甲苯液相空气氧化反应过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苯甲酸和苯甲醛都是有机合成工业的重要中间体。甲苯液相空气氧化过程是环境友好的苯甲酸生产工艺,并副产一定量的苯甲醛。甲苯氧化反应是强放热自由基链式反应,容易产生爆炸,系统的安全性能是最重要的制约条件。已报道的研究很多,但要进行接近于实际操作条件的实验研究相当困难,已有的研究结果还不足以对反应过程进行准确的模拟和对工业现象进行合理的描述。因此,本文研究该反应过程的动力学规律和传质影响,研究催化剂的失活和流失规律,对该反应的工业实践和工程放大有着非常重要的意义。
     与大多数文献以小型釜式反应器进行研究不同,本研究采用了模拟工业操作条件的鼓泡床反应器进行优化工艺条件研究。鼓泡反应器的直径为φ48mm,气体喷嘴为φ6mm的单孔鼓泡,以醋酸钴为催化剂。研究发现,现有工业反应过程的供氧量[0.37kg-Air/(kg-Toluene·h)]严重限制了工业反应器的生产能力,只有当供氧量达到0.62kg-Aid(kg-Toluene·h)时,这种限制才逐渐消除。催化剂初始加入量对反应活性影响不大,但对催化剂活性持续的时间呈正比例关系。实验结果表明,链式反应可以用0.1%(wt)的苯甲酸作为引发剂,但杂质苯或水浓度较高时(>2%),对反应有抑制作用。适宜的操作条件为165℃、1.0 MPa和空气鼓气量0.62 kg-Air/(kg-Toluene·h)。
     对苯甲醛的浓度和选择性的研究表明,供氧充足的情况下,反应20min后苯甲醛浓度接近其最大值。在20min~100min内,苯甲醛的浓度和收率几乎不随反应时间变化。甲苯氧化反应存在一个诱导期,中间产物苯甲醛的浓度在诱导期内逐渐积累。当反应进入稳定的链反应阶段时,中间产物苯甲醛的浓度将基本保持不变。而任何影响苯甲醛继续氧化成苯甲酸的因素,如Co催化剂流
Both benzoic acid and benzaldehyde are important intermediates in the organic synthesis industry. Liquid-phase oxidation of toluene by air is an environment benign technology for producing benzoic acid and benzaldehyde. The reaction is a strong exothermic radical reaction. The safety is crucial for the operation of the oxidation because of its explosive properties. Experimental research on the oxidation is difficult, and most of the works reported are significantly distinguished from the industrial operation condition. Data available are not sufficient to simulate the reaction system accurately and explain many industrial phenomena reasonably. In this work, reaction kinetics, influence of mass transfer and deactivation of catalyst were investigated. It will be useful for the commercial scaling up of this process and enrich the knowledge related to the oxidation of hydrocarbons.Different from most of published works conducted in small autoclave or stirred tank, investigation was conducted in a bubble column reactor under conditions near the industrial parameters. The reactor was a φ48mm column with a sparger of φ6mm single orifice. Cobaltous acetate was used as catalyst. Experimental results show that, an air throughput of 0.37kg-Air/(kg-Toluene·h) used in existing commercial device is not enough and restrains the production ability. Toluene conversion and/or benzoic acid selectivity increases along with air throughput until the throughput reached 0.62kg-Air/(kg-Toluene·h). The initial concentration of Co catalyst affects less on the reaction rate. However, the life of catalyst is proportional to the initial concentration of catalyst. As an initiator, 0.1% (mass fraction) of benzoic acid is high enough to initiate the reaction. Both benzene and water, impurities contained in toluene, significantly inhibits the reaction when their concentrations are above 2 %( mass fractions). Optimal operation conditions for the oxidation are 165℃, 1.0MPa and an air throughput of 0.62kg-Air/(kg-Toluene·h).Experimental research on the concentration and selectivity of benzaldehyde shows that, under a sufficiently aerated flow, benzaldehyde concentration reaches a
    maximum in 20 minutes. The concentration of benzaldehyde keeps stable in the next 80 minutes and then gradually drops. An induction period exists in liquid-phase oxidation of toluene. The concentration of immediate benzaldehyde gradually accumulates in this period. It keeps unchanged while the reaction enters the propagation period. Factors inhibiting the oxidation of benzaldehyde to benzoic acid, such as, the loss of Co catalyst, the water and benzene impurities would cause the decrease of the yield of benzoic acid and a relative rise of the selectivity of benzaldehyde.According to the analysis results of the oxidation products, a plausible mechanism and reaction network was proposed. Kinetic equations for toluene oxidation were constructed from the proposed mechanism. By data fitting with the experimental results under conditions simulating commercial process, a macrokinetics equation for 145°C-175°C was obtained in following form:dC *****dt "**Where, pre-exponential factor was 15.89 s"'-MPa"'. The apparent activation energy was estimated to be 41kJ/mol.The kinetics model of the oxidation of benzaldehyde was:Jf -18064UKj aldehyde _Using Film Theory, mass transfer parameters were calculated under reaction condition. Deducting the influence of mass transfer from previous models, an intrinsic reaction rate equation based on the liquid concentrations of toluene and dissolved oxygen was derived as following:dC \ 5735I1^L 5334l "iQJZHereafter, calculation under reaction condition shows that Hatta Number Ha<0.3 and the gas-liquid reaction effectiveness factor n. =0.606~0.728. The reaction is suggested to be in a reaction-controlling zone. The influences of mass transfer on the oxidation process were slight.The kinetic models and relative data obtained were used to simulate a commercial reactor. The simulation results agree well with the parameters obtained from the commercial device. Increasing air feeding, increasing gas and liquid feedings and using oxygen-enriched air were proposed to be potential measures to enhance the oxidation production. Amount them, using enriched air most significantly enhances the production. When the mole ratio of oxygen rises to 54% in the enriched air, the toluene conversion will reach 25.77% and 1.8 time of toluene feed will be reacted.In commercial plant, severe scaling often occurs, which results in the loss of
    catalyst. It not only lowering the reaction activity, but also bring about many operation problems. To make clear the mechanism of scaling, a set of analysis method for the chemical composition and physical properties was developed. The scaling sample collected from commercial device was analyzed by EDS (X-ray Energy dispersive spectrometry) , XRD, FT-IR, spectrophotometric analysis, Ion chromatographic analysis, TG and DSC. It is believed to be a kind of precipitate of CoC2O4-2H2O. Its composition was: Co: 27.3%(wt%), C2O42": 41.4%(wt%), CH3COO": 8.5%(wt%), residues: 4.1%(wt%), others: 2.7%(wt%).In the liquid oxidation product, oxalic acid, maleic acid and hydroquinone were checked out by HPLC. The results suggest that the oxalic acid is formed by the deep oxidation of toluene or its derivates. Scaling is due to the formation of oxalic acid.Analyzing the scaling phenomena under different operation parameters, we found the scaling was enhanced while the objective reaction to form benzoic acid was retarded. An optimal operation temperature range is 155-165°C, too high or too low a temperature will accelerate the scaling. In the range of <100 ppm, increasing Co catalyst content can ease the scaling in some extent. As the same reason, severe scaling phenomenon was observed without initiator benzoic acid feeding in the reaction system. According to the scaling mechanism and phenomena, methods to ease the scaling in industrial process include maintaining a high catalytic reaction activity, improving heat removal efficiency and avoiding deep-oxidation.
引文
[1]. G. Messina. Upgrade Toluene to Benzoic Acid [J]. Petrochemical Developments. 1964, 43(11): 191-192
    [2]. Benzoic Acid-Snia Viscosa[J]. Hydrocarbon Processing & Petroleum Refiner, 1965, 44(11): 182
    [3]. Benzoic Acid-Snia Viscosa[J], Hydrocarbon Processing, 1977, 56(11): 134
    [4]. Phenol-The Dow Chemical Co.[J], Hydrocarbon processing & Petroleum Refiner, 1965, 44(11): 255
    [5]. W. W. Kaeding. How DOW Makes Phenol from Toluene [J]. Petrochemical Developments. 1964, 43(11): 173-176
    [6]. A. P. Gelbein, A. S. Nislick. Make Phenol from Benzoic Acid[J]. Hydrocarbon Processing & Petroleum Refiner, 1978, 57(11): 125~128.
    [7]. Benzoic Acid, Dimethyl Terephthalate & Terephthalic Acid -Mid-Century Corp [J]. Hydrocarbon processing & Petroleum Refiner, 1963, 42(11): 152
    [8]. Benzoic Acid, Dimethyl Terephthalate & Terephthalic Acid-Mid-Century Corp [J]. Hydrocarbon processing & Petroleum Refiner, 1965, 44(11): 183
    [9].吴鑫干,陈舒伐.苯甲酸的合成和精制[J].现代化工,2000,20(8):10~14
    [10].赵仁殿,金彰礼,陶志华,黄仲九.芳烃工学[M].北京:化学工业出版社.2001.8
    [11].赵劲松,雷庆英.甲苯经苯甲酸制苯酚[J].四川化工.1989.(3):39-43
    [12].邓前军,杨小山.苯甲酸氧化制取苯酚[J].佛山科学技术学院学报(自然科学版).2000,18(3):50-52
    [13].程永钢.己内酰胺的进展[J].陕西化工.1992,(3):22-24
    [14].范冰.己内酰胺生产的现状与展望[J].石油化工.1994.23(10):679-686
    [15].刘伟华,张同来,张建国等.甲苯氧化制苯甲醛技术进展[J].化工生产与技术.2004,11(3):24~28
    [16].吴鑫干,尹娟娟,胡在君.苯甲醛的合成进展[J].精细石油化工.2002,(4):57-63
    [17].缪伶,朱宪.苯甲醛绿色化生产进展[J].上海大学学报(自然科学版).2002,8(4):333-340,371
    [18].葛欣.苯甲醛的制备[J].精细石油化工.1994,(1):50~52
    [19].黄泰山,陈良坦,赖桂勇,朱昌朋.苯甲醛制备方法剖析[J].福建化工.1999,1:14~16
    [20].真木隆夫.芳醛合成技术的最新进展[J].石油化工译丛.1992,(2):41~45
    [21].蔡敏敏,魏运洋,蔡春,吕春绪.直接氧化甲苯或其—元取代物成醛进展[J].江苏化工.2001,29(3):18-21
    [22].李金志.催化水解氧化法制备苯甲醛的研究[J].化工时刊.2000,(10):25~28
    [23].王毅.苯甲醛生产绿色工艺研究[D].南京:南京工业大学硕士学位论文.2003
    [24]. T. L. Stuchinskaya, I. V. Kozhevnikov. Liquid-phase Oxidation of Alcohols with Oxygen Catalysed by Modified Palladium(Ⅱ) Oxide [J]. Catalysis Communications, 2003, 4: 417-422
    [25].王晓丹,王海英,张士刚等.清洁催化氧化苯甲醇合成苯甲醛新途径[J].天津化工.2002,(6):7~9
    [26]. H. Ji, K. Ebitani, T. Mizugaki and K. Kaneda. Oxidation of Benzyl Alcohol Aiming at a Greener Reaction [J]. React. Kinet. Catal. Lett. 2003, 78(1): 73-80
    [27]. L. F. Liotta, A. M. Venezia, G. Deganello et al. Liquid Phase Selective Oxidation of Benzyl Alcohol over Pd-Ag Catalysts Supported on Pumice[J]. Catalysis Today, 2001, 66: 271-276
    [28]. K. R. Seddon; A. Stark. Selective Catalytic Oxidation of Benzyl Alcohol and Alkylbenzenes in Ionic Liquids [J]. Green Chemistry, 2002, 4(2): 119-123
    [29].袁淑军,吕春绪,蔡春.一种新型金属胶束模拟氧化酶的合成及其对苯甲醇的催化氧化作用[J].分子催化,2003,17(1):14~17
    [30]. D. Bejan, J. Lozar, G. Faigayrac, A. Savall. Electrochemical Assistance of Catalytic Oxidation in Liquid Phase Using Molecular Oxygen: Oxidation of Toluenes [J]. Catalysis Today, 1999, 48: 363~369
    [31]. G.. Falgayra.; A. Savall. Electrochemical Activation of the Catalytic Effect of Cobalt in Autoxidation of Toluene in Acetic Acid [J]. Journal of Applied Electrochemistry. 1999, 29(2): 253-258
    [32].王仲华,邱育南,严兴国等.甲苯间拉电氧化作用-铂电极上Ag(Ⅰ)在Mn(Ⅱ)/Mn(Ⅲ)电偶转化过程中的催化作用[J].电化学.1996,2(1):96~101
    [33].张田林,钱保华,岳崇庆.间接电化学氧化法合成几种烷氧基苯甲醛[J].淮海工学院学报.2001,10(1):35~38
    [34].王文英,刘伟,丁克强,顾登平.间接电氧化法合成苯甲醛[J].现代化工.1996, (6):33~35.
    [35].胡万里,周定,秦天雄,崔丽娟.间接电氧化制苯甲醛的研究[J].哈尔滨工业大学学报.1994,26(1):59~62
    [36].雒廷亮,李玉,许庆利等.间接电氧化制苯甲醛最佳工艺条件的研究[J].郑州大学学报(工学版),2004,25(2):7~10
    [37].孙治荣,胡翔,周定.以Mn(Ⅲ)/Mn(Ⅱ)为氧化还原电对间接电合成苯甲醛的机理研究[J].高技术通讯 2001,(2):98~102
    [38]. Y. QINGFENG~*, L. XIAOPING and Z. XIULING. A New Approach to Electrochemical Production of Benzaldehyde from Toluene in an Undivided Cell in the Presence of the Couple V~(5+)/V~(4+) [J]. Journal of Applied Electrochemistry, 2003, 33: 273-277
    [39].葛欣,张惠良.甲苯选择性氧化制苯甲醛[J].石油化工.1994.(23):544-549
    [40].葛欣,张惠良.甲苯选择性氧化制苯甲醛——铁锑氧化物表面性质与催化性能的研究[J].化学研究与应用,1998,10(2):159~162.
    [41].葛欣,张惠良,范军.铈钼氧化物对甲苯气相选择氧化制苯甲醛的催化性能[J].催化学报.1998,19(1):42~46
    [42].佟惠娟.甲苯氧化成苯甲醛催化剂的合成与反应性能[J].石油化工高等学校学报.1996,9(2):37~41
    [43].张惠良,李宗昌,傅献彩.甲苯氧化制苯甲醛的Fe-Mo系催化剂的穆斯堡尔谱及差示扫描量热法等研究[J].分子催化.1989,3(2):139~147
    [44].毛丽秋,张同来,张建国,冯长根.V-Sn氧化物催化甲苯气相氧化制苯甲醛[J].北京理工大学学报.2003,23(1):129~132
    [45].张进平,张有衡.甲苯气相催化氧化制备苯甲醛动力学研究[J].林产化学与工业.1995,15(4):63~68
    [46].杜光山.甲苯气相催化氧化制苯甲醛的研究[J].福州大学学报(自然科学版).1989,17(1):114~119
    [47].杜光山.甲苯气相催化氧化制苯甲醛的研究[J].福州大学学报.1984,(3):112~119
    [48].吴泽彪,盛梅,朱毅清等.膜反应器中甲苯部分氧化制苯甲醛[J].高校化学工程学报.1999,15(5):485-488
    [49].王翔,周烈华,罗孟飞等.甲苯气相选择性氧化制苯甲醛Ⅰ.V_2O_5/TiO_2—Al_2O_3催化剂研究[J].分子催化.1995,9(5):373-379
    [50].王翔,袁贤鑫.甲苯气相选择氧化制苯甲醛Ⅱ.V_2O_5/TiO_2催化剂焙烧温度和反应条件探讨[J].分子催化.1996,10(4):294-298
    [51].王翔,袁贤鑫.甲苯气相选择氧化制苯甲醛Ⅲ.V_2O_5/TiO_2催化剂研究[J].分子催化.1996,10(5):375-381
    [52].王翔,袁贤鑫.甲苯气相选择氧化制苯甲醛Ⅳ.助剂锂、钾、铯对V_2O_5/TiO_2催化剂性能的影响[J].分子催化.1997,11(2):101-106
    [53].王翔,袁贤鑫.甲苯气相选择氧化制苯甲醛V.K~+添加量对V_2O_5/TiO_2催化剂的影响[J].分子催化.1997,11(2):107-112
    [54].黄宇增,周烈华,罗孟飞等.甲苯气相选择氧化制苯甲醛Ⅲ.锑对V_2O_5/TiO_2催化剂结构及反应性能的影响[J].分子催化.1996,10(4):289-293
    [55].盛梅,林西平,栗洪道,吴泽彪.甲苯气相选择性氧化制苯甲醛—反应工艺条件及动力学研究【J].石化技术.1998,5(4):217-219
    [56].吴泽彪,盛梅,林西平.甲苯气相氧化制苯甲醛[J].膜科学与技术,2000,20(6):29-32,45
    [57]. M. J. Patterson, D. E. Angove, N. W. Cant, P. F. Nelson. The Formation of Benzene and Chlorobenzene During the Oxidation of Toluene over Rhodium-based Catalysts [J]. Applied Catalysis B: Environmental. 1999, 20: 123-131
    [58]. M. L. Kantam, P. Sreekanth, K. K. Rao et al. An Improved Process for Selective Liquid-phase Air Oxidation of Toluene [J]. Catalysis Letters. 2002, 81(3-4): 223-232
    [59]. H. V. Borgaonkar, S. R. Raverkar, and S. B. Chandalla. Liquid Phase Oxidation of Toluene to Benzaldehyde by Air [J]. Ind. Eng. Chem. Prod Res. Dev. 1984, 23: 455~458
    [60].陈舒伐.甲苯液相空气氧化法制苯甲醛工艺条件研究[D].长沙:湖南大学硕士学位论文.2001
    [61].蔡敏敏.氧气/空气液相氧化—元取代甲苯成芳香醛工艺及机理研究[D].南京:南京理工大学博士学位论文.2001
    [62].刘含茂.甲苯液相空气氧化法制苯甲醛——无机助催化剂及工艺条件优化研究[D].长沙:湖南大学硕士学位论文.2003
    [63].尹娟娟.有机助剂催化甲苯合成苯甲醛的工艺条件研究[D].长沙:湖南大学硕士学位论文,2003.
    [64]. K. Nair, D. P. Sawant, G. V. Shanbhag, S. B. Halligudi. Aerial Oxidation of Substituted Aromatic Hydrocarbons Catalyzed by Co/Mn/Br in Water-dioxane Medium [J]. Catalysis Communications. 2004, 5: 9-13
    [65].朱宪.苯甲醛绿色生产新工艺[J].化学世界.2000,增刊,20~21
    [66].朱晨燕,朱宪.苯甲醛绿色生产新工艺[J].高校化学工程学报.2000,14(5):448-452
    [67].朱宪,缪伶,王彬,王芳.苯甲醛清洁生产工艺研究[J].环境科学.2004,25(增刊):21-26
    [68].张彰,朱宪,张彬.非均相Mn(Ⅲ)-甲苯氧化反应的动力学[J].高校化学工程学报.2002,16(2):.174~179
    [69]. J. A. B. Satrio, I. K. Doraiswamy. Production of Benzaldehyde: a Case Study in A Possible Industrial Application of Phase-transfer Catalysis. [J] Chemical Engineering Journal. 2001, 82: 43-56
    [70]. M. Witko. Oxidation of Hydrocarbons on Transition Metal Oxide Catalysts-quantum Chemical Studies [J]. Journal of Molecular catalysis, 1991, 70: 277-333.
    [71]. J. Downie, K. A. Shelstad and W. F. Graydon. Kinetics of the Vapor-Phase Oxidation of Toluene over a Vanadium Catalyst [J]. The Canadian Journal of Chemical Engineering. 1961, (10): 201~204
    [72]. A. K. Suresh, Man M. Sharma and T. Sridhar. Engineering Aspects of Industrial Liquid-phase Air Oxidation of Hydrocarbons [J]. Ind. Eng. Chem. Res. 2000, 39: 3958-3997.
    [73].吴鑫干,丁国华,刘惠芹.甲苯氧化制苯酚工艺及经济评价[J].现代化工.1996,(5),40-43.
    [74].代伟.对二甲苯低温氧化动力学与反应器冷模研究[D].浙江大学工学硕士论文,2004
    [75].谢刚,成有为,李希.对二甲苯液相氧化催化机理[J].聚酯工业.2002,15(4):1-4
    [76].吴越,叶兴凯.开发中的液相催化氧化新工艺[J].现代化工.1986,6(6):9~12,64
    [77].中国科学院化学研究所络合催化组 译.G N.许劳策编(美国).均相催化中的过渡金属[M].北京:科学出版社.1976,118-125
    [78].魏文德.有机化工原料大全[M].第二版.北京:化学工业出版社.1999
    [79].《化工百科全书》编辑委员会.化工百科全书(第16卷)[M].北京:化学工业出版社.1997
    [80]. T. Morimoto and Y. Ogata. Kinetics of the Autoxidation of Toluene Catalysed by Cobaltic Acetate. Part Ⅱ. Effects of Benzaldehyde, Cobalt, and Substituent [J]. J. Chem. Soc. (B), Phys. Org. 1967, 12: 1353-1357
    [81]. Y. Kamiya and M. Kashima. The Autoxidation of Aromatic Hydrocarbons Catalyzed with Cobaltic Acetate in Acetic Acid Solution. Ⅰ. The Oxidation of Toluene [J]. Journal of Catalysis. 1972, 25: 326-333.
    [82]. T. A. Cooper, A. A. Cliford, D. J. Mills and William A. Waters. Oxidation of Organic Compounds by Cobaltic Salts. Part Ⅶ. The Oxidation of Toluene and its Promotion by Aliphatic Acids [J]. J. Chem. Soc. (B), Phys. Org. Chem. 1966, 793-799
    [83]. E. I. Heiba, R. M. Dessau and W. J. Koehl. Jr. Oxidation by Metal Salts. V. Cobaltic Acetate Oxidation of Alkylbenzenes [J]. J. Am. Chem. Soc. 1969, 91 (24): 6830~6837
    [84]. E. J. Y. Scott. The Kinetics of the Reactions of Cobalt(Ⅱ) and Cobalt(Ⅲ) Acetates with Benzyl Hydroperoxide in Acetic Acid at 25℃ [J]. J. phys. Chem. 1970, 74: 1174-1182
    [85]. J. Hanotier, M. Hanotier-Bridoux, and P. De. Radzitzky, Labofina S. A. Effect of Strong Acids on the Oxidation of Alkylarenes by Manganic and Cobaltic Acetates in Acetic Acid. [J]. J. Chem. Soc., Perkin Trans. Ⅱ. 1973, 4: 381-386
    [86]. J. Hanotier, M. Hanotier-Bridoux. Mechanism of the Liquid Phase Homogeneous Oxidation of Alkylaromatic Hydrocarbons by Cobalt Salts [J]. J. Mol. Catal. 1981, 12: 133-147
    [87]. T. A. Cooper and W. A. Waters. Oxidation of Organic Compounds by Cobaltic Salts. Part Ⅲ. The Oxidation of Aromatic Aldehydes [J]. J. Chem. Soc. 1964, 1538-1543
    [88]. Ch. F. Hendriks; Hendrik C. A. van Beck; P. M. Heertjes, The Structure of Cobalt(Ⅱ) Acetate and Cobalt(Ⅲ) Acetate in Acetic Acid Solution [J]. Industrial & Engineering Chemistry, Product Research and Development, 1979, 18(1): 43-46
    [89]. A. M. Nemecek; Ch. F. Hendriks; H. C. A. van Beck et al. Conversion of Cobalt(Ⅱ) Acetate into Cobalt(Ⅲ) Acetate by Autoxidizing Benzaldehyde [J]. Industrial & Engineering Chemistry, Product Research and Development, 1978, 17(2): 133-138
    [90]. E. J. Y. Scott, A. W. Chester. Kinetics of the Cobalt-catalyzed Autoxidation of Toluene in Acetic Acid [J]. The Journal of Physical Chemistry. 1972, 76(11): 1520-1524
    [91]. S. S. Lande and J. K. Kochi. Formation and Oxidation of Alkyl Radicals by Cobalt(Ⅲ) Complexes [J]. J. Amer. Chem. Soc. 1968, 90: 5196-5207
    [92]. Y. Ichikawa, G. Yamashita, M. Tokashiki, and T. Yamaji. New Oxidation Process for Production of Terephthalic Acid from p-Xylene [J]. Ind & Eng. Chem., 1970, 62: 38-42
    [93]. D. E. Babushkin, E. P. Talsi. Multinuclear NMR Spectroscopic Characterization of Co~Ⅲ Species: Key Intermediates of Cobalt Catalyzed Autoxidation [J]. Journal of Molecular Catalysis A: Chemical 1998, 130: 131-137
    [94].王忠元,张艳熹.甲苯液相氧化制苯甲酸[J].黑龙江石油化工.1996.(1):1-3.
    [95]. W. Partenheimer. Characterization of the Reaction of Cobalt(Ⅱ) Acetate, Dioxygen and Acetic Acid, and Its Significance in Autoxidation Reactions [J]. Journal of Molecular Catalysis. 1991, 67: 35~46
    [96]. T. A. Cooper and W. A. Waters. Oxidation of Organic Compounds by Cobaltic Salts. Part Ⅹ. The Oxidation of Aromatic Hydrocarbons [J]. J. Chem. Soc. (B), Phys. Org. 1967, 687-695
    [97]. T. A. Cooper and W. A. Waters. Oxidation of Organic Compounds by Cobaltic Salts. Part Ⅷ. The Oxidation of Benzyl Ethers [J]. J. Chem. Soc. (B), 1967, 455-463
    [98]. T. A. Cooper and W. A. Waters. Oxidation of Organic Compounds by Cobaltic Salts. Part Ⅸ. The Oxidation of Di-isopropyl Ether and Di-2-chloroethyl Ether [J]. J. Chem. Soc (B). 1967, 464-468
    [99]. F. J. Beltran, F. J. Rivas, and R. Montero-de-Espinosa. Ozone-Enhanced Oxidation of Oxalic Acid in Water with Cobalt Catalysts. 1. Homogeneous Catalytic Ozonation [J]. Ind. Eng. Chem. Res. 2003, 42: 3210-3217
    [100]. F. J. Beltran, F. J. Rivas, and R. Montero-de-Espinosa. Ozone-Enhanced Oxidation of Oxalic Acid in Water with Cobalt Catalysts. 2. Heterogeneous Catalytic Ozonation [J]. Ind. Eng. Chem. Res. 2003, 42: 3218-3224
    [101]. T. Morimoto, Y. Ogata. Kinetics of the Autoxidation of Toluene Catalysed by Cobaltic Acetate [J]. J. Chem. Soc. (B), Phys. Org. 1967, 62~66
    [102]. Ch. F. Hendriks, H. C. A. van Beek, P. M. Heertjes. The Oxidation of Substituted Toluenes by Cobalt (Ⅲ) Acetate in Acetic Acid Solution [J]. Ind. Eng. Chem. Prod. Res. Dev., 1978, 17(3): 256~260
    [103]. W. F. Brill, Terephthalic Acid by Single-state Oxidation—p-Xylene Can be Oxidized to Give High Yields of Terephthalic Acid under Mild Conditions, Using a Cobalt Catalyst and a Ketone Activator System [J]. Ind. And Eng. Chem., 1960, 52(10): 837-840
    [104]. P. Raghavendrachar and S. Ramachandran. Liquid-phase Catalytic Oxidation of p-Xylene [J]. Ind. Eng. Chem. Res. 1992, 31: 453~462.
    [105]. A. Meebakshi and M. Santappa. Oxidation by Co~(3+) Ions in Aqueous Acidic Media [J]. Journal of Catalysis 1970, 19: 300-309.
    [106]. T. Koga and T. Hara, The Oxidation of Acetylacetone in the Presence of Cobaltous Ions [J]. Bull. Chem. Soc. Japan, 1966, 39: 664~672
    [107]. Y. Kamiya and M. Kashima, Autoxidation of Aromatic Hydrocarbons Catalyzed with Cobaltic Acetate in Acetic Acid Solution. Ⅱ. Oxidation of Ethylbenzene and Cumene [J]. Bull Chem. Soc. Japan. 1973, 46: 905~908.
    [108]. C. E. H. Bawn and J. E. Jolley. The Cobalt-Salt-Catalyzed Autoxidation of Benzaldehyde [J]. Proc. Roy. Soc., 1956, 297-312
    [109]. S. S. Lande, C. D. Falk and J. K. Kochi, Cobalt (Ⅲ) Acetate from the Ozonation of Cobaltous Acetate [J] J. Inorg. Nucl. Chem., 1971, 33: 4101-4109
    [110]. J. Hanotier, Ph. Camerman, M. Hanotier-Bridoux and P. de Radzitzky. Low-temperature Oxidation of n-Alkanes by Cobaltic Acetate Activated by Strong Acids [J] J. Chem,. Soc., Perkin Trans. Ⅱ 1972, 2247-2252
    [111]. Czytko, M. P.; Bub, G. K. Oxidation of Toluene by Cobalt (Ⅲ) Acetate in Acetic Acid Solutions—Influence of Water [J]. Ind. Eng. Chem. Prod. Res. Dev. 1981, 20(3): 481-486
    [112]. G. M. Dugmore, G. J. Powels, Ben Zeelie. Mechanistic Aspects of Benzylic Bromide Formation and Oxidation During the Cobalt Acetate Bromide Catalyzed Oxidation of Alkylbenzenes in Carboxylic Acids [J]. Journal of Molecular Catalysis A: Chemical 1995, 99: 1-12
    [113].李明生,张振杰,马永祥.甲苯液相氧化法制取苯甲酸和苯甲醛[J].兰州大学学报.1981,(1):89-94
    [114].北京化工学院基本有机化工专业工农兵学员.甲苯液相氧化制苯甲酸的研究—环烷酸钴催化剂模型试验报告[J].化学通报.1975,(5):13-17
    [115].王忠元.甲苯液相空气氧化制苯甲酸扩大实验报告[J].大沽化工,1995,(3):26-28
    [116].张祥富,时效天.甲苯常压催化氧化制苯甲酸及其它芳烃的氧化反应的研究[J].合成化学.1998,6(4):433~437
    [117].邵坚,马全生,郭法寅.常压法甲苯液相氧化制苯甲酸的研究[J].华北水利水电学院学报.1993,(2):67~71.
    [118]. R. E. Van Der Ploeg, R. W. De Kort and E. C. Kooyman. Intermediate Steps in Autoxidation Ⅲ. Reactions of Mn~Ⅲ Acetate in Acetic Acid with Benzene, Chlorobenzene, and Toluene [J]. Journal of Catalysis, 1968, 10: 52-59
    [119]. E. I. Heiba, R. M. Dessau, W. J. Koehl, Jr., Oxidation of Metal Salts. Ⅲ. The Reaction of Manganic Acetate with Aromatic Hydrocarbons and the Reactivity of Carboxy Methyl Radical [J]. J. Am. Chem. Soc. 1969, 91: 138-145
    [120]. Y. Kamiya and K. U. Ingold. The Metal-catalyzed Autoxidation of Tetralin Ⅲ. Catalysis by Manganese, Copper, Nickel, and Iron [J]. Can. J. Chem. 1964, 42: 1027-1043
    [121]. T. Okada, Y. Kamiya. The Oxidation of Toluene by Cobalt-Copper-Bromide system. A Side-chain Acetoxylation [J]. Bulletin of the Chemical Society of Japan. 1979, 55(11): 3321~3325
    [122]. Y. Kamiya. The Autoxidation of Tetralin Catalysed by Cobalt Salt and Sodium Bromide in Acetic Acid. [J]. Tetrahedron. 1966, 22: 2029-2038
    [123]. K. Sakota, Y. Kamiya and N. Ohta. The Autoxidation of Toluene Catalyzed with Cobalt Monobromide in Acetic Acid [J]. Bulletin of the Chemical Society of Japan. 1968, 41: 641-646
    [124]. Y. Kamiya. Catalysis by Cobalt and Bromide Ions in the Autoxidation of Alkylbenzene in Acetic Acid [J]. Journal of Catalysis 1974, 33: 480-485
    [125]. Y. Kamiya, T. Nakajima, and K. Sakoda. The Autoxidtion of p-Xylene Catalyzed with Cobalt Monobromide in Acetic Acid [J]. Bull. Chem. Soc. Jap. 1966, 39: 2211~2215
    [126]. A. S. Hay, H. S. Blanchard. Autoxidation Reactions Catalyzed by Cobalt Acetate Bromide. [J]. Canadian Journal of Chemistry. 1965, 43: 1306~1317
    [127]. H. V. Borgaonkar, S. B. Chandalia. Liquid Phase Oxidation of Substitued Toluene by Air for the Production of Pharmaceutical Intermediates [J]. J. Chem. Tech. Biotechnol. 1984, 34A: 107~112
    [128]. D. A. S. Ravens. The Kinetics and Mechanism of the Autooxidation of p-Toluic Acid in Acetic Acid Solution Catalyzed by Cobalt and Manganese Bromides [J]. Trans. Faraday. Soc. 1959, 55: 1768-1776.
    [129].刘殿丽,王学玲,赵波,于波.醋酸钴、醋酸锰、氢溴酸复合催化剂的质量评定及分析方法的研究[J].聚酯工业.2001,14(6):30~36
    [130].王雪艳.对氯苯甲醛的合成工艺研究[J].南京:南京理工大学硕士学位论文.2001
    [131]. Sung Hwa Jhung, Ki Hwa Lee, Youn-Seok Park. Effects of Alkali Metals on the Liquid Phase Oxidation of p-Xylene [J]. Applied Catalysis A: General 2002, 230: 31-40
    [132]. K. Kagami. Anomalous Effect of the Concentration of Metal-salt Catalysts in the Liquid-phase Oxidation of p-Xylene and Toluene [J]. Bulletin of the Chemical Society of Japan. 1968, 41: 1552-1557
    [133]. Kamiya, Y., and Ingold, K. U., The Metal-catalyzed Autoxidation of Tetralin Ⅳ. The Effect of Solvent and Temperature. [J]. Can. J. Chem. 1964, 42: 2424-2433
    [134]. E. G. Hancock. Toluene, The Xylenes and Theirs Industrial Derivatives. Eleservier Scientific Publishing Company. Amsterdan-Oxford New York, 1982
    [135].卓广澜,赵卫娟,姜玄珍.甲苯氧化制苯甲酸的新催化体系[J].有机化学.2004,24(8):962~965
    [136]. J. Zhu, S. C. Tsang. Micellar Catalysis for Partial Oxidation of Toluene to Benzoic Acid in Supercritical CO_2: Effects of Fluorinated Surfactants [J]. Catalysis Today 2003, 81: 673~679
    [137]. J. Lozar, G. Falgayrac, and A. Savall. Kinetics of the Electrochemically Assisted Autoxidation of Toluene in Acetic Acid. [J]. Ind. Eng. Chem. Res. 2001, 40: 6055-6062.
    [138]. T. W. Bastock; J. H. Clark; K. Martin; B. W. Trenbirth. Mild, Solvent-free Oxidation of Toluene and Substituted Toluenes to Their Benzoic Acids Using Carboxylic Acid-promoted Heterogeneous Catalysis [J]. Green Chemistry, 2002, 4(6): 615-617
    [139]. Xi Zuwei, Zhou Ning, Sun Yu, Li Kunlan. Reaction-Controlled Phase-Transfer Catalysis for Propylene Epoxidation to Propylene Oxide [J]. Science. 2001, 292: 1139~1141
    [140].李德江,孙碧海,李斌.相转移催化氧化合成苯甲酸[J].化学研究与应用,2002,14(6):753~754,封三
    [141].杨景兰,李德江.苯甲酸的合成[J].天津化工.2003,17(3):12-13
    [142].朱宪.苯甲醛类化合物的制造方法[P],公告号:1415592,2003
    [143].解志远,董丽娟.苯甲酸钠生产中甲苯催化氧化引发问题的讨论[J].河北化工,1996,(4):25.
    [144]. R. A. Sheldon, J. K. Kochi. Metal-Catalyzed Oxidations of Organic Compounds. Academic Press: New York, 1981
    [145]. K. Tokumaru and O. Simamura. Decomposition of Peroxybenzoic Acid in Solution Ⅱ Decomposition in Alcohols [J]. Bulletin of the Chemical Society of Japan. 1962, 35(10): 1673~1677
    [146]. P. L. Millsa, R. V. Chaudhari. Reaction Engineering of Emerging Oxidation Processes [J]. Catalysis Today, 1999, 48: 17~29
    [147]. M. Morbidelli, R. Paludetto and S. Carra. Gas-Liquid Autoxidation Reactors [J]. Chemical Engineering Science. 1986, 41(9): 2299-2307.
    [148]. C. Giacomo, M. Pisu and M. Morbidelli. A Lumped Kinetic Model for Liquid-phase Catalytic Oxidation of p-Xylene to Terephthalic acid [J]. Chemical Engineering Science. 1994, 49(24B): 5775-5788
    [149]. A. K. Roby, J. P. Kingsley. Oxide Safely with Pure Oxygen [J]. CHEMTECH 1996, 26(2): 39-46
    [150]. K. Heberger, A. Nemeth, L. Cotarca, P. Delogu. Principal Component Analysis of Data on the Catalytic Oxidation of Toluene [J]. Applied Catalysis A: General. 1994, 119: L7~L12
    [151]. K. R. Eriksson, B. W. Brooks, J. Glover. Reactions of Oxygen and Toluene in an Electrical Discharge Reactor [J]. J. Chem. Tech. Biotechnol. 1991, 50: 483~491
    [152]. Chiang-Hai Kuo, Shyh-Ming Chen. Ozonation and Peroxone Oxidation of Toluene in Aqueous Solutions [J]. Ind. Eng. Chem. Res., 1996, 35: 3973~3983
    [153].己内酰胺操作手册(内部资料)[M].石家庄化纤有限责任公司.1998
    [154].顾雪萍,于天勇,王嘉陵,冯连芳.对二甲苯液相氧化反应器技术进展[J].合成技术及应用.2002,17(1):28-32
    [155].谢刚,代伟,司马坚,李希.温度和氧浓度对P X氧化的影响[J].聚酯工业.2003,16(3):17-21
    [156].吴鑫干,刘惠琴.苯甲酸、苯甲醛、苯甲醇的制备[P].<公告号>1296937,2003
    [157]. R. Atkinson and J. N. Pitts, Jr. Temperature Dependence of the Absolute Rate Constants for the Reaction of O(3p) Atoms with a Series of Aromatic Hydrocarbons over the Range 299-392°K [J]. The Journal of Physical Chemistry. 1975, 79(4): 295~297
    [158]. R. Lemoine, A. Behkish, and B. I. Morsi. Hydrodynamic and Mass-Transfer Characteristics in Organic Liquid Mixtures in a Large-Scale Bubble Column Reactor for the Toluene Oxidation Process [J]. Ind. Eng. Chem. Res. 2004, 43, 6195-6212

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700