基于FLUENT的加热炉模拟与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
加热炉是石油化工行业的主要加热设备,同时也是高能耗设备,加热炉的节能降耗是节能工作的重点环节。通过研究炉内传热过程来提高能源利用率,已成为技术创新的工作重点。本课题以某石化公司500万吨/年的常压加热炉为模拟对象,根据计算流体力学的基本原理,建立了管式加热炉炉管内外耦合传热的数学模型。根据所建立的耦合传热模型,对常压加热炉内的稳态传热过程进行模拟。通过与现场标定数据进行对比分析,验证了加热炉模型的准确性。同时,针对炉管周向热强度分布不均匀的问题,提出了强化传热的优化方案,通过优化前后的模拟结果分析,验证了优化方案的可行性。
     采用分区耦合的方法研究了常压加热炉辐射段内的流动、燃烧和管内外传热的工艺过程。计算中,实现了燃烧器、炉膛、炉管整体几何结构的建模和网格划分,选用标准k-湍流模型、非预混燃烧模型和离散坐标辐射传热模型,将炉管黑度定为0.8,模拟得到了炉内的流场、温度场及炉管表面温度和热强度分布的详细信息。炉膛温度及炉管表面热强度模拟结果与常压炉测定数据和设计数据非常吻合。结果表明,底部燃烧器的高速射流在炉膛下部产生较大回流区,对炉膛内烟气温度分布的均匀性至关重要;另外,炉管管壁温度和热强度分布存在明显的非均匀性,影响炉管使用寿命。以炉管表面热强度分布为边界条件,采用MATLAB编程,进行了管内一维流动计算,得到炉管出口的温度、压力和气化率数值,通过与常压炉测定数据比较,证明了所建加热炉耦合传热模型的可行性和准确性。
     通过单根炉管的模拟结果可知,在单面辐射炉中,炉管周向和轴向的温度和热强度分布存在明显的不均匀性,向火侧的热强度明显高于背火侧。在炉管背火侧的一定范围内增加适量的钉头或翅片,可以提高背火侧的受辐射面积。改造后,翅片管背火侧的辐射热强度比光管提高了14%左右,平均辐射热强度比光管提高了7%左右,同时,翅片管向火侧的辐射热强度仅为背火侧的1.18倍,周向热强度分布趋向均匀。该方案有效提高了炉管背火侧的热强度和炉管平均热强度,改善了炉管周向热强度分布,提高了炉膛热强度和加热炉热效率,延长了加热炉安全运行周期,对实现节能减排具有重要意义。
As a main heating equipment in petrochemical industry, furnace consumes a lot of energy. The energy-saving of furnace is the focus of energy conservation links. The study of heat transfer process in the furnace to improve energy efficiency has become the focus of technological innovation. With the basic principles of computational fluid dynamics, the structural parameters and operating conditions of the atmospheric heater, this subject established the mathematical model of tube furnace by the whole-coupling method. According to the established whole-coupling heat transfer model, the steady-state heat transfer process in the furnace was simulated. Compared with the field calibration data, this paper got the optimal simulation model and parameters. At the same time, a plan of enhancing heat transfer was proposed. By analyzing the simulation result before and after optimization, the feasibility of the plan was validated.
     The processes of fluid flow, combustion and heat transfer between the flue gas and tube without any simplification in the firebox of atmospheric heater were studied with the whole coupling method. The geometrical model and the dividing of grid of the combustor, combustion chamber and furnace tube were generated. The standard k- turbulent model, the non-premixed combustion model and the discrete ordinate transfer radiation model were used to simulate the furnace. The internal emissivity of the furnace tube was defined as 0.8 in the model. Detailed information about the flow field, temperature field, the temperature and heat flux distribution in tube skin was obtained. Results showed that the high velocity of bottom combustors’jet flow resulted in large recirculation zone of flue gas, which played an important role in the uniformity of flue gas temperature in the bottom of the furnace. In addition, non-uniform distribution of temperature and heat flux existed in the furnace tube skin, which affected the service life of furnace tube. Defining the tube skin’s heat intensity distribution as the boundary condition, this paper carried out a one-dimensional flow calculation in the pipe using MATLAB programming. The temperature, pressure and gasification rate values in the outlet were calculated by the program, and were consistent with the field calibration result.
     Based on the results of single tube’s simulation, it was concluded that the furnace tube’s circumferential and axial distribution of the temperature and heat intensity were not uniformly distributed in the single-sided radiation heating furnace. Front side’s heat intensity was significantly higher than the back side’s. A certain amount of nail head or fin within an acceptable range of tube’s back side can improve the area of access to radiation. After transformation, the finned tube’s average radiant intensity increased 7%, and the back side’s radiant intensity improved 14%. Meanwhile, the radiant heat intensity of the front side was only 1.18 times of back side’s, the distribution of circumferential heat intensity tended to uniform. As a result, the back side’s heat intensity, the average heat intensity and the heat intensity distribution in tube circumference were improved by this innovation, also it can improve the thermal efficiency of furnace, extend the safe operation period and achieve energy-saving.
引文
[1]郝士杰,任鹏辉,中国能源紧张的现状分析及策略[J].中国电力教育,2007年管理论丛与教育研究专刊:109-110
    [2]宋湛苹,史竞.工业炉的节能与环保[J].专家视点,2006,4:7-10
    [3]吴莉莉,顾海成.炼油企业节能降耗的潜力与途径[J].科技信息,2008,14:572-573
    [4]蔡晓君,王建军.管式加热炉的节能改造[J].化工设备与管道,2002,39(2):19-20
    [5]张金华.石油化工加热炉节能改造中几个问题的探讨[J].能源研究与利用,1995,4:10-14
    [6]钱家麟.管式加热炉[M].第二版.北京:中国石化出版社,2003:519-524
    [7]钱家麟.管式加热炉[M].第二版.北京:中国石化出版社,2003:1-10
    [8]沈复,李阳初.石油加工单元过程原理(上册)[M].北京:中国石化出版社,2005:348-401
    [9]罗文泉.高温火焰炉辐射传热的探讨[J].工业炉,1998,1:56-58
    [10]孔维军,刘瑞钧,吴新忠.工业炉节能与发展趋势[J].天津冶金,2008,1(145):45-48
    [11]郑了惠.加热炉内壁多凸起及保温改造总结报告[J].福建能源开发与节约,1995,3: 32-33
    [12]白焕炽.一种内壁多凸起式火焰炉炉型[P].中国专利:85201908,1986-4-23
    [13]李治岷,魏玉文.工业炉强辐射传热节能新技术[J].工业加热,1998,2:15-18
    [14]何勇.设置有工业标准黑体的加热炉窖[P].中国专利:200720079328.2,2008-4-27
    [15]苏德保.高辐射石油化工工业炉[P].中国专利:03215884,2004-4-14
    [16]李明,江航,窦世山.新型中间炉管圆筒形管式加热炉[P].中国专利:200520083176.4, 2007-5-16
    [17]孙德志,杨周,刘炜丽.基于FLUENT的不同喷嘴轮廓线形对流出系数影响分析[J].计量技术,2007,12:3-6
    [18]方坤.计算流体力学的几种常用软件[J].煤炭技术,2006,25(12)
    [19]刘伟,孙铁,王灿,等.FLUENT软件在石油化工设备中的应用[J].自动化应用技术, 2008,27(2):77-79
    [20]王力军,蔡九菊.燃气喷射方向对高温空气燃烧室内流动影响的数值模拟[J].东北大学学报,2003,(3):276-279
    [21]仇性启,毛羽,时铭显.燃气燃烧器空气旋流对回流区尺寸的影响[J].工业炉,1999, 20(2):35-38
    [22]吴德飞,毛羽,江华.燃料变化对气体燃烧器燃烧性能影响的数值模拟研究[J].工业炉,2003,24(1):36-41
    [23]江华,毛羽,吴德飞.燃料对重整加热炉燃烧过程影响的数值模拟[J].工业炉,2004, 26(1):8-14
    [24]江华,毛羽,吴德飞.连续重整加热炉内多火焰组合燃烧的数值模拟[J].石油大学学报(自然科学版),2004,28(3):78-83
    [25]吴德飞,孙毅,毛羽.空气过剩系数对瓦斯燃烧器燃烧和NOx排放性能影响的三维模拟计算[J].工业炉, 2005,26(2):31-34
    [26]李朝祥,吴承勇,郭威.平焰燃烧器流场的数值模拟[J].安徽工业大学学报,2006, 23(1): 12-15
    [27]王计敏,杨步云,李文科.平焰燃烧器间流场相互作用的数值研究[J].工业加热, 2007, 36(4):41-44
    [28]王娟,毛羽,江华.延迟焦化加热炉内湍流流动和燃烧的数值模拟研究[J].石油学报(石油加工),2004,20(6):58-62
    [29]金大祥,蔡隆展,陆磐谷.扁平火焰燃烧器数值模拟[J].石油化工设备,2005,34(1):20-24
    [30]江华,毛羽,吴德飞.结构变化对气体燃烧器性能影响的数值模拟[J].石油大学学报(自然科学版),2004,28(6):94-98
    [31]王娟,毛羽,李丽红.燃烧器结构对气体火焰形状和炉内温度分布的影响[J].炼油技术与工程,2007,37(8):29-33
    [32]贾荣荣,刘训良,温治.低压旋流式煤气燃烧器的数值模拟[J].工业炉,2007,29(5): 1-4
    [33]杨湘,程素森,郭汉杰.蓄热式加热炉流场的数值模拟[J].北京科技大学学报,2003, 25(2):135-138
    [34]宋小飞,刘训良,温治.空气单蓄热室状加热炉内传输过程的数值模拟[J].浙江大学学报(工学版),2007,41(10):1768-1772
    [35]王宗明,段希利,孙涛.旋流稳焰瓦斯燃烧器湍流扩散火焰的数值模拟[J].石油大学学报(自然科学版),2003,27(5):70-72
    [36]Man Young Kim. A heat transfer model for the analysis of transient heating of the slab in a direct-fired walking beam type reheating furnace[J].International Journal of Heat and Mass Transfer,2007,50:3740–3748
    [37]Sang Heon Han, Seung Wook Baek, Sang Hun Kang. Numerical analysis of heatingcharacteristics of a slab in a bench scale reheating furnace[J].International Journal of Heat and Mass Transfer, 2007,50
    [38]杨帆,李朝祥,郭威.加热炉内流场的模拟与分析[J].工业炉,2005,27(4):6-8
    [39]A. J. M. Oprins, G. J. Heynderickx. Calculation of three-dimensional flow and pressure fields in cracking furnaces[J].Chemical Engineering Science,2003,58:4883–4893
    [40]G.D.Stefanidis, B.Meici, G.J.Heynderickx. CFD simulations of steam cracking furnaces using detailed combustion mechanisms[J].Computer and Chemical Engineering,2006,30: 635-649
    [41]A.Habibi, B.Merci, G.J.Heynderickx. Impact of radiation model in CFD simulation of steam cracking furnaces[J].Computer and Chemical Engineering,2007,31:1389-1406
    [42]X.Lan, J.Gao,C.Xu.Numerical simulation of transfer and reaction processes on ethylene furnace[J].Trans IchenE, 2007,85(A12)1565-1579
    [43]冯永生,孙毅,魏学军.CFX软件对焦化炉数值模拟的初探[J].工业炉,2007,28(5):1-4
    [44]周桂娟,毛羽,王娟.延迟焦化炉内流动、燃烧和传热过程数值模拟[J].石油学报(石油加工),2007,23(1):77-81
    [45]周瀚章,贾志刚.乙烯裂解炉辐射段流动与燃烧的三维数值模拟[J].石油化工,2007, 36(6):584-589
    [46]V?′t Kermes, Petr e lohradsky, Jaroslav Oral.Testing of gas and liquid fuel burners for power and process industries[J].Energy,2008,33:1551–1561
    [47]Hirotatsu Watanabe, Yoshikazu Suwa, Yohsuke Matsushita. Numerical investigation of spray combustion in jet mixing type combustor for low NOx emission[J].Energy Conversion and Management, 2008,49:1530–1537
    [48]周桂娟,毛羽,江华.燃油加热炉燃烧过程的三维数值模拟[J].工业炉,2004,26(6):38-44
    [49]周桂娟,毛羽,王娟.圆筒炉内燃烧器出口湍流流动和燃油燃烧的三维数值模拟[J].石油学报(石油加工).,2006,22(4):49-55
    [50]王娟,毛羽,李丽红.雾化介质对燃油加热炉内流动和燃烧的影响[J].炼油技术与工程, 2007,37(1):34-37
    [51]周桂娟,毛羽,王娟.燃油燃烧器出口液雾燃烧及NOx生成的数值模拟研究[J].石油炼制与化工,2007,38(2):6-9
    [52]苏正川.高温空气燃烧的试验和数值模拟研究[D].上海:同济大学,2003:7-14
    [53]赵博宁.天然气在蓄热式锻造加热炉上的应用及模拟[D].西安:西北工业大学, 2007:13-15
    [54]王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社, 2004,113-253
    [55]Fluent User's guide. Fluent Inc.,2003
    [56]范维澄.流动及燃烧的模型与计算[M].北京:中国科学技术大学出版社,1992,107-120
    [57]刘颖杰.燃气燃烧器特定评价的研究[D].辽宁:辽宁科技大学,2007,12-15
    [58]B.E.launder, D.B. Spalding.Lectures in Mathematical Models of Turbulence, Academic Press[M],London,1972
    [59]任志安,郝点,谢红杰.几种湍流模型及其在FLUENT中的应用[J].化工装备技术, 2009,30(2):38-44
    [60]吴筱.乙烯裂解炉炉膛燃烧过程研究[D]天津:天津大学,2007
    [61]肖家治.转油线工艺设计方法的研究[J].石油大学学报,1996,20(2):90-92
    [62]林世雄.石油炼制工程[M].第三版.北京:石油工业出版社,2000:217-218
    [63]Edmister, W.C., Charts for Integral Method for Equilibrium Vaporization Calculations[J]. Petroleum Refiner, 1969,39(4); 193-199
    [64]熊献金,刘天增.石油馏分M,ρ, nD 20和?常用计算方法的考察[J].炼油设计,1993,23(3):52-56
    [65]林世雄.石油炼制工程[M].第三版.北京:石油工业出版社,2000:77-78
    [66]王丛岗,寿德清,向正为.国产石油馏分临界性质的测定和计算方法研究[J].1993,9(1): 73-80
    [67]Roess, L. C., Determination of Critical Temperature and Pressure of Petroleum Fractions By a Flow Method[J]. Inst. Petrol. Techn,1936,22(156): 665-705
    [68]Cavett R H.Physical data for distillation calculations vapor-liquid equilibria[A].Proc.of 27th Midyear Meeting,API[C].Washington.1964
    [69]Edmister, W. C., Compressibility Factors and Equations of State[J].Petroleum Refiner, 1958; 37(4):173~179
    [70]罗雄麟.液体石油馏分密度的预测[J].石油炼制,1993,24(6):62~66
    [71]万重英,寿德清,杨朝合.国产石油馏分表面张力的试验研究[J].石油大学学报(自然科学版),1996,20:59-65
    [72]Wang Renyuan,Shi Jun.Prediction of Liquid Viscosities of Petrileum Fractions[J]. Chinese J.of Chem.Eng,1999,7(1):27-29
    [73]钱家麟.管式加热炉[M].第二版,北京:烃加工出版社,2005:408-409
    [74]Behnia M.Most accurate two-phase pressure-drop correlation identified[J].Oil & Gas Journal,1991,90~95
    [75]钱家麟.管式加热炉[M].第二版,北京:烃加工出版社,2005:173-290
    [76]隋东武.二氯乙烷裂解炉的数值模拟与分析[D].青岛:青岛科技大学,2007,47-48
    [77]徐彬,张麦贵.管式加热炉安全运行与管理[M].北京:中国石化出版社,2005:76-94
    [78]吴德飞,何细藕,孙丽丽.乙烯裂解炉辐射段三维流场和燃烧的数值模拟计算[J].石油化工,2005,34(8):749-753
    [79]Y.Xin.Assessment of Fire Dynamics Simulation for Engineering Applications:Grid and Domain Size Effects[D].In Proceedings of the Fire Suppression and Detection Research Application Symposium,Orlando,Florida,National Fire Protection Association, Massachsetts,2004
    [80]A.J.M.Oprins,G.J.Heynderickx.Calculation of three-dimensional flow and pressure fields in cracking furnaces[J].Chemical Engineering Science,2003,58:4883-4893
    [81]C.H.Lin,Y.M.Ferng,W.S.Hsn.Investigating the effect of computational grid sizes on the predicted characteristics of thermal radiation for a fire[J].International Journal of Hydrogen Energy,2005,30:1139-1147
    [82]梅彤堂,李刚,赵雅莹.对大型锅炉网格划分的原则分析[J].安徽电气工程职业技术学院学报,2008,13(3):59-62
    [83]Karim Van Maele,Bart Merci.Application of two buoyancy-modified k- turbulence modelsto different types of buoyant plumes[J].fire safety journal,2006,41:122-138
    [84]M.G.CARVAL,HO,T.L.FARIAS.Modelling of heat transfer in radiating and combusting systems[J].Institution of Chemical Engineers.Trans IchemE.1998,76(A):175-183
    [85]NEVIN SELCUK,NURAY AYAKOL,Int.J.Evaluation of discrete ordinates method for radiative transfer in rectangular furnace[J].Heat Mass Transfer,1997,40(2):213-222
    [86]S.S.Sazhin,E.M.Sazhina,O.Faltsi-Saravelou.The P-1 model for thermal radiation transfer: advantages and limitations[J].Fuel,1996,75(3):289-294
    [87]韩云龙.乙烯裂解炉裂解反应数值模拟及工况优化试验研究[D].南京:东南大学,2007
    [88]王玉清.加热炉辐射炉管受热不均匀问题[J].油气储运,1999,18(10):31-33
    [89]郑战利,孙志钦,霍鲁光.石油化工管式炉―扩能‖技术的研究与应用[J].工业炉,1999, 20(6):23-26
    [90]崔自成,肖礼祥,陶忱.管式加热炉传热优化技术及应用[J],石油化工设备,2000, 29(6):31-32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700