高含气欠平衡钻井液安全分离器的优化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着油田勘探程度的日趋提高,低渗透油藏探明储量的比例逐步提高,欠平衡钻井技术也随之不断的发展。在欠平衡钻井过程中,钻井液循环到地面过程中的脱气处理对欠平衡钻井具有及其重要的作用。因为在欠平衡钻井过程中,钻井液中会充入各种气体,以降低钻井液的密度,若是不能有效的进行地面脱气处理,一方面将会带来很大的安全隐患,影响钻井工艺参数计算和测量数据的准确性,使井下情况判断更加复杂;另一方面将会影响钻井液循环和泥浆泵上水效率,在泥浆泵的上水阀、出水阀、活塞处产生水击现象,降低易损件寿命。此外还可能引起爆炸或恶性中毒等事件的发生。目前,国内外对欠平衡钻井液的地面脱气主要采用重力式气液分离器,重力式气液分离器存在着处理量小、分离效率低、操作复杂、不易于拆卸和维护等缺点,因此本文把气液旋流分离技术运用到高含气欠平衡钻井液的脱气处理中去。
     对欠平衡钻井液无害化处理的关键技术就是脱气处理,即本论文的中心内容:高含气欠平衡钻井液气液旋流分离器的优化及其技术研究。本论文主要采用计算流体力学(CFD)数值模拟方法研究了钻井液气液旋流分离器的内部流场,模拟出了旋流分离器内部气液两相流的压力分布,通过CFD软件模拟得出了气液两相流在分离器内部的轴向速度和切向速度的变化规律,得到了钻井液气液旋流器内部流场的特征;采用正交试验法和CFD软件模拟相结合的方法得出了影响钻井液气液旋流分离器分离效率的一些因素与旋流分离器分离效率的关系,这些因素包括:入口速度、长径比、液体的含气量、入口位置、钻井液的粘度、分离器的直径、气泡直径等,并把得出的结果与现实试验相对比,验证了CFD软件模拟的正确性,为钻井液气液旋流器分离器的工艺设计提供了理论参考依据。
The proportion of low permeability oil reservoir is gradually increased with the development of oil exploration technology, which leads to constantly developing of the under-balanced drilling technology. Removing the gas from drilling mud during the mud circulation to the ground is very important in the under-balanced drilling process. A variety of gases will be swapped into drilling mud for reducing the density of drilling mud in the process of under-balanced drilling. If the gas can not be effectively removed in the ground degassing, it will be bright a great security risk, and affected the drilling process parameters and measurement accuracy of the data, made the situation underground to determine more complex; on the other hand, it will affect the efficiency of drilling fluid circulation and mud pump, and lead to the wearing of parts. It may also cause an explosion or malignant poisoning incidents. At present, degassing under-balanced drilling mud on the ground is mainly using gravity-type gas-liquid separator at home and abroad. Gravity-type gas-liquid separator has some defects, which handling of small amount, low separation efficiency, operation complex, not easy to demolition and maintain. Therefore, using of gas-liquid cyclone separation technology to separation of the gas from under-balanced drilling mud is this paper’s main task.
     The key component of harmless proceeding is the separation of the gas from under-balanced drilling mud, and this is also the main contents of this article: optimization of drilling mud gas-liquid cylindrical cyclone separator. The flow field in drilling mud gas-liquid cylindrical cyclone separator was studied using the computational fluent dynamics (CFD) method. The stress distribution, axial velocity and tangential velocity were simulated, and the flow field feature of the drilling mud gas-liquid cylindrical cyclone separator was also obtained. The relationships between some factors, which affect the separation efficiency of drilling mud gas-liquid cylindrical cyclone separator, and the separation efficiency of this cyclone separator were obtained. These factors include: the entrance speed, aspect ratio, the liquid containing gas, import position, drilling fluid viscosity, separator diameter, bubble diameter, etc., and made the results compared to the reality test to verify the correctness of simulation using the CFD software. This result provides guide lines for drilling mud gas-liquid cylindrical cyclone separator technical designing.
引文
[1]李建中.废弃钻井液的治理与利用[J].油气田环境保护, 1996, 6(4): 22-23
    [2]朱弘.欠平衡钻井技术的进展与发展趋势[J].石油地质与工程, 2009, 23(2): 81-83
    [3]张劲松,赵勇,冯叔初.气液旋流分离技术综述[J].过滤与分离, 2002,1(12):42-45
    [4] (美)柏实义著,施宁光,严家祥,夏玉顺译.两相流动[M].国防工业出版社, 1985, 11(1): 120-127
    [5]冯永兵,孙凯,唐一元等.欠平衡钻井技术的发展研究[J].内蒙古石油化工, 2008,(11): 20-22
    [6]张克勤,侯树刚.提高川东北及普光气田钻井速度配套技术[J].钻采工艺,2008, 22(3): 20-23
    [7]谢晓安,周卓明.松辽盆地深层天然气勘探实践与勘探领域[J].石油与天然气地质, 2008, 29(1): 115-118
    [8]周英操.充气钻井技术在大庆油田的应用[J].探矿工程, 2006.9: 33-35
    [9]周英操,翟洪军等.欠平衡钻井技术与应用[M].石油工业出版社, 2003,11(1): 62-85, 104-105
    [10]刘晓敏,蒋明虎,赵立新.气液旋流分离装置的研制与可行性试验[J].流体机械, 2004,32(5): 1-3
    [11]戴爱国,刘刚,朱忠喜,张迎进.欠平衡钻井液多相分离技术初探[J].断块油气田, 2005,l2 (1): 22-24
    [12]曹学文,林宗虎,黄庆宣,寇杰.新型管柱式气液旋流分离器[J].天然气工业, 2002,22(2): 71-74
    [13]金向红,金有海,王建军,王正方.气液旋流分离技术的研究[J].新技术新工艺, 2007, 8: 86-87
    [14] ERDAL F M,SHIRAZI S A,MANTILLA I,SHOHAM O. Computational Fluid Dynamics (CFD) Study of Bubble Carry-Under in Gas-Liquid Cylindrical Cyclone Separators [R]. SPE 66500,2000
    [15] ERDAL F M, SHIRAZI S A, MANTILLA I, SHOHAM O.KOUBA G E. CFD simulation of Single-Phase and Two-Phase Flow in Gas/Liquid Cylindrical Cyclone Separators[R]. SPE 36645,1997
    [16] Kouba G E ,Shoham O.Shirazi S. Design and Performance of Gas-Liquid Cyclone Separators. Proceedings, BHR Group7th International Meeting on Multiphase Flow,Cannes France, June7-9,1995,307-327
    [17] Keneth P. Malloy, George H. Medley, C. Rick Stone. Air drilling in the presence of hydrocarbon: a time for pause. IADC/SPE 108357. 2007 IADC/SPE Managed Pressure Drilling and Underbalanced Operations Conference and Exhibition, Gaivestion, Texas, March 28-29, 2007
    [18] Leonard W. cooper, Roland A. Hook, Bobby R. Payne. Air drilling techniques. SPE 6435. 1977 Deep Drilling and Production Symposium of Petroleum Engineer of AIME, Amarillo, Texas, April 17-19, 1977
    [19] S.A. Mehta, A.G.. Moore, C.J. LAUAESHEN, et al. Safety considerations for underbalanced Drilling of horizontal wells using air or oxygen-containing gas. Journal of Canadian Petroleum Technology, 1998, 37, 30
    [20] Taitel Y,Barnea D , Dukler A E. Modeling Flow Pattern Transition for Steady Upward Gas-Liquid Flow in Vertical Tubes. AIChE Journal ,1980;46:345-354
    [21] Gomez L E ,Mohan R S ,Shoham O. Enhenced Mechanistic Model and Field Application Design of Gas - Liquid Cylindrical Cyclone Separators. SPE 49174
    [22] Dyakowski T ,Williams R A. Modelling turbulent flow within a small-diameter hydrocyclone[J]. Chemical Engineering Science,1993,48(6):1143.
    [23] Hsieh K T,Rajamani R K. Mathematical model of the hydrocyclone based on physics of f luid flow AIC[J]. hEJounal, 1991,34(5): 735-737
    [24]魏洪.管柱式气液旋流分离器速度分布数值模拟[J].中国石油大学胜利学院学报.2006, 20(1): 17-19
    [25]冯进,张慢来,刘孝光,丁凌云.气-液旋流器内部流场的CFD模拟.化工机械, 2005,32(6): 358-360
    [26]李恒,张琪,曲占庆,薄启炜.管柱式气水旋流分离器分离率的数值模拟研究[J].水动力学研究与进展, 2004,19(A): 890-895
    [27]高月臣.浅析胜利油田废弃钻井液无害化处理技术[J].生产与环境, 2008,8(3): 29-30
    [28]王松,刘罡,邓伟斌.废弃水基钻井液固化处理研究[J].油气田环境保护, 1999, 04(12): 23-25
    [29]贺吉安.钻屑、钻井液固化处理及对环境的影响分析[J].油气田环境保护, 2002,03(5): 32-34
    [30]彭维明,张文秀.分离器中内部流场对分离性能的影响.石油学报,2001,22(6):77-81
    [31]孙浩玉,李增亮,吴仲华,李恒.井下油气水力旋流分离器结构优化与数值模拟[J].石油机械, 2007,35(4): 12-14
    [32]赵立新,蒋明虎,李湛涛.小型柱状气液旋流分离器的技术发展现状[J].国外石油机械,1999,10(4): 46-53
    [33]赵立新,蒋明虎,孙德智.旋流分离技术研究进展[J].化工进展, 2005,24(10): 23-25
    [34]朱墨,张进,赵雄虎.废钻井液无害化处理的室内研究[J].钻井液与完井液,1995,03(4): 45-46
    [35]赵雄虎,王风春.废弃钻井液处理研究进展[J].钻井液与完井液, 2004,02
    [36] ERDAL F M,SHIRAZI S A,MANTILLAI,SHOHAM O. Computational Fluid Dynamics (CFD) Study of Bubble Carry Under in Gas-Liquid Cylindrical Cyclone Separators [ R].SPE66500,2000.
    [37]刘孝光,冯进,潘培道.高密度钻井液一级气液分离器的仿真和优化技术研究[J].矿山机械, 2007,35 (10): 98-101
    [38]刘大有.两相流体动力学[M].北京:高等教育出版社, 1993:45-49
    [39]李冬临,潘玉琦,王军.影响重力式多相分离设备效率的因素[J].油气田地面工程, 1997(3):21-23
    [40]常兆光,王清河.应用统计方法[M].中国石油大学出版社, 2007: 173-180
    [41]刘光全,肖遥,薛锋,邓皓.影响废弃钻井液浸出毒性的因素[J].钻井液与完井液. 2000,01:27-31
    [42]周迅.废弃钻井液的处理技术综述[J].油气田环境保护. 2001,11(4): 10-11
    [43]魏平方,邹斌,陈俊.油田废钻井液固化处理实验研究[J].化学与生物工程, 2003,06: 58-59
    [44]刘竟成,刘讯.油田钻井液技术及其废弃液的处理[J].油气田地面工程, 2008, 27(1): 56-58

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700