钙库调控钙离子通道特异分子的筛选及其相关特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钙库调控钙离子通道(store-operated calcium channel, SOC)是一种在多种细胞中存在的钙离子通道。其基本的门控机制是当胞内钙库逐渐排空时,位于钙库膜上的信号分子STIM1(stromal interaction moleculel)将会聚集并与细胞膜上的SOC通道蛋白Orai1相互结合,改变其构象并打开通道。SOC通道可以调控许多生理功能,比如可以调控一些基因的转录、胞内某些酶的活性以及细胞的胞吐作用等等。同时,SOC通道功能的异常也与一些疾病相关,比如重症联合免疫缺陷综合症等。而目前由于已知的SOC通道的拮抗剂和激动剂数量有限,且基本上都没有特异性,使得人们对SOC通道的深入了解受到了阻碍。
     本论文针对这一点利用果蝇S2细胞,应用胞内荧光强度检测的实验方法构建了SOC通道特异分子的筛选模型,并利用该模型对部分从中草药中提取的小分子化合物进行筛选。经反复验证,最终得到了一个有拮抗效果的小分子科罗索酸,并初步研究了科罗索酸对SOC的拮抗机制。
     1.SOC通道特异分子筛选模型的构建
     选择果蝇S2细胞作为SOC通道特异分子筛选的细胞模型。经摸索,发现25℃、无CO2的培养条件是较适宜S2细胞生长的条件。在该培养条件下,应用SOC通道激动剂TG、胞内钙探针Fluo-4AM以及FlexStation细胞内钙检测的技术,构建了SOC通道特异分子筛选的基本细胞模型,并利用该模型对三种已知的钙通道拮抗剂Gd3+、SKF-96365和2APB进行测试。结果显示,基本模型能够很好地检测出这三种拮抗剂对SOC通道的作用特性及效果,表明基本细胞模型是可靠、稳定的;为后续的药物筛选实验打下了基础。
     2.天然提取化合物的筛选及活性化合物的作用机理初探
     应用所构建的SOC通道特异分子的筛选模型,对本所从中草药中所分离出的小分子化1选。经验证,最终得到了一个对SOC通道有拮抗效果的小分子化合物科罗索酸。之后,我们对科罗索酸的拮抗机理进行了探索,发现科罗索酸能够拮抗内质网释放钙离子,推测科罗索酸可能通过阻碍内质网的排空进而拮抗SOC通道。
Store-operated calcium channel (SOC) is a kind of calcium channels existing in many cell types. The basic operating mechanism of SOC is that when the intracellular calcium store depletes, the signal molecules, stromal interaction molecule 1 (STIM1), located on the membrane of the store, will aggregate and bind to the channel protein Orai1, then change the channel protein's structure and open the channel. SOC can regulate many physiological processes, such as regulating transcriptions of some genes, controlling the activity of some enzymes and modulating exocytosis. Meanwhile, SOC can be related to some diseases like severe combind immunodeficiency. However, up to present, there are not enough antagonists and agonists of SOC, and also almost all of the known antagonists and agonists are lack of specificity, which impede our profound understanding of SOC.
     Our research aims at getting some specific antagonists or agonists of SOC which will make people know SOC better. Using Drosophila S2 cells and the technique of intracellular Ca2+concentration measurement, the basal cellular assay model for screening for the antagonist and agonist of SOC was established. After examing the dependability and stability of the basal cell model, we screened the compounds that were extracted for Chinese herbal medicine. Finally we got an effective compound corosolic acid, which could block store-operated calcium entry (SOCE). The inhibiting effect of corosolic acid was conformed by many experiments. We further explored the inhibiting mechanism of corosolic acid.
     1.The establishment of cellular model of screening for antagonist and agonist of SOC
     Using Drosophila S2 cells as the cellular model to screen for the antagonist and agonist of SOC. After exploring, the optimized growing environment for Drosophila S2 cells is that 25℃without CO2. Using the known SOC agonist thapsigargin (TG), intracellular calcium indicator Fluo-4 AM, we established the basal cellular assay model for screening antagonist and agonist of SOC. Then using three known Ca2+ channel inhibitors Gd3+、SKF-96365 and 2APB, we examined the dependability and stability of the basal model. And the results show that the basal model is dependable and stable.
     2. The screening of compounds extracted from Chinese herbal medicine and the exploring of the property of target compound
     Using the established model, we screened some compounds extracted from Chinese herbal medicine and finally got an effective compound corosolic acid which exhibited inhibiting effect. And many other experiments were carried on to confirm corosolic acid can block SOC. Then we explored corosolic acid's inhibiting mechanism and found that corosolic acid could block calcium release from the store. Therefore, we infer that corosolic acid probably take the inhibiting effect through blocking calcium release.
引文
1. Clapham, D.E., Calcium Signaling. Cell,2007.131:1047-1058.
    2. Andriy V. Yeromin, S.L.Z., Weihua Jiang, Ying Yu, Olga Safrina and Michael D. Cahalan, Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature,2006.443(14):226-229.
    3. Putney, J.W., The pharmacology of capacitative calcium entry. Molecular Interventions, 2001. 1(2):84-94.
    4. Schneider, I., Cell lines derived from late embryonic stages of Drosophila melanogaster. J. Embryol. Exp. Morph,1972.27:353-365.
    5. JR, A.B.P.a.J.W.P., Store-operated calcium channels. Physiol Rev,2005.85:757-810.
    6. Andriy V. Yeromin, J.R., Kenneth A. Stauderman and Michael D. Cahalan., A store-operated calcium channel in Drosophila S2. The Journal of General Physiology, 2004.123:167-182.
    7. James W. Putney, L.M.B., Franz-Josef Braun, Jean-Philippe Liveremont and Gary St J. Bird., Mechanism of capacitative calcium entry. Journal of Cell Science,2001.114: 2223-2229.
    8. Jack Roos, P.J.D., Andriy V. Yermin, Kari Ohlsen, Maria Lioudyno, Shengyuan Zhang, Olga Safrina, J. Ashot Kozak, Steven L. Wagner, Michael D. Cahalan, Gonul Velicelebi and Kenneth A. Stauderman, STIMl, and essential and conserved component of store-operated Ca2+channel function. Journal of Cell Biology,2005.169(3):435-445.
    9. Shenyuan L. Zhang, Y.Y., Jack Roos, J. Ashot Kozak, Thomas J. Deerinck, Mark H. Ellisman, Kenneth A. Stauderman and Michael D. Cahalan, STIM1 is a Ca2+sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature,2005.437(6):902-905.
    10. Jen Liou, M.F., Takanari Inoue and Tobias Meyer, Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+store depletion. PNAS,2007.104(22):9301-9306.
    11. Peter Varnai, B.T., Daniel J. Toth, Laszlo Hunyady and Tamas Balla, Visualization and manipulation of plasma membrane-endoplasmic reticulum contact sites indicates the presence of additional molecular components within the STIMl-Orail complex. JBC, 2007.282(40):29678-29690.
    12. Ilya Grigoriev, S.M.G., Babet van der Vaart, Jeroen Demmers, Jeremy T. Smyth, Srinivas Honnappa, Daniel Splinter, Michel O. Steinmetz, James W. Putney, Casper C. Hoogenraad and Anna Akhmanova, STIM1 is a MT-Plus-End-Tracking Protein Involved in Remodeling of the ER. Current Biology,2008.18:177-182.
    13. Chan Yong Park, P.J.H., Franklin M. Mulins, Priti Bachhawat, Elizabeth D. Covington, Stefan Raunser, Thomas Walz, K. Christopher Garcia, Ricardo E. Dolmetsch and Richard S. Lewis, STIM1 Clusters and Activates CRAC Channels via Direct Binding of a Cytosolic Dolic Domain to Orail. Cell,2009.136:1-15.
    14. Joseph P. Yuan, W.Z., Michael R. Dorwart. Young-Jin Choi, Paul F. Worley and Shmuel Muallem, SOAR and the polybasic STIM1 domains gates and regulate Orai channels. Nature Cell Biology,2009. 11(3):337-343.
    15. Inesi G, H.S., Xu C, Ma H, Seth M, Prasad AM, Sumbilla C, Studies of Ca2+ATPase (SERCA) inhibition. J Bioenerg Biomembr,2005.37(6):365-368.
    16. Stephen C Tovey, Y.S.a.C.W.T., Rapid functional assays of intracellular Ca2-channels. Nature Protocol,2006.1(1):258-262.
    17. R, H.M.a.P., Calcium release-activated calcium current in rat mast cells. J Physiol.,1993. 465:359-386.
    18. Bootman MD, C.T., Mackenzie L, Roderick HL, Berridge MJ, Peppiatt CM, 2-aminoethoxydiphenyl borate (2APB) is a reliable blocker of store-operated Ca2-entry but an inconsistent inhibitor pf InsP3-induved Ca2+ release. FASEB J,2002.16(10): 1145-1150.
    19. Janet E. Merritt, W.P.A., Christopher D. Benham, Trevor J. Hallam, Ron Jacob, Albert Jaxa-Chamiec, Beatrice K. Leigh, Sean A. McCarthy, Kitty E. Moores and Timothy J. Rink, SK&F 96365, a novel inhibitor of receptor-mediated calcium entry. Biochen. J., 1990.271:515-522.
    20. Soulsby MD, W.R.,2-Aminoethoxydiphenyl borate inhibits inositol J,4,5-trisphosphate receptor function, ubiquitination and downregulation, but acts with variable characteristics in different cell types. Cell Calcium,2002.32(4):175-181.
    21. Janet E. Merritt, W.P.A., Christopher D. Benham, Trevor J. Hallam, Ron Jacob, Albert Jaxa-Chamiec, Beatrice K. Leigh, Sean A. McCarthy, Kitty E. Moores and Timothy J. Rink, SK&F 96356, a novel inhibitor of receptor-mediated calcium entry. Biochem. J, 1990.271:515-522.
    22.Lewis, M.P.a.R.S., Potentiation and inhibition of Ca2+ release-activated Ca2+ channels by 2-aminoethyldiphenyl borate (2APB) occurs independently of IP3 receptors. Journal of Physiology,2001.536(1):3-19.
    23. I, S., Differentiation of larval Drosophila eye-antennal discs in vitro. J Exp Zool,1964. 156:91-103.
    24. Rogers, S.L.R.a.GC., Culture of Drosophila S2 cells and their use for RNAi-mediated loss-of-function studies and immunofluorescence microscopy. Nature Protocol,2008.3:p. 606-611.
    25. Trebak M, V.G., Bird GSJ and Putney JW Jr, The TRPC3/6/7 subfamily of cation channels. Cell Calcium,2003.33:451-461.
    26. Murakami C, M.K., Kasai R, et al., Screening of plant constituents for effect on glucosetransport activity in Enrlich ascites tumor cells. Chemical and Pharmaceutical Bulletin,1993.41:2129-2231.
    27. Ahn KS, H.M., Park EJ, Lee HK, Kim IH, Corosolic acid isolated from the fruit of Crataegus pinnatifida var.psilosa is a protein kinase C inhibitor as well as cytotoxic agent. Planta Med,1998.64(5):468-470.
    28. Banno N, A.T., Tokuda H, Yasukawa K, Higashihara H, Ukiya M, Watanable K, Kimura Y, Triterpene acids from the leaves of Perilla frutescens and their anti-inflammatory and antitumor-promoting effects. Bioscience Biotechnology Biochemistry,2004.68:85-90.
    29. Langton P, W.S., Carl A, Norell MA, Sanders KM, Spontaneous electtical activity of interstitial cells of Cajal isolated from canine proximal colon. PNAS,1989.86(18): 7280-7284.
    30. Ward SM, B.A., Torihashi S, Sanders KM, Mutation of the proto-oncogene c-kit blockers development of interstitial cells and electrical rhythmicity in murine intestine. J Physiol, 1994.480:91-97.
    31. Huizinga JD, T.L., Kluppel M, Malysz J, Mikkelsen HB, Bernstein A, W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature,1995.373: 347-349.
    32. KM, S., A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterology,1996.111(2):492-515.
    33. Dickens EJ, H.G., Tomita T; Identification of rhythmically active cells in guinea-pig stomach. J Physiol,1999.514:515-531.
    34. Koh SD, J.J., Kim TW, Sanders KM, A Ca2+-inhibitored non-selective cation conductance contributes to pacemaker currents in mouse interstitial cells of Cajal. J Physiol,2002.540:803-814.
    35. Yoneda S, F.H., Takaki M, Pacemaker activity from submucosal interstitial cells of Cajal drives high-frequency and low-amplitude circular muscle contractions in the mouse proximal colon. Neurogastroenterol Motil,2004.16(5):621-627.
    36. Ward SM, S.K., Hirst GD, Role of interstitial cells of Cajal in neuroral control of gastrointestinal smooth muscles. Neurogastroenterol Motil,2004.16:112-117.
    37. Sanders KM, K.S., Ordog T, Ward SM, Ionic conductances slow-waves in phasic gastrointestinal muscles. Neurogastroenterol Motil,2004.16:100-105.
    38. KD, M., Characterization of outward currents in interstitial cells from the guinea pig bladder. J Urol,2005.173(1):296-301.
    39.Ward SM, O.T., KohSD, Abu Baker S, Jun JY, Amberg G, Monaghan K, Sanders KM, Pacemaking in interstitial cells of-Cajal depends upon calcium handing by endoplasmic reticulum and mitochondria. J Physiol,2000.525:355-361.
    40. Jr, P.J., A model for receptor-regulated calcium entry. Cell Calcium,1986.7:1-12.
    41. S. Feske, Y.G., M. Prakriya, et al, A mutation in Orail causes immune deficiency by abrogating CRAC channel function. Nature,2006.441:179-185.
    42. WA, A.A.a.L., Store-operated Ca2+-permeable nonselective cation channels in smooth muscle cells. Cell Calcium,2003.33:345-356.
    43. M. Prakriya, S.F., Y.Gwack, et al, Orail is an essential pore subunit of the CRAC channel. Nature,2006.443:230-232.
    44. Takemura H, H.A., Thastrup O, and Putney JW Jr, Activation of calcium entry by the tumour promoter thapsigargin in parotid acinar cells. J Biol Chem,1989.264: 12266-12271.
    45. RY, R.C.a.T., Emptying of intracellular Ca2+ stores releases a novel small messenger that stimulates Ca2+ influx. Nature,1993.364:809-814.
    46. M.L. Overall, N.J.P., D.L. Scarcella, et al, Murine Stiml maps to distal chromosome 7 and is not imprinted Mamm. Genome,1998.9:657-659.
    47. Brandman, O.e.a., STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+levels. Cell,2007.131:1327-1340.
    48. M.A. Spassova, J.S., L.P. He, et al., STIM1 has a plasma membrane role in the activation of store-operated Ca2+channels. Proc. Natl. Acad. Sci. U. S. A,2006.103:4040-4045.
    49. Baba, Y.e.a., Coupling of STIM1 to store-operated Ca2+ entry through its constitutive and inducible movement in the endoplasmic reticulum. Proc. Natl. Acad. Sci. U. S. A.,2006. 103:16704-16709.
    50. Berridge MJ, B.M., and Roderick HL, Calcium signalling:dynamics, homeostasis and remodelling. Nature Rev Mol Cell Biol,2003.4:517-529.
    51. Xu, P., Lu, J., Li, Z., et al., Aggregation of STIM1 underneath the plasma membrane induces clustering of Orail. Biochem. Biophys. Res. Commun.,2006.350:969-976.
    52. Li, Z., Lu, J., Xu, P.,et al., Mapping the interacting domains of STIM1 and Orail in Ca2(?) release-activated Ca2+ channel activation. J. Biol. Chem.,2007.282:29448-29456.
    53. MJ, B.,-The endoplasmic reticulum:a multifunctional signaling organelle. Cell Calcium, 2002.32:235-249.
    54. Gill DL, W.R., Rys-Sikora KE, Ufret-Vincenty CA, Graber MN, Favre CJ and Alfonso A, Calcium pools, calcium entry, and cell growth. Biosci Rep,1996.16:139-157.
    55. AR, L.K.a.M., Regulation of the cell cycle by calcium and calmodulin. Endocrine Rev, 1993.14:40-58.
    56. Dolmetsch RE, X.K.a.L.R., Calcium oscillations increase the efficiency and specificity of gene expression. Nature,1998.392:933-936.
    57. IS, K.N.a.E., Calcium dependence of glucocorticoid-nduced lymphocytolysis. Proc Natl Acad Sci USA,1977.74:638-642.
    58. Bian X, H.F., Huang Y, Cidlowski JA and Putney, Jw Jr, Roles of cytoplasmic Ca2+ and intracellular Ca2+ stores in induction and suppression of apoptosis in S49 cells. Am J Physiol Cell Physiol,1997.272:1241-1249.
    59. Lampe PA, C.E., Juhasz A, Johnson, EM Jr and Franklin JL, Suppression of programmed neuronal death by athapsigargin-induced Ca2+ influx. J Neurobiol,1995.26:205-212.
    60. Cooper DM, K.J., Fagan KA, and Mons NE, Ca2+-sensitive adenylyl cyclases. Adv Second Messenger and Phosphoprotein Res,1998.32:23-51.
    61. Lin S, F.K., Li KX, et al., Sustained endothelial nitric oxide-synthase activation requires capacitative Ca2+ entry. J Biol Chem,2000.275:17979-17985.
    62. DW, C., Excitotoxic cell death. J Neurobiol,19-92.23:1261-1276.
    63. MJ, H.A.a.M., An evaluation of the role of calcium in cell injury. Annu Rev Pharmacol Toxicol,1995.35:129-144.
    64. Jr, H.A.a.P.J., Inositol phosphate formation and its relationship to calcium signalling. Environ Health Perspect,1990.84:141-147.
    65. Kalf GF, P.G., and Snyder R, Solvent.toxicology:recent advances in the toxicology of benzene, the glycol ethers, and carbon tetrachloride. Annu Rev Pharmacol Toxicol,1987. 27:399-427.
    66. Nicotera P, B.G., and Orrenius S, Calcium-mediated mechanisms in chemically induced cell-death. Annu Rev Pharmacol Toxicol,1992.32:449-470.
    67. Orrenius S, M.D., Bellomo G, and Nicotera P, Role of Ca2+ in toxic cell killing. Trends Pharmacol Sci,1989.10:281-285.
    68. Pohorecki R, B.G., Reilly PJ, and Landers DF, Ischemic brain injury in vitro:protective effects of NMDA receptor antagonists and calmidazolium. Brain Res,1990.528: 133-137.
    69. JF, P.J.a.R., Cellular Ca2+ homeostasis and Ca2+ mediated cell processes as critical targets for toxicant action:conceptual and methodological pitfalls. Toxicol Appl Pharmacol,1988.94:314-331.
    70. Furuya Y, L.P., Short AD, Gill DL, and Isaacs JT, The role of calcium, pH, and cell proliferation in the programmed (apoptotic) death of androgen-independent prostatic cancer cells induced by thapsigargin. Cancer Res.1994.54:6167-6175.
    71. Rao AK, D.J., and Yang X, Concomitant defect in internal release and influx of calcium in patients with congenital platelet dysfunction and impaired agonist-induced calcium mobilization.Thromboxane production is not required for internal release of calcium. J Lab Clin Med,1993.121:52-63.
    72. Grosse J, B.A., Varga-Szabo D, Beyersdorf N, Schneider B, Zeitlmann L, Hanke P. Schropp P, Muhlstedt S, Zorn C, Huber M, Schmittwolf C, Jagla W, Yu P, Kerkau T, Schulze H, Nehls M, Nieswandt B, An EF hand mutation in Stim 1-causes premature platelet activation and bleeding in mice. J Clin Invest,2007.117(11):3540-3550.
    73. Attila Braun, J.E.G., David Varga-Szabo, Shahzad N. Syed, Stephanie Konrad, David Stegner, Timo Vogtle, Reinhold E. Schmidt and Bernhard Nieswandt, STIM1 is essential for Fc{gamma} receptor activation and autoimmune inflammation. Blood,2009.113: 1097-1104.
    74. Braun A, V.-S.D., Kleinschnitz C, Pleines I, Bender M, Austinat M, Bosl M, Stoll G and Nieswandt B, Orail (CRACM1) is the platelet SOC channel and essential for pathological thrombus formation. Blood,2009.113(9):2056-2063.
    75. David Varga-Szabo, A.B.a.B.N., Calcium signaling in platelets. Journal of Thrombosis and Heamostasis,2009.7(7):1057-1066.
    76. Feske S, G.J., Dolmetsch R,Staudt LM, Rao AK, Disa J and Yang X, Gene regulation mediated by calcium signals in T lymphocytes. Nature Immunol,2001.2:316-324.
    77. Partiseti M, L.F., Hivroz C, Fischer A, Korn H, and Choquet D, The calcium current activated by T cell receptor and store depletion in human lymphocytes is absent in a primary immunodeficiency. J Biol Chem,1994.269:32327-32335.
    78. SL, M.M.a.C, Neuronal and glial calcium signaling in Alzheimer's disease. Cell Calcium, 2003.34:385-397.
    79. Yoo AS, C.I., Chung S, Grenfell TZ, Lee H, Pack-Chung E, Handler M, Shen J, Xia W, Tesco G, Saunders AJ, Frosch MP, Tanzi RE, and Kim TW, Presenilin-mediated modulation of capacitative calcium entry. Neuron,2000.27:561-572.
    80. Leissring MA, A.Y., Fanger CM, Cahalan MD, Mattson MP, and LaFerla FM, Capacitative calcium entry deficits and elevated luminal calcium content in mutant presenilin-1 knockin mice. J Cell Biol,2000.149:793-798.
    81. Rychkov G, B.H., Harland ML, Barritt GJ, Plasma membrane Ca2+release-activated Ca+channels with a high selectivity for Ca2+identified by patch-clamp recording in rat liver cells. Hepatology,2001.33:938-947.
    82. Guihard G, N.J., Capiod T, Ca2+ depletion and inositol 1,4,5-trisphosphate-evoked activation of Ca2+ entry in single guinea pig hepatocytes. J Biol Chem,2000.275: 13411-13414.
    83. Gregory RB, R.G., Barritt GJ, Evidence that 2-aminoethyl diphenylborate is a novel inhibitor of store-operated Ca2+ channels in liver cells, and acts through a mechanism which does not involve inositol trisphosphate receptors. Biochem J,2001.354:285-290.
    84. Mene P, F.F., Polci R, Pugliese F, Cinotti GA, Transmembrane signalling in human monocyte/mesangial cell cocultures:role of cytosolic Ca2+. Nephrol Dial Transplant, 2002.17:42-49.
    85. Fellner SK, A.W.. Store-operated Ca2- entry is exaggerated in fresh preglomerular vascular smooth muscle cells of SHR. Kidney Int.2002.61:2132-2141.
    86. Kwan CY. T.H., Obie JF, Thastrup O, Putney JW Jr, Effects of MeCh, thapsigargin, and La3+on plasmalemmal and intracellular Ca2+ transport in lacrimal acinar cells. Am J Physiol,1990.258:1006-1015.
    87. Fernando KC, B.G., Characterisation of the divalent cation channels of the hepatocyte plasma membrane receptoractivated Ca2+ inflow system using lanthanide ions. Biochim Biophys Acta,1995.1268:97-106.
    88. Sargeant P, F.R., Sage SO, The imidazole antimycotics econazole and miconazole reduce agonist-evoked protein-tyrosine phosphorylation and evoke membrane depolarization in human platelets:cautions for their use in studying Ca2+ signalling pathways. Cell Calcium,1994.16:413-418.
    89. Jan CR, H.C., Wu SN, Tseng CJ, Multiple effects of econazole on calcium signaling:depletion of thapsigargin-sensitive calcium store, activation of extracellular calcium influx, and inhibition of capacitative calcium entry. Biochim Biophys Acta,1999. 1448:533-542.
    90. Villalobos C, F.R., Lopez MG, Garcia AG, Garcia-Sancho J, Inhibition of voltage-gated Ca2+ entry into GH3 and chromaffin cells by imidazole antimycotics and other cytochrome P450 blockers. FASEB J,1992.6:2742-2747.
    91. Utz J, E.R., Trautwein W, Changes of intracellular calcium concentrations by phenylephrine in renal arterial smooth muscle cells. Pflugers Arch,1999.438:725-731.
    92. Fujii A, M.H., Hashimoto T, Akimoto Y, Tenidap, an anti-inflammatory agent, discharges intracellular Ca2+ store and inhibits Ca2+ influx in cultured human gingival fibroblasts. J Pharmacol Exp Ther,1995.275:1447-1452.
    93. Leung YM, K.C., Loh TT, Dual effects of SK&F96365 in human leukemic HL-60 cells. Inhibition of calcium entry and activation of a novel cation influx pathway. Biochem Pharmaco,1996.51:605-612.
    94. Leung YM, K.C., Loh TT, Dual effects of tetrandrine on cytosolic calcium in human leukaemic HL-60 cells:intracellular calcium release and calcium entry blockade. Br J Pharmacol,1994.113:767-774.
    95. Ishikawa J, O.K., Yoshino T, Takezawa R, Ichikawa A, Kubota H, Yamada T, A pyrazole derivative, YM-58483, potently inhibits store-operated sustained Ca2+ influx and IL-2 production in T lymphocytes. J Immunol,2003.170:4441-4449.
    96. Auld A, C.J., Brereton HM, Wang YJ, Gregory RB, Barritt GJ., Store-operated Ca2+ influx in Reuber hepatoma cells is inhibited by voltage-operated Ca2+channel antagonists and in contrast to freshly isolated hepatocytes, does not require a pertussis toxin-sensitive trimeric GTP-binding protein. Biochim Biophys Acta,2000.1497:11-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700