women: inhibition of breast cancer and other roles of androgens and their precusor dehydroepiandrostreone. Endocrine Rev, 2003, 24(2): 152~182
    43 Poulin R, Baker D, Labrie F. Androgens inhibit basal and estrogen-induced cell proliferation in the ZR-75-1 human breast cancer cell line. 1988, Breast Cancer Res Treat, 1988,12(2): 213~225
    44 Luciana F.M, Zhiyong G, Syreetal T, et al. Role of androgens on MCF-7 breast cancer cell growth and on the inhibitory effect of letrozole. Cancer Res, 2006,66(15):7775~7782
    45 Hofling M, Hirschberg AL, Skoog L, et al. Testosterone inhibits estrogen / progestrogen-induced breast cell proliferation in post- menopausal women. Menopause, 2007, 14(2): 183~190
    46 Braunstein GD. Safety of testosterone treatment in post- menopausal women. Fertil Steril, 2007,88(1):1~17
    47 Burgess HE, Shousha S. An immunohistochemical study of the long-term effects of androgen administration of female-to male transsexual breast: a comparison with normal female breast and male breast showing gynaecomastia. J Pathol,1993,170(1): 37~43
    48 Gooren LJ, Giltay EJ, Bunck MC. Long-term treatment of trans- sexuals with cross-sex hormones: extensive personal experience. J Clin Endocrinol Metab, 2008,93(1):19~25
    1 Longcope C, Franz C, Morello C, et al. Steroid and gonadotropin levels in women during the perimenopausal years. Maturitas, 1986,8(3):189~196
    2 Rannevik G, Jeppsson S, Johnell O, et al. A longitudinal study of the perimenopausal transition: altered profiles of steroid and pituitary hormones, SHBG and bone mineral density. Maturitas, 1995,21(2): 103~113
    3 Eder IE, Culig Z, Putz T, et al. Molecular biology of the androgen receptor: from molecular understanding to the clinic. Eur Urol, 2001,40(3): 241~251
    4 Kumar R, Johnson BH, Thampson EB. Overview of the structural basis for transcription regulation by nuclear hormone receptors. Essays Biochem, 2004,40(1): 27~39
    5王钢,陈光椿,王晓慧,等.中国男性雄激素受体基因(CAG)n重复多态性的初步研究.中华遗传学杂志, 2001,18(6):456~458
    6 Hsing AW, Gao YT, Wu G, et al. Polymorphic CAG and GGN repeat lengths in the androgen receptor gene and prostate cancer risk: a population-based case-control study in China. Cancer Res,2000,60(9): 5111~5116
    7刘贵秋,苏勤,张伟,等.雄激素受体基因第一外显子CAG重复序列长度多态性与男性膀胱癌的发生有关.第四军医大学学报,2005,26(21): 1963~1966
    8 Yeh SH, Chang CF, Shan WY, et al. Dominance of functional androgen receptor allele with longer CAG repeat in hepatitis B virus-related female hepatocarcinogenesis . Cancer Res, 2002,62(15):4346~4351
    9 Santarosa M, Bidoli E, Gallo A, et al. Polymorphic CAG repeat length with in the androgen receptor gene: identification of a subgroup of patients with increased risk of ovarian cancer. Oncol Rep, 2002,9(3): 639~644
    10 Dos Santos ML, Sibov TT, Nishinoto N, et al. The CAG repeat polymorphism in the androgen receptor gene (AR) and its relationship to head and neck cancer. Oral Oncol, 2004,40(2): 177~182
    11 Giguere Y, Dewailly E, Brisson J, et al. Short polyglutamine tracts in the androgen receptor are protective against breast cancer in the general population. Cancer Res, 2001,61(8): 5869~5874
    12 Sasaki M, Dahiya R, Fujimoto S, et al. The expansion of the CAG repeat in exon 1 of the human androgen receptor gene is associated with uterine endometrial carcinoma. Mol Carcinog, 2000,27(3): 237~244
    13 Ferro P, Catalano MG, DellEca R, et al. The androgen receptor CAG repeata modifier of carcinogenesis [J]. Mol Cell Endocrinol, 2002,193(1-2): 109~120
    14 Takeda H, Chodak G, Mutchnik S, et al. Immunohistochemical localization of androgen receptors with mono- and polyclonal antibodies to androgen receptor. J Biol Chem, 1999,274(9): 5674~5680
    15 Anders NV. Selective androgen receptor modulators(SARMs): A novel approach to androgen therapy for the new millennium. J Clin Endocrinol Metab, 1999,84(10):3459~3462
    16 Hirata S, Shoda T, Kato, J, et al. Isoform/variantm RNAs for sex steroid hormone receptors in humans. Trendsin Endorinology& Metabolism, 2003,14(3):124~129
    17 Wilson CM, McPhaul MJ. A and B forms of the androgen receptor are present in human genital skin fibroblasts. Proc Natl Acad Sci USA, 1994,91(2): 1234~1238
    18 Yeap BB, Krueger RG, Leedman PL. Differential posttrans- criptional regulation of androgen receptor gene expression by androgen in prostate and breast cancer cells. Endocrinology, 1998,140(7): 3282~3291
    19 Wiren K, Keenan E, Zhang X, et al . Homologous androgen receptor up-regulation in bsteoblastic cells may be associated with enhanced functional androgen responsiveness. Endocrinology, 1998,140(7): 3114~3124
    20 Gopal W, et al. Human megakaryocytes and platelets contain the estrogen receptor and androgen receptor (AR): testosterone re- gulates AR expression. Blood, 2000, 95(4):2289~2296
    21 Heinlein CA, Chang C. Androgen receptor(AR) coregulators: an overview. Endocr Rev, 2002,23(4): 175~200
    22 Wang W, John EM, Ingles SA. Androgen receptor and prostate- specific antigen gene polymorphisms and breast cancer in African-American women. Cancer Epidemiol Biomarkers Prev. 2005, 14(11):2990~2994
    23 Spurdle AB, Antoniou AC, Duffy DL, et al. EMBRACE Study Colabores: The androgen receptor CAG repeat polymorphism and modification ofbreast cancer risk in BRCA1 and BRCA2 mutation carriers. Breast Cancer Res, 2005, 7(2): R176~R183
    24 Hall RE, Aspinall JO, Horsfall DJ, et al. Expression of the androgen receptor and an androgen-responsive protein, apolipoprotein D, in human breast cancer. Br J Cancer, 1996, 74(8): 1175~1180
    25 Kuenen-Boumeester V, Van Der Kwast TH, Claassen CC, et al. The clinical significance of androgen receptors in breast cancer and their relation to histopathological and cell biological parameters. Eur J Cancer, 1996, 32A(9):1560~1565
    26 Moinfar F, Okcu M, Tsybrovskyy O, et al. Androgen receptors frequently are expressed in breast carcinomas: potential relevance to new therapeutic strategies. Cancer, 2003,98(4): 703~711
    27韩硕,李雪莲,李霓,等.激素受体ER与PR及AR在男性乳腺癌与良性病变组织中的表达.中华肿瘤防治杂志. 2006,13(12): 923~925
    28 Ogawa Y, Hai E, Matsumoto K, et al. Androgen receptor expression in breast cancer: relationship with clinicopathological factors and biomarkers. Int J Clin Oncol, 2008,13(5):431~435
    29 Agrawal A K, Jilen M, Grzebieniak Z, et al. Androgen receptors as a prognostic and predictive factor in breast cancer. Folia Histochem Cytobiol, 2008, 46(3):269~276
    30 Schippinger W, Regitnig P, Dandachi N, et al. Evaluation of the prognostic significance of androgen receptor expression in metastatic breast cancer. Virchows Arch. 2006,449(1):24~30
    31 Bryan RM, Mercer RJ, Bennett RC, et al. Androgen receptors in breast cancer. Cancer Res, 1984,54(11):2436~2440
    32 Teulings FA, van Gilse HA, Hekelman MS, et al. Estrogen, androgen, glucocorticoid, and progesterone receptors in progestin-induced regression of human breast cancer. Cancer Res, 1980,40(7):2557~2561
    33 Carreno G, Del Casar JM, Corte MD, et al. Local recurrence after mastectomy for breast cancer:analysis of clinicopathological, biological and prognostic characteresitics. Breast Cancer Res Treat. 2007,102(1):61~73
    34 Allegra JC, Woodcock T, Woolf S, et al. A randomized trial comparing mitoxantrone with doxorubicin in patients with stage IV breast cancer. Invest New Drugs, 1985,3(2):153~161
    35 Macedo LE, Guo Z, Tilghman SL, et al. Role of androgens on MCF-7 breast cancer cell growth and on the inhibitory effect of letrozole. Cancer Res. 2006,66(15):7775~7782
    36 Kinne DW, Butler JA, Kimmel M, et al. Estrogen receptor protein of breast cancer in patients with positive nodes: High recurrence rates in the postmenopausal estrogen receptor-negative group. Arch Surg. 1987,122(12): 1303~1306
    37 Parl FF, Schmidt BP, Dupont WD, et al. Prognostic significance of estrogen receptor status in breast cancer in relation to tumor stage, axillary node metastasis, and histopathologic grading. Cancer. 1984,54(10): 2237~2242
    38 Pichon MF, Broet P, Magdelenat H. Prognostic value of steroid receptors after long-term follow-up of 2257 operable breast cancers. Br J Cancer, 1996,73(12): 1545~1551
    39 Moinfar F, Okcu M, Tsyborvskyy O, et al. Androgen receptors frequently are expressed in breast carcinomas: potential relecance to new therapeutic strategies. Cancer, 2003,98(4):703~711
    40 Hardin C, Pommier R, Calhoun K, et al. A new hormonal therapy for estrogen receptor-negative breast cancer. World J Surg. 2007, 31(5): 1041~1046
    41 Garreau JR, Muller P, Pommier R, et al. Transgenic introduction of androgen receptor into estrogen-receptor-, progesterone- eceptro-, and androgen-receptor- negative breast cancer cells renders them responsive to hormonal manipulation. Am J Surg. 2006,191(5):576~580
    42 Yeh S, Lin HK, Kang HY, et al. From HER2/Neu signal cascade to androgen receptor and its coactivators: A novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells. ProcNath Acad Sci USA. 1999,96(10):5458~5463
    43 Rosen EM, Fan S, Isaacs C. BRCA1 in hormonal carcinogenesis: basic and clinical research. Endocr Relat Cancer. 2005,12(3):533~548
    44 Park JJ, Irvine RA, Buchanan G, et al. Breast cancer susceptibility gene
    1(BRCA1) is a coactivator of the androgen receptor. Cancer Res. 2000,60(12): 5946~5949
    45 Yeh S, Hu YC, Rahman M, et al. Increase of androgen induced cell death and androgen receptor transactivation by BRCA1 in prostate cancer cells. Proc Nath Acad Sci USA. 2000,97(10):11256~11261
    46 Ferro P, Catalano MG, Dell’Eva R, et al. The androgen receptor CAG repeat: a modifier of carcinogenesis? Nol Cell Endocrinol. 2002,193(1-2): 109~120

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700