凝聚相中电荷转移机理的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕凝聚相中电荷转移的动力学过程中溶液环境对电荷转移过程的影响展开一些研究工作。内容包括发展Debye溶液中电子转移的动力学和热力学的精确解析理论和生物大分子DNA内的长程电荷转移的动力学机理的研究两部分。
     论文的第一部分我们建立了非微扰的电子反应速率常数的精确解析理论。以往的化学反应速率理论都是建立在微扰理论基础之上的。我们发展的建立在密度矩阵动力学基础之上的非微扰电子反应速率理论不但将同时再现了Kramers’inversion和Marcus’turnover,而且对反应体系的热力学特性给出微观描述,并发现了电子转移体系的一些新的热力学特性。
     论文的第二部分是电荷在液相DNA中的转移机理研究。目前人们对复杂的DNA中电荷转移过程中所涉及的基本过程似乎认识比较统一,即短的电荷转移过程通过相干隧穿完成,而电荷的长程转移则通过跳跃机理来进行。所有这些短程的或长程的转移过程都是在DNA糖链骨架的振动、溶剂环境极化、极化子的形成等过程的控制下完成的。本文对DNA中电荷转移的部分非相干理论描述合理地包括了对一步相干隧穿(single step tunneling)和连续的多步相干隧穿跳跃(coherent tunneling mediated multistep hopping)这些电荷转移的基本过程的描述。通过与相关实验结果的对比研究,我们澄清了电荷转移各基本机理的适用条件,从而进一步证实部分相干理论能够给出一些电荷在DNA中转移过程的合理图像。
The thesis focuses on the effects of solvents on the charge transfer process. It consists of two parts that treat respectively two aspects of charge transfer mechanism: (i) the kinetics and thermodynamics of electron transfer in Debye solvents (ii) the research on long-range charge transfers in DNA. In the first part of the thesis we set up an exact analytical and nonperturbative rate theory based on the reduced density matrix dynamics. We construct an exact analytical and nonperturbative rate theory via dissipation theory approach. Not only has it recover for the reaction rates the celebrated Marcus’inversion and Kramers turnover behaviors, the new theory also predicts for the thermodynamics of reaction some novel turnover features. In part two of the thesis we make an investigation on the mechanism of charge transfer in aqueous DNA. The partially coherent theory adopted to describe the charge transfer process in DNA in this thesis is reasonable including both the description of coherent tunneling and coherent tunneling mediated hopping processes so it can give some reasonable pictures on the real charge transfer process. We make a comparison study between the numerical results of partially coherent theory and experimental results. We make it clear that on what kinds of condition should a mechanism be employed to explain the charge transfer process in DNA.
引文
1. S. Mukamel, The Principle of Nonlinear Optical Spectroscopy, Oxford University Press, New York, 1995.
    2. R. P. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill, New York, 1965
    3. E. Merzbacher, Quantum Mechanics, 3rd edn., Wiley, New York, 1998.
    1. H. Eyring, The Activated complex in chemical reaction, J. Chem. Phys.3, 1935,107-115
    2. R.A. Marcus, On the Theory of Oxidation-Reduction Reaction Involving Electron transfer, J. Chem. Phys. 24, 966-978(1956)
    3. R.A. Marcus, Electron transfers reaction in chemistry: Theory and experiment, Pure and Appl. Chem. 69, 13-29, 1997
    4. R.A. Marcus, Electron transfer reaction in chemistry: Theory and experiment, J. Electroanalytical Chem.438, 251-259,1997
    5. 赵新生, 化学反应理论到论,北京大学出版社,2003,91-116 页。
    6. H. A. Kramers, “Brownian motion in a field of force and the diffusion model of chemical kinetics,” Physica(Amsterdam) 1940, 7: 284-292.
    7. P. Hanggi, P. Talkner, and M. Borkovec, Reaction-Rate theory:fifty years after Kramers, Rev. Mode. Phys. 62, 251- 297, 1990
    8. E. Pollak and P. Talkner, Reaction rate theory: what it was, where is it today, and where is it going?, CHAOS 15, 026116(1) - 026116(11),2005.
    1. A.Einstein, “über die von der molekularkinetischen the-orie der W?rme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen,” Ann. Phys. 1905, 7: 549-60.
    2. H. A. Kramers, “Brownian motion in a field of force and the diffusion model of chemical kinetics,” Physica(Ams-terdam) 1940, 7: 284-292.
    3. P. H?nngi, P. Talkner, and M. Borkovec, Rev. Mod. Phys.1990, 62: 251-341.
    4. M. Lee, G. Holtom, and R. Hochstrasser, Observation of the Kramers turnover region in the isomerism of trans-stilbene in fluid ethane, Chem. Phys. Lett. 1985, 118: 359-363.
    5. D. Millar, and K.J. Eisenthal, Picosecond dynamics of barrier crossing in solution: A study of the conformational change of excitedstate 1, 1'-binaphthyl, Chem. Phys. 1985, 88:5076-5085.
    6. R.A. Marcus, On the energy of oxidation-reduction reactions involving electron transfer. I, J. Chem. Phys. 1956, 24:966-978.
    7. R.A. Marcus, Chemical and electrochemical electron-transfer theory, Annu, Rev. Phys. Chem. 1964, 15: 155-163.
    8. J. Tang, and S.H. Lin, Quantum-tunneling versus thermally activated electron transfer in ohmic and non-ohmic heat baths , J. Chem. Phys. 1997, 107:3485-3491.
    9. M. Bixon, and J. Jortner, Electron transfer-from isolated molecules to biomolecules, Adv. Chem. Phys. 1999, 106:35-208.
    10. Y.J. Yan, M. Sparpaglione, and S. Mukamel, Solvation dynamics in electron transfer, isomerization, and nonlinear optical processes: A unified Liouville space theory, J. Phys. Chem. 1988, 92:4842-4853.
    11. L.D. Zusman, Outer-sphere electron transfer in polar solvents, Chem. Phys. 1980, 49: 295-304.
    12. L.D. Zusman, The theory of transitions between electronic states: application to radiationless transitions in polar solvents, Chem. Phys. 1983, 80: 29-43.
    13. D.Y. Yang, and S.Y. Sheu, Dwell time of nonadiabatic electron transfer reaction: Solvent dynamic effectsJ. Chem. Phys. 1997, 107: 9361-9369.
    14. J.T. Hynes, Chemical reaction dynamics in solution, Annu. Rev. Phys. Chem. 1985, 86: 573-597.
    15. A, Garg, J.N. Onuchic, and V. Ambegaokar, Effect of friction on electron transfer in biomolecules, J. Chem. Phys. 1985, 88: 4491-4035.
    16. H. Fraucnfcldcr, and P.G. Wolyncs, Science 1985, 229: 337-.
    17. P.G. Wolynes, Dissipation, tunneling, and adiabaticity criteria for curve crossing problems in the condensed phase, J. Chem. Phys. 1987, 86: 1957-1966.
    18. M. Sparpaglione, and S. Mukamel, Adiabatic vs.\ nonadiabatic electron transfer and longitudinal solvent dielectric relaxation: Beyond the Debye model, J. Phys. Chem. 1987, 91: 3938-3943.
    19. M. Sparpaglione,and S. Mukamel, Dielectric friction and the transition from adiabatic to nonadiabatic electron transfer. I: Solvation dynamics in Liouville space, J. Chem. Phys. 1988, 88: 3263-3274.
    20. M. Sparpaglione,and S. Mukamel, Dielectric friction and the transition from adiabatic to nonadiabatic electron transfer in condensed phases. II. Application to non-Debye solventsJ. Chem. Phys. 1988, 88: 4300-4309.
    21. B. Fain, Theory of Rate Processes in Condensed Media: Springer Verlag, New York, 1980.
    22. J. Stockburger, and C. Mak, A dynamical theory of electron transfer: Crossover from weak to strong electronic coupling, J. Chem. Phys. 1996, 105: 8126-8135.
    23. U. Weiss, Quantum Dissipative Systems, World Scientific Singapore, 2nded., Series in Modern Condensed Matter Physics, Vol.10 1999.
    24. Y.J. Yan, and R.X. Xu, Quantum mechanics of dissipative systems, Annu. Rev. Phys. Chem. 2005, 56: 187-219.
    25. R.X. Xu, P. Cui, X. Q. Li, Y. Mo, and Y.J. Yan, Exact quantum master equation via the calculus on path integrals, J. Chem. Phys. 2005, 122: 041103.
    26. Y. Tanimura, and R. Kubo, Time evolution of a quantum system incontact with a nearly Gaussian-Markovian noise bath, J. Phys. Soc. Jpn. 1989, 58: 101-114.
    27. J.R. Miller, L.T. Calcaterra, and G.L. Closs, Intramolecular long-distance electron transfer in radical anions. The effects of free energy and solvent on the reaction rates, J. Am. Chem. Soc. 1984, 106: 3047-3049.
    28. N. Makri, Numerical path integral techniques for long time dynamics of quantum dissipative systems, J. Math. Phys. 1995, 86:2430-2457.
    29. R. Kubo, A stochastic theory of line shape, Adv. Chem. Phys. 1969, 15: 101-146.
    30. P. Han, R.X. Xu, B.Q. Li, J. Xu, P. Cui, Y. Mo, Y.J. Yan, Kinetics and thermodynamics of electron transfer in Debye solvents: An analytical and nonperturbative reduced density matrix theory, J. Phys. Chem. (submited)
    1. J. D. Watson and F. H. C. Crick, A structure for deoxyribose nucleic acid , Nature (London)1953, 171: 737 -741
    2. S. Steenken, Purine bases, nucleosides, and nucleotides: aqueous solution redox chemistry and transformation reactions of their radical cations and e- and OH adducts, Chem. Rev. 1989, 89: 503 -520
    3. E. D. A. Stemp, M. R. Arkin, J. K. Barton, Oxidation of Guanine in DNA byRu(phen)2 (dppz)3 + Using the Flash-Quench Technique, J. Am. Chem. Soc. 1997, 119: 2921-2925
    4. D. B. Hall and J. K. Barton, Sensitivity of DNA-mediated electron transfer to the intervening-stack: A probe for the integrity of the DNA base stack, J. Am. Chem. Soc. 1997, 119: 5045-5046
    5. M. R. Arkin, E. D. A. Stemp, S. C. Pulver, and J. K. Barton, Long-range oxidation of guanine by Ru(III) in duplex DNA, Chem. Biol. 1997, 4: 389-400
    6. D. T. Breslin. J. E. Coury, J. R. Anderson, L. Mcfail-Isom, Y. Kan. L. D. Williams, L, A. Bottmley, and G. B. Schuster, Anthraquinone photonuclease structure determines its mode of binding to DNA and the cleavage chemistry observed, J. Am. Chem. Soc. 1997, 119: 5043 -5044.
    7. W. Chen, C. Turro, L. A. Fredman, J. K. Barton, N. J. Turro, Resonance Raman Investigation of Ru(phen) (dppz) and Related Complexes in Water and in the Presence of DNA,2 2+J. Phys. Chem. B 1997, 101: 6995-7000
    8. B. Demple and Harrison, Repair of oxidative damage to DNA -- Enzymology and biology, Annu. Rev. Biochem. 1994, 63: 915-948
    9. S. Loft and H. E. Poulsen, Cancer risk and oxidative DNA damage in man, J. Mol. Med. 1996, 74: 297-312
    10. V. Guallar, A. Douhal. M. Moreno, and J. M. Lluch, DNA Mutations induced by proton and charge transfer in the low-lying excited singlet electronic states of the DNA base pairs: A theoretical insight, J. Phys. Chem. A 1999, 103: 6251-6256
    11. S. Steenken, Electron transfers in DNA? Competition by ultrafast proton transfer?, Biol. Chem. 1997, 378: 1293-1297
    12. B. Giese, Hole injection and hole transfer through DNA: The hoppingmechanism, Topics in Current Chemistry 2004, 236:27-44.
    13. M.A. O'Neil and J.K. Barton, DNA-mediated charge transport chemistry and biology, Topics in Current Chemistry 2004, 236:67-115
    14. H. McConnel, Intramolecular charge transfer in aromatic free radicals, J. Chem. Phys.1961, 35: 508-515
    15. D. D. Eley and D. I. Spivey, Semiconductivity of organic substances, Trans. Faraday Soc. 1962, 58, 411-416
    16. R. S. Snart, Effect of oxygen on the optical and electrical properties of nucleic acids, Tarns. Faraday Soc. 1963, 59, 754-760
    17. Per-Olv, L?wdin, Proton tunneling in DNA and its biological implication, Rev. Mod. Phys. 1963, 36: 724-732
    18. T. A. Hoffmann and J. Ladik, Advan. Chem. Phys. 1964, 7: 84-158
    19. I. R. Miller, D. Bach, Interaction of DNA with heavy metal ions and polybases: Cooperative phenomena, Biopolymers 1968, 6:169-179
    20. R. S. Snart, Photoelectric effects of deoxyribonucleic acid, Biopolymers 1968, 6: 293-297
    21. Frederick G. Walz Jr., Rapid kinetic studies on the conformation of single-stranded DNA,Biopolymers 1972, 11: 2365-2379
    22. Carlos Bustamante, Dirk Stigter, Intercalation of cationic dyes in the DNA double helix: Introductory theory,Biopolymers 1984, 23: 629-645
    23. S. Suhai, Charge Carrier Mobilities in Periodic DNA Models, J. Chem. Phys. 1972, 57: 5599-5603
    24. M. F. Lecompte, D. Muller, and M. Josefowicz, Electrical conductivity in the solid state of sodium salts of calf thymus DNA,Biopolymers 1972, 11: 2563-2575
    25. D. Dee and M. E. Baur, Charge and excitation migration in DNA chains, J. Chem. Phys. 1974, 60: 541-560
    26. J.L. Coffer, S.R. Bigham, X. Li, R.F. Pinizzotto, Y.G. Rho, R.M. Pirtle, I.L. Pirtle, Dictation of the shape of mesoscale semiconductor nanoparticle assemblies by plasmid DNA, Appl. Phys. Lett. 1996, 69:3851-3853
    27. B. H. Dorfman, L. L. Van Zandt, Effects of viscous solvent on DNA polymer in a fiber,Biochemistry 1984, 23: 913-922
    28. C. V. Kumar, J K. Barton, and N. J. Turro, Photophysics of ruthenium complexes bound to double helical DNA, J. Am. Chem. Soc. 1985, 107: 5518-5523
    29. P. Fromherz and B. Rieger, Photoinduced electron transfer in DNA matrix from intercalated ethidium to condensed methylviologen, J. Am. Chem. Soc. 1986, 108: 5361-5362
    30. J. K. Barton, C. V. Kumar, and N. J. Turro, DNA-mediated photoelectron transfer reactions, J. Am. Chem. Soc. 1986, 108: 6391-6393
    31. J. D. Magan, W. Blau, D. T. Croke, D. J. McConnell, and J. M. Kelley, One-dimensional photoconductivity in DNA, Chem. Phys. Lett. 1987, 141: 489-492
    32. Juan R. de Xammar Oro, J. Raul Grigera, Dielectric properties of aqueous solutions of sonicated DNA above 40 MHz, Biopolymers 1984, 8:1457-1463
    33. A. M. Brun and A. Harriman, Dynamics of electron transfer between intercalated polycyclic molecules: effect of interspersed bases, J. Am. Chem. Soc. 1992, 114: 3656-3660
    34. C. J. Murphy, M. R. Arkin, Y. Jenkins, N. D. Ghatlia, S. H. Bossmann, N. J. Turro, and J. K. Barton, Long-range photoinduced, electron transfer througha DNA Helix, Science 1993, 262: 1025-1029
    35. Y. Okahata, T. Kobyashi. K. Tanaka, and M. Shimomura, Anisotropic Electric Conductivity in an Aligned DNA Cast Film, J. Am. Chem. Soc. 1998, 120: 6165-6166
    36. C. J. Burrows and J. Muller, Oxidative Nucleobase Modifications Leading to Strand Scission, Chem. Rev. 1998, 98: 1109-1152
    37. C. H. Mayeres, S. A. Lee, D. A. Pinnick, B. J. Carter, J. Kim, A study of Na-DNA films containing NaCl via scanning electron and tunneling microscopies, Biopolymers 1995, 5: 669-673.
    38. M. R. Arkin, E. D. A. Stemp, R. E. Holmlin, J. K. Barton, A. Hormann, E. J. C. Olson, and P. F. Barbara, Rates of DNA-mediated electron transfer between metallointercalators, Science 1996, 273: 475-480
    39. S. O. Kelley and J. K. Barton, Electron Transfer Between Bases in Double Helical DNA, Science 1999, 283: 375-381
    40. T. J. Meade and J. F. Kayyem, Electron Transfer through DNA: Site-Specific Modification of Duplex DNA with Ruthenium Donors and Acceptors, Angew. Chem. Int. Ed. Engl. 1995, 34: 352-354
    41. F. D. Lewis, T. Wu, Y. Zhang, R. L. Letsinger, S. R. Greenfield and M. R. Wasielewski, Distance-dependence electron transfer in DNA hairpins, Science 1997, 227: 673-676
    42. S. O. Kelley, R. E. Holmlin, E. D. A. Stemp, and J. K. Barton, Photoinduced electron transfer in ethidium-modified DNA duplexes: Dependence on distance and base stacking, J. Am. Chem. Soc. 1997, 119: 9861-9870
    43. E. Meggers, M. E. Michel-Beyerle, and B. Giese, Sequence dependent long range hole transport in DNA, J. Am. Chem. Soc. 1998, 120: 12950-12955
    44. S. O. Kelley and J. K. Barton, DNA-mediated electron transfer from a modified base to ethidium: π-stacking as a modulator of reactivity, Chem. Biol. 1998, 5: 413-425
    45. K. Fukui and K. Tanaka, Distance dependence of photoinduced electron transfer in DNA, Angew. Chem. Int. Ed. Engl. 1998, 37: 158-161
    46. S. O. Kelley and J. K. Barton, Electron transfer between bases in double helical DNA, Science 1999, 283: 375-381
    47. S. Priyadarshy, S. M. Risser, and DNBeratan, DNA is not a molecular wire: protain-like electron transfer predicted for an extended π-electron system J. Phys. Chem. 1996, 100: 17678-17682
    48. A. K. Felts. W. T. Pollard, and R. A. Friesner, Multilevel Redfield treatment of bridge-mediated long-range electron transfer - A mechanism for anomalous distance dependence, J. Phys. Chem. 1995, 99: 2929-2940.
    49. A. Okada, V. Chernyak, and S. Mukamel, Solvent reorganization in long-range electron transfers: Density matrix approach, J. Phys. Chem. A. 1998, 102: 1241-1251
    50. T. L. Netzel, in Organic and Inorganic Photochemistry, edited by V. Ramamurthy and K. S. Schanze, Dekker, New York, 1998, pp1-54
    51. M. Ratner, Electronic motion in DNA, Nature (London) 1999, 397: 480-481
    52. P. J. Dandliker, R. E. Holmlin, and J. K. Barton, Oxidative thymine dimer repair in the DNA helix, Science 1997, 275: 1465-1468
    53. D. B. Hall, R. E. Holmlin, and J. K. Barton, Oxidative DNA damage through long-range electron transfer, Nature (London) 1996, 382: 731-735
    54. C. Wan, T. Fiebig, S. O. Kelley, C. R. Treadway, J. K. Barton, and A. H. Zewail, Femtosecond dynamics of DNA-mediated electron transfer, Proc.Natl. Acad. Sci. USA 1999, 96: 6014-6019
    55. S. M. Gasper and G. B. Schuster, Intramolecular photoinduced electron transfer to anthraquinones linked to duplex DNA: the effect of gaps and traps on long range radical cation migration, J. Am. Chem. Soc. 1997, 119: 12762-12771
    56. C. Dekker and M. A. Ratner, Electronic properties of DNA, Phys. World 2001,14: 29
    57. G. Taubes, Double helix does chemistry at a distance-but how? , Science 1997, 275: 1420 -1421
    58. J. M. Warman, M. P. de Haas, and A. Rupprecht, DNA: a molecular wire?, Chem. Phys. Lett. 1996, 249: 319-322
    59. T. Fiebig, C. Wan, S. O. Kelley, J. K. Barton, and A. H. Zewail, Femtosecond dynamics of the DNA intercalator ethidium and electron transfer with mononucleotides in water, Proc. Natl. Acad. Sci. USA 1999, 96: 1187 -1192
    60. C. Wan, T. Fiebig, O. Schiemann, J. K. Barton, and A. H. Zewail, Femtosecond direct observation of charge transfer between bases in DNA, Proc. Natl. Acad. Sci. USA. 2000, 97: 14052-14055
    61. Y. Okahata, T. Kobayashi, H. Nakayama and K. Tanaka, DNA-aligned cast film and its anisotropic electron conductivity, Supramol. Sci. 1998, 5: 317 -320
    62. D. Dunlap, R. Garcia, E. Schabtach, C. Bustamante, Masking generates contiguous segments of metal-coated and bare DNA for scanning tunneling microscope imaging, Proc. Nati, Acad. Sci. USA 1993, 90: 7652-7655
    63. Shana O. Kelley, Nicole M. Jackson, Michael G. Hill, Jacqueline K. Barton, Long-Range Electron Transfer through DNA Films, Angew. Chem. Int.Ed.1999, 38:941 –945.
    64. R.P. Fahlman, R.D. Charma, and D. Sen, The charge conduction properties of DNA holliday junctions depend cCritically on the identity of the tethered photooxidant, J. Am. Chem. Soc. 2002, 124: 12477-12485
    65. S. Priyadarshy. S.M. Risser, and D.N. Beratan, DNA-mediated electron transfer, J. Biol. Inorg. Chem. 1998, 2: 196-200
    66. N. J. Turro and J. K. Barton, Supermolecules, electron transfer and chemistry at a distance. What's the problem? The science or the paradigm?, J. Biol. Inorg. Chem. 1998, 2: 201-209
    67. T. L. Netzel, Present status and future directions of research in electron-transfer mediated by DNA, J. Biol. Inorg. Chem. 1998, 2: 210 -214
    68. F.D. Lewis and R.L. Letsinger, Distance-dependent photoinduced electron transfers in synthetic single-strand and hairpin DNA, J. Biol. Inorg. Chem. 1998, 2: 215-221
    69. E.S. Krider and T.J. Meade, Electron transfers in DNA: covalent attachment of spectroscopically unique donor and acceptor complexes, J. Biol. Inorg. Chem. 1998, 2: 222-225
    70. A. M. Brun and A. Harriman, Energy- and electron-transfer processes involving palladium porphyrins bound to DNA, J. Am. Chem. Soc. 1994, 116: 10383 -10393
    71. A. Harriman, Electron Tunneling in DNA, Angew. Chem. Int. Ed. 1999, 38: 945 -949
    72. P. Lincoln, E. Tuite, and B. Norden, Short-Circuiting the Molecular Wire: Cooperative Binding of -[Ru(phen) 2d ppz]2 + and -[Rh(phi) bipy] to DNA2 3+, J. Am. Chem. Soc. 1997, 119:1454 -1455
    73. E. J. C. Olson, D. Hu, A. Hormann, and P. F. Barbara, Quantitative Modeling of DNA-Mediated Electron Transfer between Metallointercalators, J. Phys. Chem. B. 1997, 101: 299-303
    74. B. Giese, LONG-DISTANCE ELECTRON TRANSFER THROUGH DNA, Annu. Rev. Biochem. 2002, 71: 51-70
    75. E. M. Boon and J. K. Barton, Charge transport in DNA, Curr. Opin. Struc. Biol. 2002, 12: 320-329.
    76. P. T. Henderson, D. Jones, G. Hampikian, Y. Kan, and G. B. Schuster, Long-distance charge transport in duplex DNA: the phonon-assisted polaron-like hopping mechanism, Proc. Nat. Acad. Sci. USA 1999, 96: 8353-8358.
    77. A.A. Voityuk, J. Jortner, M. Bixon, and N. Rosch, Energetics of hole transfer in DNA, Chem. Phys. Lett. 2000, 324: 430-434.
    78. B. Giese, J. Amaudrut, A. K. Kohler, M. Spormann, and S. Wessely, Direct observation of hole transfer through DNA by hopping between adenine bases and by tunneling, Nature (London) 2001, 412: 318-320.
    79. T. T. Williams, D.T. Odom, and J. K. Barton, Variations in DNA charge transport with nucleotide composition and sequence, J. Am. Chem. Soc. 2000, 122: 9048-49.
    80. V. Sartor, E. Boone, and G. B. Schuster, Long-Distance Radical Cation Migration through A/T Base Pairs in DNA: An Experimental Test of Theory, J. Phys. Chem. B 2001, 105: 11057-11059
    81. C. Gomez-Navarro, A. Gil, Alvarez, P. J. de Pabio, F. Moreno-Herrero, I. Horcas, R. Fernandez-Sanchez, J. Colchero, J. Gomez Herrero, and A. M. Baro, Nanotechnology 2002, 13: 314-321.
    82. A. Gil, P. J. de Pablo, J. Colchero, J. Gomez Herrero, and A. M. Baro, Nanotechnology 2002, 13: 309-316.
    83. C. Gomez-Navarro, F. Moreno-Herrero, P. J. de Pablo, J. Colchero, J. Gomez Herrero, and A. M. Baro, Contactless experiments on individual DNA molecules show no evidence for molecular wire behavior, Proc. Nat. Acad. Sci. USA 2002, 99: 8484-8487.
    84. M. Bockrath, N. Markovic, A. Shepard, M. Tinkham, L. Gurevich, L. P. Kouwenhoven, M. W. Wu, and L. L. Sohn, Scanned Conductance Microscopy of Carbon Nanotubes and -DNA, Nano Letters 2002, 2: 187-190.
    85. P. Tran, B. Alavi, and G. Gruner, Charge Transport along the λ-DNA Double Helix, Phys. Rev. Lett. 2000, 85: 1564-1567.
    86. H. -W. Fink and C. Schonenberger, Electrical conduction through DNA molecules, Nature (London) 1999, 398: 407-410.
    87. H. -W. Fink, DNA and conducting electrons, Cell. Mol. Life. Sci. 2001, 58: 1-3.
    88. H. -W. Fink, H. Schmid, E. Ermantraut, and T. Schulz, Electron holography of individual DNA molecules, J. Opt. Am. A 1997, 14: 2168-2172.
    89. P. J. de Pablo, F. Moreno-Herrero, J. Colchero, J. Gomez Homez, P. Herrero, A. M. Baro. P. Ordejon. J. M. Soler, and E.Artacho, Absence of dc-conductivity in λ-DNA, Phys. Rev. Lett. 2000, 85:4992-4995.
    90. D. Porath, A. Bezryadin, S. de Vries, and C. Dekker, Direct measurements of electrical transport through DNA molecules, Nature (London) 2000, 403: 635-638.
    91. D. N. Beratan. S. Priyadarshy, and S. M. Risser, Chem. Biol. 1997, 4: 3-9.
    92. W. B. Davis, M. R. Wasielewki, M. A. Ratner, V. Mujica, and A. Nitzan, Electron transfer rates in bridged molecular systems: A phenomenological approach to relaxation, J. Phys. Chem. A 1997, 101: 6158-6164.
    93. Y. A. Berlin, A. L. Burin, and M. A. Ratner, On the long-range charge transfer in DNA, J. Phys. Chem. A, 2000, 104: 443-445.
    94. Y. A. Berlin, A. L. Burin, And M.A. Ratner, Charge hopping in DNA, J. Am. Chem. Soc. 2001, 123: 260-268.
    95. Y. A. Berlin, A. L. Burin, L. D. A. Siebbeles, and M. A. Ratner, Conformationally Gated Rate Processes in Biological Macromolecules , J. Phys. Chem. A 2001, 105: 5666-5678.
    96. Y. A. Berlin, A. L. Burin, and M. A. Ratner, lementary steps for charge transport in DNA: Thermal activation vs tunneling, Chem. Phys. 2002, 275: 61- 74.
    97. F. C. Grozema, L. D. A. Siebbeles, Y. A Berlin, and M. A. Ratner, Hole mobility in DNA: Effects of static and dynamic structural fluctuations, CHEMPHYSCHEM 2002, 3: 536 -539.
    98. Y. A. Berlin, A. L. Burin, and M. A. Ratner, DNA as a molecular wire, Superlattice Microst. 2000, 28: 241-252.
    99. X. Li and Y. Yan, Scattering matrix approach to electronic dephasing in long-range electron transfer, J. Chem. Phys. 2001, 115: 4169-4174.
    100. X. Li, H. Y. Zhang, and Y. Yan, A superexchange-mediated sequential hopping theory for charge transfer in DNA, J. Phys. Chem. A2001, 105:9563 -9567.
    101. X. Li and Y. Yan, Electrical transport through individual DNA molecules, Appl. Phys. Lett.2001, 79, 2190 -2192.
    102. Y. Yan and H. Y. Zhang, Toward the mechanism of long-range charge transfer in DNA: Theories and models, Journal of Theoretical and Computational Chemistry 2002, 1: 225 -244.
    103. X. Y. Yu, H. Y. Zhang, P. Han, X. Li, and Y. Yan, Interplay between partial incoherence, partial inelasticity, resonance, and heterogeneity in long-range electron transfer and transport, J. Chem. Phys. 2002, 117: 2180 -2186.
    104. J. Jortner, M. Bixon, T. Langenbacher, and M. E. Michele-Beyerle, Charge transfers and transport in DNA, Proc. Natl. Acad. Sci. USA 1998, 95: 12759 -12765.
    105. M. Bixon, B. Giese, S. Wessely, T. Langenbacher, M. E. Michel-Beyerle, and J. Jortner, Long-range charge hopping in DNA, Proc. Natl. Acad. Sci. USA 1999, 96:11713-1716.
    106. M. Bixon and J. Jortner, Electron transfer--from isolated molecules to biomolecules, J. Adv. Chem. Phys. 1999, 106: 35 - 208.
    107. M. Bixon and J. Jortner, Energetic control and kinetics of hole migration in DNA, J. Phys. Chem. B 2000, 104: 3906-3913.
    108. J. Jortner, M. Bixon, A. Voityuk, and N. Rosch, Superexchange Mediated Charge Hopping in DNA , J. Phys. Chem. A 2002, 106:7599-7606.
    109. A. A. Voityuk, N. Rosch, M. Bixon, and J. Jortner, Electronic coupling for charge transfer and transport in DNA, J. Phys. Chem. B 2000, 104: 9740-9745.
    110. F. C. Grozema, Y. A. Berlin, L. D. A. Siebbeles, Sequence-dependent charge transfer in donor-DNA-acceptor systems: A theoretical study, Int. J. Quantum Chem. 1999, 75: 1009-1016.
    111. F. C. Grozema, Y. A. Berlin, and L. D. A. Siebbeles, Mechanism of charge migration through DNA: Molecular wire behavior, single-step tunneling or hopping?, J. Am. Chem. Soc. 2000, 122: 10903-10909.
    112. Y.-J. Ye, R. S. Chen, A. Martinez, P. Otto, and J. Ladik, Calculation of hopping conductivity in aperiodic nucleotide base stacks, Solid State Commun. 1999, 112: 139-144.
    113. Y-J. Ye, R. S. Chen, F. Chen, J. Sun, and J. Ladik, The effect of water environment on the hopping conductivity of an aperiodic nucleotide base stack, Solid State Commun. 2001, 119: 175-180.
    114. L. Shen, Y-J. Ye and J.Ladik, The temperature-dependence of the hopping conductivity of DNA, Solid State Commun. 2002, 121: 35-38.
    115. G. Brunaud, F. Castet, A. Fritsch, and L. Ducasse, An effective hamiltonian for hole transfer along B-DNA double strands, Phys. Chem. Chem. Phys. 2002, 4: 6072-6080.
    116. D. Bicont, and E. Kats, Long-range electron transfer in periodic nucleotide base stacks Phys. Lett. A 2002, 300: 479-484.
    117. B. Giess, S. Wessely, M. Spomann, U. Lindemann, E. Meggers, M. E. Michel-Beyerle, On the mechanism of long-range electron transfer through DNA, Angew. Chem. Int. Ed. 1999, 38: 996-998.
    118. R. Bruinsma, G. Gruner, M. R. D. Orsogna, and J. Rudnick, Fluctuation-facilitated charge migration along DNA, Phys. Rev. Lett. 2000, 85: 4393-4396.
    119. Z. G. Yu and X. Song, Variable Range Hopping and Electrical Conductivity along the DNA Double Helix, Phys. Rev. Lett. 2001, 86: 6018-6021.
    120. G. B. Schuster, Long-range charge transfers in DNA: transient structuraldistortions control the distance dependence, Acc. Chem. Res. 2000, 33: 253-260.
    1. J.D.Watson, N.H.Hopkins, J.W.Robert, J.A.Steitz and A.M.Weiner, Moleccular Biology of the Gene, Benjamin Cummings, Menlo Park, 4th ed. 1988.
    2. N.C. Seeman, H. Wang, X. Yang, F. Liu, C. Mao, W. Sun, L. Wenzler, Z. Shen, R. Sha, H. Yan, M.H. Wong, P. Sa-Ardyen, B. Liu, H. Qiu, X. Li, J. Qi, S.M. Du, Y. Zhang, J.E. Mueller, T.-J. Fu, Y. Wang and J. Chen, New Motifs in DNA Nanotechnology, Nanotechnology 1998, 9: 257-273.
    3. E. Winfree, F. Liu, L.A. Wenzler and N.C. Seeman, Design and self-assemly of two-dimensional DNA crystals, Nature 1998, 394: 539-541.
    4. E. Braun, Y. Eichen, U. Sivan and G. Ben_yoseph, DNA-templated assembly and electrode attachment of a conducting silver wire, Nature 1998, 391: 775-778.
    5. D. Bensimon, A.J. Simon, V. Croquette and A. Bensimon, Stretching DNA with a receding meniscus: Experiments and models, Phys. Rev. Lett. 1995, 74: 4754-4757.
    6. R.M. Zimmerman and E.C. Cox, DNA stretching on functionalized gold surface, Nucleic Acids Res. 1994, 22: 492-497.
    7. D. Wirtz, Direct measurement of the transport properties of a single DNA molecule, Phys. Rev. Lett. 1995, 75: 2436-2439.
    8. H.W. Fink and C. Schynenberger, Electrical conduction through DNA molecules, Nature 1999, 398: 407-410.
    9. D. Porath, A. Bezryadin, S. de Vries and C. Dekker, Direct measurements ofelectrical transport through DNA molecules, Nature 2000, 403: 635-638.
    10. L. Cai, Htabata and T. Kawai, Self-assembled DNA networks and their electrical conductivity, Appl. Phys. Lett. 2000, 77:3105-3106.
    11. D.D. Eley and D.I. Spivey, Semiconductivity of organic substances, Trans. Faraday. Soc. 1962, 58: 411-414.
    12. S. Priyadanshy, S.M. Risser and D.N. Berantan, DNA is not a molecular wire: protain-like electron transfer predicted for an extended π-electron system, J. Phys. Chem. 1996, 100: 17678-17682
    13. R.N. Barnett, C.L. Cleveland, A. Joy, U. Landman and G.B. Chuster, Charge migration in DNA: Ion-gated transport, Science 2001, 294: 567-571
    14. G.B. Chuster, Transient structural distortions control the distance dependence, Acc. Chem. Res. 2000, 33: 253-260
    15. P.T. Henderson, D. Jones, G. Hampikian, Y.Z. Kan and G.B. Chuster, Long-distance charge transport in duplex DNA: the phonon-assisted polaron-like hopping mechanism, Proc. Natl. Acad. Sci. U.S.A. 1999, 96: 8353-8358.
    16. E.M. Conwell and S.V. Rakhmanova, Polarons in DNA , Proc. Natl. Acad. Sci. U.S.A. 2000, 97: 4556-4566.
    17. P. O’Neill, A.W. Parker, M.A. Plumb and L.D.A. Siebbeles, Guanine modifications following ionization of DNA occurs predominantly via intra- and not interstrand charge migration: An experimental and theoretical study, J. Phys. Chem. B 2001, 105: 5283-5290.
    18. R. Bruinsma, G. Gruner, M.R. D’Orsogna and J. Rudnick, Fluctuation- facilitated charge migration along DNA, Phys. Rev. Lett. 2000, 85: 4393-4396
    19. H.M. McConnell, Intramolecular charge transfer in aromatic freeradicals, J. Chem. Phys. 1961, 35:508-514
    20. R.A. Marcus, Electrostatic free energy and other properties of states having nonequilibrium polarization. II., J. Chem. Phys. 1956, 24: 979-989
    21. R.A. Marcus and N. Sutin, Electron transfers in chemistry and biology, Biochem. Biophys. Acta 1985, 811: 265-274.
    22. R.A. Marcus, Electron transfer reactions in chemistry: theory and experiment, Rev. Mod. Phys. 1993, 65: 599-609
    23. M.D. Newton and N. Sutin, Electron transfer reactions in condensed phases, Annu. Rev. Phys. Chem. 1984, 35: 437-466.
    24. J. Ulstrup and J. Jortner, The effect of intramolecular quantum modes on free energy relationships for electron transfer reactions, J. Chem. Phys. 1976, 63: 4358-4368.
    25. M. Bixon and J. Jortner, Electron transfer-from isolated molecules to biomolecules, Adv. Chem. Phys. 1999, 106: 35-208.
    26. M.A. Ratner, Bridge-assisted electron transfer: effective electronic coupling, J. Phys. Chem. 1990, 94: 4877-4883.
    27. D.N. Beratan and J.J. Hopfield, Calculation of tunneling matrix elements in rigid systems: mixed-valence dithiaspirocyclobutane molecules, J. Am. Chem. Soc. 1984, 106: 1584-1594.
    28. S. Priyadarshy, S.S. Skourtis, S.M. Risser and D.N. Beratan, Bridge-mediated electronic interactions: Differences between Hamiltonian and Green function partitioning in a non-orthogonal basis, J. Chem. Phys. 1996, 104: 9473-9481.
    29. P.O. Lowdin, Studies in Perturbation Theory.IV. Solution of eigenvalue problem by projection operator formalism, J. Math. Phys. 1962, 3:969-982.
    30. S. Larsson, Electron transfers in chemical and biological systems. Orbital rules for nonadiabatic transfer, J. Am. Chem. Soc.1981, 103: 4034-4040
    31. S. Larsson, J. Chem. Soc. Faraday Trans. 1983, 2 79: 1375-.
    32. D. N. Beratan, S. Priyadarshy and S.M. Risser, DNA: insulator or wire? Chem. Biol. 1997, 4: 3-8.
    33. E. Merzbzcher, Quantum Mechanics, Wiley, New York, 3rd edn., 1998.
    34. V. Mujica, M. Kemp and M.A. Ratner, Electron conduction in molecular wires. I. A Scattering formalism, J. Chem. Phys.1994, 101: 6849-6855.
    35. V. Mujica, M. Kemp and M.A. Ratner, Electron conduction in molecular wires. II. Application to scanning tunneling microscopy, J. Chem. Phys.1994, 101:6856-6864.
    36. A. Nitzan, Electron transmission through molecules and molecular interfaces, Ann. Rev. Phys. Chem. 2001, 52: 681-750.
    37. M. Pope and C.E. Swenderg, Electronic Processes in Organic Crystals, Clarendon, Oxford, 1982.
    38. Y.J. Yan, M. Sparpaglione and S. Mukamel, Solvation dynamics in electron transfer, isomerization, and nonlinear optical processes: A unified Liouville space theory, J. Phys. Chem.1988, 92: 4842-4854.
    39. Y.Hu and S. Mukamel, Tunneling versus sequential long-range electron transfer: Analogy pump-probe spectroscopy, J. Phys. Chem. 1989, 91: 6973-6985
    40. S.S. Skourtis and S. Mukamel, Superexchange versus sequential longrange electron transfer: density matrix pathways in liouville spaces, Chem. Phys. 1995, 197: 367-379
    41. W.T. Pollard, A.K. Felts and R.A. Friesner, The Redfield equation in condensed-phase quantum dynamics, Adv. Chem. Phys. 1996, 93: 77-134.
    42. V. Mujica, A. Nitzan, Y. Mao, W. Davis, M. Kemp, A. Roitberg and M.A. Ratner, Electron transfer in molecules and molecular wires: Geometry dependence, coherent transfer and control, Adv. Chem. Phys. 1999, 107: 403-429
    43. D. Segal, A. Nitzan, W.B. Davis, M.R Wasielewski and M.A. Ratner, Electron transfer rates in bridged molecular system 2. A steady-state analysis of coherent tunneling and thermal transitions, J. Phys. Chem. B 2000, 104:3817-3829.
    44. Y.J. Yan, F. Shuang, R.X. Xu, J.X. Cheng, X.Q.Li,C.Yang and H.Y. Zhang, Unified approach to the Bloch-Redfield theory and quantum Fokker-Planck equations, J. Chem. Phys. 2000,113: 2068-2078.
    45. R.X. Xu and Y.J. Yan, Theory of open quantum systems, J. Chem. Phys. 2002, 116: 9196-9206.
    46. Y.J. Yan, X.Q. Li and H.Y. Zhang, Exact equivalence between the sequential long-range charge transfer rates and the electric conductance in evaluation of chemical yields, J. Chem. Phys.2001, 114: 8248-8250
    47. X.Q. Li, H.Y. Zhang and Y.J. Yan, A super-exchange-mediated sequential hopping theory for charge transfer in DNA, J. Phys. Chem. A 2001, 105: 9563-9567.
    48. X.Q. Li and Y.J. Yan, Partially coherent tunneling through a series ofbarries: inelastic scattering versus pure dephasing, Phys. Rev. B 2002, 65:155326.
    49. X.Y. Yu, H.Y. Zhang, P. Han, X.Q. Li and Y.J. Yan, Interplay between partial incoherence, partial inelasticity, resonance, and heterogeneity in long-range electron transfer and transport, J. Chem. Phys.2002, 117: 2180-2186
    50. H.Y. Zhang, X.Q. Li, P. Han, X.Y .Yu and Y.J. Yan, A partially incoherent rate theory of long-range charge transfer in DNA, J. Chem. Phys.2002, 117:4578-4584
    51. C.A.M. Seidel, A. Schulz and M.H.M. Sauer, Nucleobase-specific quenching of fluorescent dyes.1. Nucleobase one-electron redox potentials and their correlation with static and dynamic quenching efficiencies, J. Phys. Chem.1996, 100: 5541-5553.
    52. S. Steenken and S.V. Jovanovic, How easily oxidizable in DNA? One-electron reduction potentials of adenosine and guanosine radicals in aqueous solution, J. Am. Chem. Soc.1997, 119: 617-618.
    53. B. Halliwell and J.M.C. Gutteridge, Free Redicals in Biolgy and Medicine, Oxford University Press, Oxford, 1999
    54. P. Wolf, G.D.D. Jones, L.P. Gandeias and P.O’ Nell, Introduction of strand breaks in polynucleotides and DNA by sulfate radical anion: Role of electron loss centres as precursors of strand breakage, Int. J. Radiat. Biol. 1993, 64: 7-18
    55. H. Sies, W.A. Schulz and S. Steenken, Adjacent guanines as preferred sites for strand breaks in plasmid DNA irradiated with 193 nm and 248 nm UV laser light, Photochem. Photobiol. B 1996, 32: 97-102
    56. D.B. Hall, R/E. Holmlin and J.K. Barton, Oxidative DNA damage through long-range electron transfer, Nature 1996, 382:731-735
    57. K.E. Erkilla, D.T. Oldom and J.K. Barton, Recognition and reaction of metallointercalators with DNA, Chem. Rev. 1999, 99: 2777-2796
    58. B. Giese, Long-distance charge transport in DNA: the hopping mechanism, Acc. Chem. Res. 2000, 33: 631-636
    59. F.D. Lewis, T. Wu, Y. Zhang, R.L. Letsinger, S.R. Greenfield and M.R. Wasielewski, Distance-dependence electron transfer in DNA hairpins, Science 1997, 277: 673-676
    60. K. Fukui and K. Tanaka, Distance dependence of photoinduced electron transfer in DNA, Angew. Chem. Int. Ed. Engl. 1998, 37: 158-161.
    61. S.O. Kelley and J.K. Barton, Electron transfer between bases in double helical DNA, Science 1999, 283: 375-381.
    62. C. Wan, T. Fiebig, S.O. Kelly, C.R. Treadway, J.K. Barton and A.H. Zewail, Femtosecond dynamics of DNA-mediated electron transfer, Proc. Natl. Acad. Sci. USA 1999, 96: 6014-6019
    63. C. Wan, T.Fiebig, O. Schiemann, J.K. Barton and A.H. Zewail, Femtosecond direct observation of charge transfer between bases in DNA, Proc. Natl. Sci. USA 2000, 97: 14052-14055.
    64. E. Meggers, D. Kusch, M. Spichty, U. Wille and Biese, Electron transfer through DNA in the course of radical-induced strand cleavage Angew. Chem. Int. Ed. Engl. 1998, 37: 460-462.
    65. E. Meggers, M.E. Michel-Beyerle and B. Giese, Sequence dependent long range hole transport in DNA, J. Am. Chem. Soc. 1998, 120: 12950-12955
    66. B. Giese, S. Wessely, M. Spormann, U. Lindemann, E. Meggers and M.E. Michel-Beyerle, On the mechanism of long-range electron transfer through DNA, Angew. Chem. Int. Ed. Engl. 1999, 38: 996-1002
    67. D.T. Breslin and G.B. Schuster, Anthraquinone photonucleases: mechanisms for GG-selective and nonselective cleavage of double- strand DNA, J. Am. Chem. Soc. 1996, 118: 2311-2319
    68. S.M. Gasper and G.B. Schuster, Intramolecular photoinduced electron transfer to anthraquinones linked to duplex DNA: the effect of gaps and traps on long range radical cation migration, J. Am. Chem. Soc. 1997, 119: 12762-12771.
    69. Y. Yoshioka, Y. Kitagawa, Y.Takano, K. Yamaguchi, T. Nakamura and I. Saito, Experimental and theoretical studies on the selectivity of GGG triplets toward one-electron oxidation in B-form DNA, J. Am. Chem. Soc. 1999, 121: 8712-8719
    70. K. Nakatani and C. Dohno, Modulation of DNA-mediated hole-transport efficiency by changing superexchange electronic interaction, J. Am. Chem. Soc. 2000, 122: 5893-5894
    71. T.T. Williams, D.T. Odom and J.K. Barton, Variations in DNA charge transport with nucleotide composition and sequence, J. Am. Chem. Soc. 2000, 122: 9048-9049.
    72. F.D. Lewis, T.F. Wu, X.Y. Liu, Letsinger, S.R. Greenfield, S.E. Miller and M.R. Wasielewski, Dynamics of photoinduced charge separation and charge recombination in synthetic DNA hairpins with stilbenedicar- boxamide linkers, J. Am. Chem. Soc. 2000, 122: 2889-2902.
    73. F.D. Lewis, X.Y. Liu, J.Q. Liu, R.T. Hayes, S.E and M.R. Wasielewski,Dynamics and equilibria for oxidation of G, GG, and GGG sequences in DNA hairpins, J. Am. Chem. Soc. 2000, 122, 12037-12038.
    74. S.O. Kelley, N.M. Jackson, M.G. Hill and J.K. Barton, Long-range electron transfers through DNA films, Angew. Chem. Int. 1999, 38: 941-945
    75. J. Jortner, M. Bixon, T. Langenbacher, M.E. Michel-Beyerle, Charge transfer and transport in DNA, Proc. Natl. Sci. USA 1998, 95: 12759-12765.
    76. M. Bixon, B. Giese, S. Wessely, T. Langenbacher, M.E. Michel-Beyerle and J. Jortner, Long-range charge hopping in DNA, Proc. Natl. Sci. USA 1999, 96: 11713-11716.
    77. M. Bixon and J. Jortner, Energetic control and kinetics of hole migration in DNA, J. Phys. Chem. B 2000, 104: 3906-3913.
    78. M. Bixon and J. Jortner, Hole trapping, detrapping, and hopping in DNA, J. Phys. Chem. A 2001, 105: 10322-10328.
    79. M. Ratner, Electronic motion in DNA, Nature 1999, 397: 480-481.
    80. Y.A. Berlin, A.L. Burin and M.A.Ratner, On the long-range charge transfer in DNA, J. Phys. Chem. A 2000, 104: 443-445.
    81. Y.A. Berlin, A.L. Burin and M.A. Ratner, Charge hopping in DNA, J. Am. Chem. Soc.2001, 123: 260-268
    82. S. Steenken, Electron-transfer-induced acidity basicity and reactive changes of purine and pyrimidine-bases – Consequences of redox processes for DNA-base pairs Free Rad. Res. Commun.1992, 16:349-379
    83. S. Steenken, Electron transfer in DNA? Competition by ultrafast proton transfer? Biol. Chem. 1997, 378: 1293-1297
    84. H. Sugiyama and I. Saito, Theoretical studies of GG-specific photo- cleavage of DNA via electron transfer: Significant lowering of ionization potential and 5'-localization of HOMO of stacked GG bases in B-form DNA, J. Am. Chem. Soc, 1996, 118: 7063
    85. R.Landauer, Spatial variable of currents and fields due to localized scattered in metallic conduction, IBM J. Dev. 1957, 1: 223
    86. R. Landauer, Philos. Mag.1970, 21: 863
    87. M. Buttiker, Role of quantum coherence in series resistors, Phys. Rev. B 1986, 33: 3020-3026
    88. Y. Imry, Directions in Condensed Matter Physics: Memorial Volume in Honor of Prof. S.K. Ma, edn. G. Grinstein and G. Mazenko, World Scientific,Singapore,1986, pp.101-163.
    89. S. Datta, Electronic Transport in Mesoscopic Systems, Oxford University Press, New York, 1995
    90. M. Buttiker, Coherent and sequential tunneling in series barriers, IBM J. Res. Dev. 1988, 32: 63-73.
    91. M. Bnttiker, Resonant Tunneling in Semiconductors: Physics and Applications, eds. L.L Chang, E.E. Mendez and C. Tejedor Plenum, York, 1991, p.213-245
    92. M.Buttiker, Proc.13th Int. Conf. Noise Phys. Syst. 1/f Fluctuations, eds. V. Bareikis and R. Katilius, World Scientific, Singapore 1995, p.35-60.
    93. X.Q. Li and Y.J. Yan, Scattering matrix approach to electronic dephasing in long-range electron transfer J. Chem. Phys.2001, 115: 4169-4174
    94. M. Schreiber and K. Maschke, Coherent and incoherent electrontransport along a disordered chain, Philos. Mag. 1992, 65: 639-645
    95. X.Q. Li and Y.J. Yan, Electrical transport through individual DNA molecules, Appl. Phys. Lett. 2001, 79: 2190-2192.
    96. J. L. D’Amato and H. M. Pastawski, Conductance of a disordered linear chain including inelastic scattering events Phys. Rev. B 1990, 41: 7411-7420
    97. M.D. Newton, Quantum chemical probes of electron-transfer kinetics: the nature of donor-acceptor interactions, Chem. Rev. 1991, 91: 767-792
    98. F.C. Grozema, Y.A. Berlin and L.D.A. Siebbeles, Mechanism of Charge Migration through DNA: Molecular Wire Behavior, Single-Step Tunneling or Hopping?, J. Am. Chem. Soc.2000, 122: 10903-10909
    99. A.A. Voityuk, J. Jortner. M. Bixon and N. Rosch, J. Chem. Phys. 2001, 114: 5614-5619.
    100. M.P. Gaigeot and M. Ghomi, Geometrical and Vibrational Properties of Nucleic Acid Constituents Interacting with Explicit Water Molecules as Analyzed by Density Functional Theory Calculations. 1. Uracil + n H O (n = 1,...,7),w 2 wJ. Phys. Chem. B 2001, 105: 5007-5017.
    101. P.W. Anderson, Localized magnetic states in metals,Phys.Rev.1961, 124:41-49
    102. D.M. Newns, Self-consistent model of hydrogen chemisorption, Phys.Rev.1969, 178:1123-1126
    103. Y.J. Yan, and H.Y. Zhang, Toward the mechanism of long-range charge transfer in DNA: Theory and model, J. Theore. & Comput. Chem. 2002, 1:225-244.
    1. E.M. Conwell and S.V. Rakhmanova, Polarons in DNA , Proc. Natl. Acad. Sci. U.S.A. 2000, 97: 4556-4566.
    2. R. Bruinsma, G. Gruner, M.R. D’Orsogna and J. Rudnick, Fluctuation- facilitated charge migration along DNA, Phys. Rev. Lett. 2000, 85: 4393-4396
    3. Y.J. Yan, X.Q. Li and H.Y. Zhang, Exact equivalence between the sequential long-range charge transfer rates and the electric conductance in evaluation of chemical yields, J. Chem. Phys.2001, 114: 8248-8250
    4. H.Y. Zhang, X.Q. Li, P. Han, X.Y .Yu and Y.J. Yan, A partially incoherent rate theory of long-range charge transfer in DNA, J. Chem. Phys.2002, 117:4578-4584
    5. H. Sugiyama and I. Saito, Theoretical studies of GG-specific photo-cleavage of DNA via electron transfer: Significant lowering of ionization potential and 5'-localization of HOMO of stacked GG bases in B-form DNA, J. Am. Chem. Soc, 1996, 118: 7063
    6. M.D. Newton, Quantum chemical probes of electron-transfer kinetics: the nature of donor-acceptor interactions, Chem. Rev. 1991, 91: 767-792
    7. F.C. Grozema, Y.A. Berlin and L.D.A. Siebbeles, Mechanism of Charge Migration through DNA: Molecular Wire Behavior, Single-Step Tunneling or Hopping?, J. Am. Chem. Soc.2000, 122: 10903-10909
    8. A.A. Voityuk, J. Jortner. M. Bixon and N. Rosch, J. Chem. Phys. 114. 5614(2001).
    9. M.P. Gaigeot and M. Ghomi, Geometrical and Vibrational Properties of Nucleic Acid Constituents Interacting with Explicit Water Molecules as Analyzed by Density Functional Theory Calculations. 1. Uracil + n H O (n = 1,...,7),w 2 wJ. Phys. Chem. B 2001, 105: 5007-5017.
    10. P.W. Anderson, Localized magnetic states in metals,Phys.Rev.1961, 124: 41-49
    11. D.M. Newns, Self-consistent model of hydrogen chemisorption , Phys.Rev.1969, 178:1123-1126
    12. V.M. Orlov, A.N. Smirnow and Y.M. Varshavshy, Ionization potentials and electron donor ability of nucleic acid bases and their analogues,Tetrahedron Lett. 1976,48, 4377-4382
    13. V. Sartor, E. Boone and G.B. Schuster, Long-distance radical cation migration through A/T Base Pairs in DNA: An experimental test of theory, J. Phys. Chem. B 2001, 105:11057-11059
    14. F.D. Lewis, J.Q. Liu, X.B. Zuo, R.T.Hayes, and M.R. Wasielewski,Dynamics and Energetics of Single-Step Hole Transport in DNA Hairpins, J. Am. Chem. Soc. 125, 2003, 4850:4861
    15. J. Olofsson, and S. Larsson, Electron hole transport in DNA, J. Phys. Chem. B, 2001,105: 10398-10406
    16. K. Nakatani, C. Dohno, I. Saito, Modulation of DNA-mediated hole-transport efficiency by changing superexchange electronic interaction, J. Am. Chem. Soc. 2000, 122: 5893-5894
    17. P. Han, X.Q. Li, H.Y. Zhang, G.Z. He, and Y.J. Yan, Effects of phase-breaking on long-range charge transfer in DNA: Partially-coherent-tunneling model study, J. Theore.& Comput. Chem., Accepted.
    18. B. Giese, J. Amaudrut, A.K. K?heler, M. Spormann, and S. Wessely, Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling, Nature 2001, 412:318-320

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700