蝎蛉科昆虫胚胎消化道形成与幼虫腹足同源性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用扫描电子显微镜和光学显微镜,对长翅目Mecoptera蝎蛉科Panorpidae昆虫的胚胎发育过程进行组织学和外部形态研究。以太白蝎蛉Panorpa obtusa为材料,研究了蝎蛉胚胎期的消化道形成,证实口道和肛道均由外胚层发育而来,而中肠由内胚层发育而来;马氏管由肛道前端形成,因此起源于外胚层。并且以大蝎蛉Panorpa magna为材料,研究了蝎蛉胚胎期腹足的形成及其超微结构,观察了蝎蛉腹足的发育过程,讨论了腹足与胸足间的非同源性关系。本研究丰富了长翅目胚胎学知识,为进一步深入探讨昆虫胚胎发育机理奠定了基础。
     结果表明,太白蝎蛉的口道起源于头叶中部的浅凹陷,肛道起源于胚胎腹部末端,几乎与口道同时出现。与口道相比,肛道发育速度很快,肠道伸长并最终形成一个环状。证明了口道和肛道都是由外胚层发育而来。六瓣状的贲门瓣出现在口道的末端,并逐渐浸入发育中的中肠前端。在马氏管开口处紧紧相连着具有瓣状褶皱结构的幽门瓣。
     六条马氏管由肛道前端两侧的突起发育而来,每侧的突起各发育出三个马氏管,分别向各个方向朝胚胎前端发散延长。伸达胚胎第二腹节时,马氏管折回并继续发育延伸至第八腹节。因此证实了马氏管也起源于外胚层。
     研究发现,中肠由处于胚胎两极的前中肠韧和后中肠韧共同发育而来,前中肠韧和后中肠韧细胞分别在胚胎腹面发育形成两条细胞带,相向生长至胚胎中部第二腹节与第三腹节间结合形成中肠原基。观察了中肠原基各部分细胞的不同形态以及在胚胎背合后中肠上皮细胞的主要特点,同时比较了口道、中肠和后肠的形态差异。作为前肠和中肠的分界,贲门瓣与中肠之间有一层单细胞组成的封闭膜结构。类似的膜结构也出现于中肠与幽门瓣之间。这种膜结构在孵化前几小时内消失。
     通过对大蝎蛉胸足和腹足组织切片和外部形态对比,发现蝎蛉的腹足并非真正的附肢,而是在真附肢的内侧新产生形成的构造。腹部的附肢在胚胎发育后期停止发育,并在幼虫期留下比较明显的痕迹,因此证实长翅目幼虫的腹足与胸足之间并非同源构造。
The morphogenesis during embryogenesis of the family Panorpidae in Mecoptera was studied by using scanning electron microscopy and light microscopy. Based on the embryo of Panorpa obtusa, we investigated the formation of the alimentary canal. The results show that the stomodaeum and proctodaeum are developed from ectoderm and midgut is derived from endoderm. The Malpighian tubules are formed by anterior part of proctodaeum, therefore they are also developed from the ectoderm. In addition, we studied the formation and ultrastructure of the abdominal proleg in Panorpa magna during embryogenesis. The process of prolegs development was observed and they are confirmed to not to be homologous with the thoracic legs. The present study gathers new data for the mecopteran embryology and lays a sound foundation for the further research of the developmental mechanism in insects.
     From our study, we found that the furrow of the stomodaeum is derived from the middle part of the protocephalic lobe. The proctodaeum originates from the caudal end of the embryonic abdomen, which almost occurs simultaneously with the stomodaeum. It grows faster than the stomodaeum and eventually elongates to form a loop. This shows that both the stomodaeum and proctodaeum arise from the ectoderm. Six ruga-shaped cardiac valves appear at the posterior end of stomodaeum, gradually embedding to the front of the developing midgut. The pylorus valves were observed to have layers of valve-like ruga just behind the openings of the Malpighian tubules.
     Six Malpighian tubules are derived from the tubers which has three Malpighian tubules respectively on the anterior proctodaeal wall, extending forwards to various orientations. When the Malpighian tubules reach the second abdominal segment, they turn back until reaching the eighth abdominal segment. It is evident that they are also ectodermal in origin.
     The midgut arises from the anterior and posterior midgut rudiments. The two cell-bands are formed at the posterior end of the stomodaeum and the anterior end of the proctodaeum respectively. These two bands grow and elongate towards each other along the venter of the embryo between the yolk and mesodermal cells, eventually meet and connect each other at between the second and third abdominal segments. The cell morphology varies among different regions of the midgut rudiment and the main characteristics of the midgut epithelial cells after the dorsal closure of the embryo development are described. Morphological differentiation among the stomodaeum, midgut and proctodaeum were observed. Between the cardiac valves and the rudimental midgut there are some monolayered cells forming a membrane as the border between stomodaeum and midgut rudiment. The same membrane structure is formed between the rudimental midgut and the pylorus valves. Both the anterior and the posterior cellular membranes begin to degenerate just a few hours before hatching.
     Compared with the thoracic legs in histology and external morphology, we confirm that the abdominal prologs are not true appendages, but newly formed structure on the mesial side of the true appendages which are homologous with thoracic legs. During the later embryogenesis, the true abdominal appendages stop developing and become reduced gradually, their remnants could still be observed in larval stage. Therefore our conclusion is that the prolegs of Panorpa could not be serially homologous with the thoracic legs in Mecoptera.
引文
[1] Anderson DT. The Development of Holometabolous Insects [M]. In: Developmental Systems: Insects, vol.1(eds. Counce SJ & Waddington CH). New York: Academic Press, 1972.
    [2] Anderson DT. The embryology of Dacus tryoni (Frogg.), the Queensland fruit fly [J]. J Embryol Exp Morphol., 1962, 10: 248–292.
    [3] Ando H. Studies on the early embryonic development of a scorpion fly, Panorpa pryeri McLachlan (Mecoptera, Panorpidae). Sci. rep. Tokyo Kyoiku Daigaku., 1960, 8: 227–242.
    [4] Ando H. The comparative embryology of Odonata with special reference to a relic dragonfly Epiophlebia superstes Selys [M]. Tokyo: Japan Society for the Promotion of Science, 1962.
    [5] Ando H. Old oocytes and newly laid eggs of scorpion flies and hanging-flies (Mecoptera: Panorpidae and Bittacidae) [J]. Sci. Rep. Tokyo Kyoiku Daigaku., 1973, 15:163–187.
    [6] Ando H, Haga K. Studies on the pleuropodia of Embioptera, Thysanoptera and Mecoptera [J]. Bull. Sugadaira Biol. Lab., Tokyo Kyoiku Univ., 1974, 6: 1–8.
    [7] Ando H, Suzuki N. On the embryonic development of larval eyes of the scorpion-fly, Panorpa pryeri MacLachlan (Mecoptera, Panorpidae) [J]. Proc. Jpn. Soc. Syst. Zool., 1977, 13: 81–85.
    [8] Batalova F, Parfenov V. Immunomorphological localization of Vasa protein and pre-mRNA splicing factors in Panorpa communis trophocytes and oocytes [J]. Cell Biol. Int., 2003, 27: 795–807.
    [9] Batalova FM, Stepanova IS, Skovorodkin IN, Bogolyubov DS, Parfenov VN. Identification and dynamics of cajal bodies in relation to karyosphere formation in scorpionfly oocytes [J]. Chromosoma, 2005, 113: 428–439.
    [10] Bate M, Martinez-Arias A. The development of Drosophila melanogaster [M]. New York: Cold Spring Harbor Laboratory Press, 1993.
    [11] Bier KH. Oogenesetypen bei Insekten und Vertebraten, ihre Bedeutung frir die Embryogenese und Phylogenese [J]. Zool. Anz. Suppl., 1970, 33: 7–9.
    [12] Biliński SM, Büning J, Simiczyjew B. The ovaries of Mecoptera: basic similarities and one exception to the rule [J]. Folia Histochem. Cytobiol., 1998, 36: 189–195.
    [13] Biliński SM, Büning J. Structure of ovaries and oogenesis in the snow scorpionfly Boreus hyemalis (Linne) (Mecoptera: Boreidae) [J]. Int. J. Insect. Morphol. Embryol., 1998, 27: 333–340.
    [14] Birket-Smith SJR. Prolegs, Legs and Wings of Insects [M]. Copenhagen, Denmark: Scandinavian Science Press, 1984.
    [15] Büning J. The Insect Ovary: Ultrastructure, Previtellogenic Growth and Evolution [M]. London: Chapman & Hall, 1994.
    [16] Brown SJ, Denell RE. Segmentation and dorsoventral patterning in Tribolium [J]. Semin. Cell. Dev. Biol., 1996, 7: 553–560.
    [17] Brown SJ, Parrish JK, Denell RE, Beeman RW. Genetic control of early embryogenesis in the red flour beetle, Tribolium castaneum [J]. Am. Zool., 1994, 34: 343–352.
    [18] Campos-Ortega JA, Hartenstein V. The Embryonic Development of Drosophila melanogaster [M]. Berlin: Springer-Verlag Press., 1985.
    [19] Chapman RF. The Insects: Structure and Function [M]. 4th edition. Cambridge University Press,Cambridge., 1998.
    [20] Cooper KW. The genital anatomy and mating behavior of Boreus brumalis Fitch (Mecoptera) [J]. Amer. Midl. Nat., 1940, 23: 354–367.
    [21] Cui F, Xu HF, Zhou Z, Xu YY, Wang HS. Anatomical characteristics of the embryonic development of Spodoptera exigua [J]. J. Shandong. Agri. Univ. (Natural Science), 2003, 34: 339–342.
    [22] Cui F, Xu HF, Song HM, Wang HS, Xu YY. Studies on the embryonic development of Spodoptera exigua (Hübner) (Ⅰ)-Cleavage, formation of blastederm and germ band, and differentiation of germinal layers [J]. J. Shandong. Agri. Univ. (Natural Science), 2004, 35: 213–216.
    [23] Cui F, Xu HF, Wang HS, Xu YY, Sun BX. Studies on the embryonic development of Spodoptera exigua(Hübner) (Ⅱ)-The development of coelom, integument, circulatory system and other organs [J]. J. Entomol. East China, 2004, 13: 32–37.
    [24] Cui F, Xu HF, Wang HS, Zhou Z. Studies on the Embryonic Development of Spodoptera exigua (Hübner) (Ⅲ)-The development of respiratory, digestive, nervous and reproductive System [J]. Acta. Agri Boreali-occidentalis Sin., 2004, 13: 64–66.
    [25] Davis GK, Patel NH. Short, long, and beyond: molecular and embryological approaches to insect segmentation [J]. Annu. Rev. Entomol., 2002, 47: 669–699.
    [26] Du XL, Yue C, Hua BZ. Embryonic development of the scorpionfly Panorpa emarginata Cheng with special reference to external morphology (Mecoptera: Panorpidae) [J]. J. Morphol., DOI: 10.1002/jmor.10734., 2009.
    [27] Esben-Petersen P. Mecoptera [M]. Monographic revision: Bruxelles, 1921.
    [28] Ferris GF. Some observations on the head of insects [J]. Microentomology, 1942, 7: 25–62.
    [29] Ferris GF. The basic materials of the insect cranium [J]. Microentomology, 1943, 8: 8–24.
    [30] Fleig R. Head segmentation in the embryo of the Colorado beetle Leptinotarsa decemlineata as seen with anti-en immunostaining [J]. Roux’s Arch. Dev. Biol., 1994, 203: 227–229.
    [31] Gatenby JB. The embryonic development of trichogramma evanescens, Westw., monembryonic egg parasite of donacia simplex, fab [J]. Quart. J. Microscop. Sci., 1917, 62: 149–187.
    [32] Govind S, Steward R. Dorsoventral pattern formation in Drosophila [J]. Trends Genet., 1991, 7: 119–124.
    [33] Gullan PJ, Cranston PS. The Insects: An Outline of Entomology (3rd edition) [M]. Oxford: Blackwell Publishing Ltd, 2005.
    [34] Haas MS, Brown SJ, Beeman RW. Homeotic evidence for the appendicular origin of the labrum in Tribolium castaneum [J]. Dev. Genes. Evol., 2001a, 211: 96–102.
    [35] Haas MS, Brown SJ, Beeman RW. Pondering the procephalon: the segmental origin of the labrum [J]. Dev. Genes. Evol., 2001b, 211: 89–95.
    [36] Hafen E, Basler K, Edstroem JE, Rubin GM. Sevenless, a cell-specific homeotic gene of Drosophila, encodes a putative transmembrane receptor with a tyrosine kinase domain [J]. Science, 1987, 236: 55–63.
    [37] Handel K, Basal A, Fan X, and Roth S. Tribolium castaneum twist: gastrulation and mesoderm formation in a short-germ beetle [J]. Dev. Genes Evol., 2005, 215: 13–31.
    [38] Handel K, Grünfelder C, Roth S, Sander K. Tribolium embryogenesis: a SEM study of cell shapes and movements from blastoderm to serosal closure [J]. Dev. Genes. Evol., 2000, 210: 167–179.
    [39] Handel K, Grunfelder CG, Roth S, Sander K. Tribolium embryogenesis: a SEM study of cell shapes and movements from blastoderm to serosal closure [J]. Dev. Genes Evol., 2000, 210: 167–179.
    [40] Heemskerk J, DiNardo S. Drosophila hedgehog acts as a morphogen in cellular patterning [J]. Cell, 1994, 76: 449–460.
    [41] Heming BS. Development of the mouthparts in embryos of Haplothrips verbasci (Osborn) (Insecta, Thysanoptera, Phlaeothripidae) [J]. J. Morphol., 1980, 164: 235–263.
    [42] Heming BS. Origin and fate of germ cells in male and female embryos of Haplothrips verbasci (Osborn) (Insecta, Thysanoptera, Phlaeothripidae) [J]. J. Morphol., 1979, 160: 323–344.
    [43] Hennig W. Insect Phylogeny [M]. New York: John Wiley & Sons, 1981.
    [44] Henson H. The structure and post-embryonic development of Vanessa urticae (Lepidoptera) I. The larval alimentary canal [J]. Quart. J. Microscop. Sci., 1931, 74: 321–360.
    [45] Henson H. The development of the alimentary canal in Pieris brassicae and the endodermal origin of the Malpighian tubules in insects [J]. Quart. J. Microscop. Sci., 1932, 75: 283–309.
    [46] Hinton HE. The phylogeny of the panorpoid orders [J]. Ann. Rev. Entomol., 1958, 3: 181–206.
    [47] Ikeda Y, Machida R. Embryogenesis of the Dipluran Lepidocampa weberi Oudemans (Hexapoda, Diplura, Campodeidae): External Morphology [J]. J. Morphol., 1998, 237: 101–115.
    [48] Ikeda Y, Machida R. Embryogenesis of the Dipluran Lepidocampa weberi Oudemans (Hexapoda: Diplura, Campodeidae): Formation of dorsal organ and related phenomena [J]. J. Morphol., 2001, 249: 242–251.
    [49] Kaltenbach A. Mecoptera (Schnabelhafte, Schnabelfliegen) [J]. Handbuch der Zoologie, 1978, 4: 1–111.
    [50] Kishimoto T, Ando H. External features of the developing embryo of the stonefly, Kamimuria tibialis (Pictet) (Plecoptera, Perlidae) [J]. J. Morphol., 1985, 183: 311–326.
    [51] Kobayashi Y, Ando H. The embryonic development of the primitive moth, Neomicropteryx nipponensis Issiki (Lepidoptera, Micropterygidae): Morphogenesis of the embryo by external observation [J]. J. Morphol., 1981, 169: 49–59.
    [52] Kobayashi Y, Ando H. The early embryonic development of the primitive moth, Neomicropteryx nipponensis Issiki (Lepidoptera, Micropterygidae) [J]. J. Morphol., 1982, 172: 259–269.
    [53] Kobayashi Y, Ando H. Embryonic development of the alimentary canal and ectodermal derivatives in the primitive moth, Neomicropteryx nipponensis Issiki (Lepidoptera, Micropterygidae) [J]. J. Morphol., 1983, 176: 289–314.
    [54] Kobayashi Y, Ando H. Mesodermal organogenesis in the embryo of the primitive moth, Neomicropteryx nipponensis Issiki (Lepidoptera, Micropterygidae) [J]. J. Morphol., 1984, 181: 29–47.
    [55] Kobayashi Y, Suzuki H, Ohba N. Embryogenesis of the glowworm Rhagophthalmus ohbai Wittmer (Insecta: Coleoptera, Rhagophthalmidae), with emphasis on the germ rudiment formation [J]. J. Morphol., 2002, 253: 1–9.
    [56] Li T, Cai LJ, Hua BZ. Ultrastructure of the compound eye in Panorpa nanwutaina [J]. Chin. Bull. Entomol., 2009, 46: 86–90.
    [57] Machida R. External features of embryonic development of a jumping bristletail Pedetontus unimaculatus Machida (Insecta, Thysanura, Machilidae) [J]. J. Morphol., 1981, 168: 339–355.
    [58] Machida R. The embryology of the jumping bristletail Pedetontus unimaculatus Machida (Insecta, Microcoryphia, Machilidae) [D]. Doctoral thesis, University of Tsukuba, 1982.
    [59] Machida R. Serial homology of the mandible and maxilla in the jumping bristletail Pedetontus unimaculatus Machida, based on external embryology (Hexapoda: Archaeognatha, Machilidae) [J]. J. Morphol., 2000, 245: 19–28.
    [60] Machida R, Ando H. Formation of midgut epithelium in the jumping bristletail Pedetontus unimaculatus (Machida) (Archaeognatha, Machilidae) [J]. Int. J. Insect. Morphol. Embryol., 1981, 10: 297–307.
    [61] Machida R, Nagashima T, Ando H. The early embryonic development of the jumping bristletail Pedetontus unimaculatus Machida (Hexapoda: Microcoryphia, Machilidae) [J]. J. Morphol., 1990, 206: 181–195.
    [62] Machida R, Nagashima T, Ando H. Embryonic development of the jumping bristletail Pedetontus unimaculatus Machida, with special reference to embryonic membranes (Hexapoda: Microcoryphia, Machilidae) [J]. J. Morphol., 1994, 220: 147–165.
    [63] Matsuda R. Morphology and Evolution of the Insect Abdomen [M]. Oxford, New York:Pergamon Press. 1976.
    [64] Mellanby H. The Later Embryology of Rhodnius prolixus [J]. Quart. J. micr. Sci., 1936, 79: 1–42.
    [65] Miller A. Embryonic membranes, yolk cells and morphogenesis of the stonefly Pteronarcys proteus Newman [J]. Ann. Entomol. Soc. Amer., 1940, 33: 437–477.
    [66] Penny ND. World checklist of extant Mecoptera species. http://www.calacademy.org/research/ entomology/Entomology_Resources/mecoptera/, 1997.
    [67] Penny ND, Byers GW. A check-list of the Mecoptera of the world [J]. Acta Amazonica., 1979, 9: 365–388.
    [68] Potter E. The internal anatomy of the larvae of Panorpa and Boreus (Mecoptera) [J]. Proc. R. Soc. Lond., 1938, 13: 117–130.
    [69] Poulson DF. Histogenesis, organogenesis and differentiation in the embryo of Drosophila melanogaster Meigen [M]. In: Demerec, M. (Ed), Biology of Drosophila, New York: John Wiley and Sons, 1950.
    [70] Rickoll WL, Counce SJ. Morphogenesis in the embryo of Drosophila melanogaster–– germ band extension [J]. Wilhelm Roux's Archives Dev. Biol., 1980, 188: 163–177.
    [71] Rogers BT, Kaufman TC. Structure of the insect head as revealed by the en protein pattern in developing embryos [J]. Development, 1996, 122: 3419–3432.
    [72] Rost MM, Kuczera M, Malinowska J, Polak M, Sidor B. Midgut epithelium formation in Thermobia domestica (Packard) (Insecta, Zygentoma) [J]. Tissue Cell, 2005, 37: 135–143.
    [73] Rost MM, Kubala A, Nowak B, Pilarczyk S, Klag J.. Ultrastructure of alimentary tract formation in embryos of two insect species: Melasoma saliceti and Chrysolina pardalina (Coleoptera, Chrysomelidae). Arthropod Struct Dev., 2007a, 36: 351–360.
    [74] Rost MM, Pi?ka M, Szymska R, Klag J. Ultrastructural studies of midgut epithelium formation in Lepisma saccharina L. (Insecta, Zygentoma) [J]. J. Morphol., 2007b, 268: 224–231.
    [75] Sato M, Tanaka-Sato H. Fertilization, syngamy, and early embryonic development in the cricket Gryllus bimaculatus (De Geer) [J]. J. Morphol., 2002, 254: 266–271.
    [76] Sawai Singh. The myth of intercalary segment in insect head [J]. J. Morphol., 1981, 168: 17–42.
    [77] Schmidt-Ott U, Technau GM. Expression of en and wg in the embryonic head and brain of Drosophila indicates a refolded band of seven segment remnants [J]. Development, 1992, 116: 111–125.
    [78] Schmidt-Ott U, Gonzalez-Gaitan M, Technau GM. Analysis of neural elements in head-mutant Drosophila embryos suggests segmental origin of the optic lobes [J]. Roux’s Arch. Dev. Biol., 1995, 205: 31–44.
    [79] Schmidt-Ott U, Sander K, Teehnau GM. Expression of engrailed in embryos of a beetle and five dipteran species with special reference to the terminal regions [J]. Roux’s Arch. Dev. Biol., 1994, 203: 298–303.
    [80] Shafiq SA. A study of the embryonic development of the gooseberry sawfly, Pteronidea ribesii [J]. Quart. J. micr. Sci., 1954, 95: 93–114.
    [81] Simiczyjew B. Germ cell cluster differentiation in polytrophic ovarioles of hanging-flies (Mecoptera: Bittacidae) [J]. Zool. Paloniae., 2003, 48: 71–79.
    [82] Simiczyjew B. Structure of the ovary in Nannochorista neotropica Navas (Mecoptera: Nannochoristidae) with remarks on mecopteran phylogeny [J]. Acta Zoologica., 2002, 83: 61–66.
    [83] Snodgrass RE. Principles of Insect Morphology [M]. New York: McGraw-Hill. 1935.
    [84] Sonnenblick BP. The early embryology of Drosophila melanogaster [M]. In: Biology of Drosophila (eds. Demerec M). New York: Wiley, 1950.
    [85] Strindberg H. Hauptzuge der Entwicklungsgeschichte von Sialis lutaria L.[J]. Zool. Anz., 1915, 46: 167–185.
    [86] Stuart RR. The development of the mid-intestine in Melanoplus differentialis (Acrididae, Orthoptera) [J]. J. Morph., 1935, 58: 419–437.
    [87] Sun SS. The embryonic development of Dolerus tritici Chu [J]. Acta. Entomol. Sin., 1959, 9: 29–50.
    [88] Suzuki N, Ando H. Alimentary canal formation of the scorpion fly, Panorpa pryeri MacLachlan (Mecoptera, Panorpidae) [J]. Int. J. Insect. Morphol. Embryol., 1981, 10: 345–354.
    [89] Suzuki N, Shimizu S, Ando H. Early embryology of the alderfly, Sialis mitsuhashii Okamoto (Megaloptera: Sialidae) [J]. Int. J. Insect. Morphol. Embryol., 1981, 10: 409–418.
    [90] Suzuki N. Embryology of the Mecoptera (Panorpidae, Panorpodidae, Bittacidae and Boreidae) [J]. Bull. Sugadaira Montane Res. Cen., 1990, 11: 1–87.
    [91] Suzuki N. Embryonic development of the scorpion fly, Panorpodes paradoxa (Mecoptera, Panorpodidae) with special reference to larval eye development [J]. Embryol. Soc. Jpn. Tsukuba. 1985, 231–238.
    [92] Suzuki Y, Palopoli MF. Evolution of insect abdominal appendages: are prolegs homologous or convergent traits [J]. Dev. Genes Evol., 2001, 211: 486–492.
    [93] Tan JL, Hua BZ. Description of the immature stages of Bittacus planus Cheng (Mecoptera: Bittacidae) with notes on its biology [J]. Proc Entomol Soc Wash., 2009, 111:111–121.
    [94] Tillyard RJ. The evolution of the scorpion flies and their derivatives [J]. Ann. Entomol. Soc. Amer., 1935, 28:1–45.
    [95] Tojo K, Machida R. Early embryonic development of the mayfly Ephemera japonica McLachlan (Insecta: Ephemeroptera, Ephemeridae) [J]. J. Morph., 1998, 238: 327–335.
    [96] Tojo K, Machida R. Embryogenesis of Ephemera japonica McLachlan (Insecta: Ephemeroptera) [J]. Proc. Arthropod Embryol. Soc. Jpn., 1997a, 32: 25–28.
    [97] Tojo K, Machida R. Embryogenesis of the mayfly Ephemera japonica McLachlan (Insecta: Ephemeroptera, Ephemeridae), with special reference to abdominal formation [J]. J. Morphol., 1997b, 234: 97–107.
    [98] Tojo K, Machida R. Egg structures of Japanese ephemerid species (Ephemeroptera) [J]. Entomol Sci, 1998, 1: 573–579.
    [99] Tuner FR, Mahowald AP. Scanning electron microscopy of Drosophila metanogaster embryogenesis, II Gastrulation and segmentation [J]. Dev. Biol., 1977, 57: 403–416.
    [100] Uchifune T, Machida R. Embryonic development of Galloisiana yuasai Asahina, with special reference to external morphology (Insecta: Grylloblattodea) [J]. J. Morphol., 2005, 266: 182–207.
    [101] Younossi-Hartenstein A, Tepass U, Hartenstein V. Embryonic origin of the imaginal discs of the head of Drosophila melanogaster [J]. Roux’s Arch. Dev. Biol., 1993, 203: 60–73.
    [102] Willmann R. The phylogenetic system of the Mecoptera [J]. Syst. Entomol., 1987, 12: 519–524.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700