微波介质陶瓷钛酸锌的改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微波技术的高速发展,需要具有低温烧结的高性能的微波介质材料来满足微波元器件微型化发展要求。钛酸锌陶瓷中偏钛酸锌具有谐振频率温度系数小、介电常数高、品质因数高等优良微波介电性能,同时具有较低的烧结温度(约1100℃),是一种有望很快实用化的微波介质材料;但是在950℃以上,钛酸锌陶瓷中微波介电性能较好的钛铁矿型ZnTiO_3相易受热发生分解反应生成微波介电性能较差的尖晶石型Zn_2TiO_4相和金红石相,利用传统的固相烧结法很难制备出单一相ZnTiO_3陶瓷材料。能否提高钛酸锌陶瓷中ZnTiO_3相的热稳定性,是制备优良微波介电性能低温共烧钛酸锌陶瓷材料的关键。本文针对这一难题从以下几个方面展开研究。
     对钛酸锌陶瓷起始原料进行TG/DTA综合热分析,初步确定样品的烧结温度曲线,钛酸锌陶瓷中六方ZnTiO_3相的热分解温度为950℃;通过对不同烧结温度和不同钛锌摩尔配比下钛酸锌陶瓷样品进行XRD,SEM分析,确定钛酸锌陶瓷中六方钛铁矿型ZnTiO_3相的最佳合成温度为850℃,最佳合成钛锌摩尔配比为1∶1。
     对ABO_3铁钛矿型六方ZnTiO_3相中A位Zn~(2+)进行Mg~(2+)和Co~(2+)双离子复合取代研究,利用TG/DTA、XRD和SEM等测试技术研究Mg~(2+)和Co~(2+)双离子复合掺杂量的变化对六方ZnTiO_3相的热稳定性和钛酸锌陶瓷物相及显微结构的影响。研究表明:当Mg~(2+)和Co~(2+)双离子复合掺杂量为0.1mol时,六方ZnTiO_3相的热分解温度约增加70℃;适量的双元复合取代能够提高六方ZnTiO_3相的热稳定温度,细化ZnTiO_3晶粒及促进ZnTiO_3烧结致密化程度的提高。研究双元复合取代Zn~(2+)离子钛酸锌陶瓷的微波介电性能发现:微波介电性能较好的Zn_(0.93)(Mg_(1/2)Co_(1/2))_(0.07)TiO_3微波介质材料能在990℃下烧结,其微波介电常数ε_r,约为25,品质因数Qf值约为40000GHz,谐振频率温度系数τ_f=0。
     对ABO_3铁钛矿型六方ZnTiO_3相中B位Ti~(4+)分别进行Zr~(4+)、Sn~(4+)离子取代研究,利用TG/DTA、XRD和SEM等测试技术研究Zr~(4+)、Sn~(4+)离子掺杂量的变化对钛酸锌陶瓷中六方ZnTiO_3相的热稳定性和钛酸锌陶瓷物相及显微结构的影响。研究表明:当掺杂量为0.05mol时,Zr~(4+)和Sn~(4+)离子都能够与六方相ZnTiO_3形成固溶体,六方ZnTiO_3相的热分解温度约增加40℃,增大ZnTiO_3晶粒,但降低ZnTiO_3陶瓷的烧结致密度程度。研究Zr~(4+)和Sn~(4+)分别取代Ti~(4+)离子钛酸锌陶瓷的微波介电性能发现:在1150℃烧结温度下,能够制备出微波介电性能为:ε_r=29.5、Qf=3620GHz、τ_f=+43(ppm/℃)的ZnTi_(0.97)Zr_(0.03)O_3微波介质材料;在1100℃烧结温度下,能够制备出微波介电性能为:ε=29.75、Qf=4539GHz、τ_f=+21(ppm/℃)的ZnTi_(0.95)Sn_(0.05)O_3微波介质材料。
With the rapid development of microwave communication technology, high performance microwave dielectric ceramics, which can be sintered at low temperature, are required by the miniaturization of microwave components. In the zinc titanate ceramics, zinc metatitanate behaves excellent microwave dielectric properties, high dielectric constant, high quality factors and stable temperature coefficient of resonant frequency, and it can be sintered at lower temperature (1100℃) than traditional microwave dielectric ceramics. So this system microwave dielectric materials may be put into industrial production quickly. But zinc metatitanate, ZnTiO_3, decomposes into zinc orthotitanate and rutile at 945℃, the preparation of pure ZnTiO_3 has been unsuccessful by conventional solid-state reaction. Enhancing the thermal stability of zinc metatitanate, is the key to prepare low temperature co-fired microwave dielectric material with the excellent microwave dielectric properties. To this question, some studies will be carried out as follows.
     After the synthesis thermal analysis to the raw material of the zinc titanate ceramics, and has preliminary determined the sintering temperature curve of the zinc titanate ceramics, the phase transition temperature of zinc metatitanate was 950℃. The microstructure of this ceramics, which sintered at different temperature or different molar ratios of Ti/Zn, was studied by X-ray diffraction analysis and scanning electron microscopy, and it was found that the optimum temperature of synthesizing zinc metatitanate at approximately 850℃, and the specimens have optimum of synthesizes zinc metatitanate when the molar ratio of Ti/Zn is 1:1.
     Using the similar ionic radius Mg~(2+)and Co~(2+) substituting the Zn~(2+) of zinc titanate, where Zn~(2+)at the A-site of ilmenite-type titanates. The microstructure of this ceramics, which has different amounts of additions, was studied by X-ray diffraction analysis and scanning electron microscopy, and it was found that the phase transition temperature of zinc metatitanate was increased for 70℃; the proper amounts of double ionic substitution can enhance the thermally stable temperature of zinc metatitanate crystals, and also decreased the grain size of zinc metatitanate crystals, and increased the densification of zinc metatitanate ceramics. After systematic studies, we have achieved microwave dielectric material Zn_(0.93)(Mg_(1/2)Co_(1/2))_(0.07)TiO_3 possessing excellent properties which can be sintered at approximately 990℃. The dielectric properties of the samples are indicated as below: dielectric constant values saturating at 25, the Qf value being 40000GHz, the temperature coefficient of resonant frequency being 0 ppm/℃_(-1).
     The ionic radius of Zr_(4+)and Sn_(4~) are very similar to the ionic radius of Ti_(4+), using the similar of ionic radius Zr~(4+)or Sn~(4+) substituting Ti~(4+)of Zinc metatitanate, where Yi~(4+) at the B-site of ilmenite-type titanates. The microstructure of this ceramics, which has different amounts of additions, was studied by X-ray diffraction analysis and scanning electron microscopy, and it was found that the solubility limit of zirconium ions in ZnTiO_3 was close to 0.05, The solubility limit of stannum ions in ZnTiO_3 was same, The proper amounts of Zr_(4+)or Sn_(4+) ionics substitution all can increase the phase transition temperature of Zinc metatitanate for 40℃, and changes the microstructure of the zinc titanate ceramics. After systematic studies, we have achieved microwave dielectric material ZnTi_(0.97)Zr_(0.03)O_3 possessing excellent properties which can be sintered at approximately 1150℃. The dielectric properties of the samples are indicated as below: dielectric constant values saturating at 29.5, the Qf value being 3620GHz, the temperature coefficient of resonant frequency was 43 ppm/℃~(-1); we also achieved microwave dielectric material ZnTi_(0.95)Sn_(0.05)O_3 possessing excellent properties which can be sintered at approximately 1100℃. The dielectric properties of the samples are indicated as below: dielectric constant values saturating at 29.75, the Qf value being 4539GHz, the temperature coefficient of resonant frequency being 21 pprn/℃~(-1).
引文
[1] 肖定全.精细功能陶瓷的若干发展趋势[J].压电与声光.1997,19(4):239~241.
    [2] 刘维良,喻佑华主编.先进陶瓷工艺学[M].武汉:武汉理工大学出版社.2004.2~4.
    [3] 徐政,倪宏伟编著.现代功能材料[M].北京:国防工业出版社.1998.16~23.
    [4] 李言荣,挥正中主编.电子材料导论[M].北京:清华大学出版社.2001.216~249.
    [5] 曾汉民主编.高技术新材料要览[M].北京:中国科学技术出版社.1993.265~270.
    [6] 方亮,杨卫明,郡俊兵等.微波介质陶瓷的研究现状与发展趋势[J].武汉理工大学学报.2002,24(2):12~15.
    [7] 徐建梅,周东祥.微波介质陶瓷的研究现状与发展趋势[J].非金属矿.2001,24(增刊):47~49.
    [8] 杨辉,张启龙,王家邦等.微波介质陶瓷及器件的研究进展[J].硅酸盐学报.2003,31(10):965~973.
    [9] Ishizaki S T, Fujita M, Kagata H, et al. A very small dielectric planar filter for portable telephones [J]. IEEE Trans. Microwave Theory Tech. 1994 (42): 2017~2022.
    [10] Kim H T, Byun J D, Kim Y H. Microstructure and microwave dielectrics properties of modified zinc titanates (Ⅰ) [J]. Mater Res Bull. 1998.32(6):963.
    [11] Kim H T, Kim Y. H. Titanium incorporation in Zn_2TiO_4 spinel ceramics [J].J Am Ceram Soc. 2001, 84(5): 1081~1086.
    [12] Sohy Jeong-ho. Microwave dielectric characteristics of ilmenite-typetitanates with high Q values [J]. Jpn J Appl Phys. 1994 (33): 5466~5470.
    [13] Agilent Technologies. Agilent RF and microwave test accessories catalog [J]. USA: Agilent Technologies. 2000. 200.
    [14] 方俊鑫,殷之文.电介质物理[M].北京:科学出版社.1989,1~2.
    [15] 李标荣,王筱珍,张绪礼.无机电介质[M].武汉:华中理工大学出版社.1995,154~166.
    [16] Ubic R, Reaney I M, Lee W E. Microwave dielectric solid-solution phase in system BaO-Ln_2O_3-TiO_2 [J]. Intern Mater Rev. 1998, 43(5): 205~219.
    [17] Reaney I M, Wise P, Ubic R, et al. On the temperature coefficient of resonate frequency in microwave dielectrics [J]. Philos Mag A.2001, 81(2):501~510.
    [18] Yoshihiro Konishi. Novel dielectric waveguide components microwave applications of new ceramic materials [A]. IEEE[C]. 1991. 726~739.
    [19] Junichi Takahashi, Keisuke Kageyama, KouheiKodaira. Microwave dielectric properties of lanthanide titanate ceramics [J]. Jpn J Appi Phys.1993, (32): 4327~4331.
    [20] Moulson A J, Herbert J M. electroceramics Materials Properties Applications. Firstedition [M].London: Chapman&Hall. 1990, 233~241
    [21] Packard K S. The origin of waveguides: A case of multiple rediscovery [J]. IEEE Trans. Microwave Theory Tech. 1984, 32: 961~969.
    [22] Richtmyer R D. Dielectric resonators [J]. JAppl Phys. 1939, 15: 391~398.
    [23] Okaya A. The rutile microwave resonator [J]. Proc IRE. 1960, 48:19~21.
    [24] Okaya A., Barash L F. The dielectric microwave resonator [J]. Proc IRE. 1962, 50: 2081~2092.
    [25] Hakki B W, Coleman P D. A dielectric resonator method of measuring inductive capacities in the millimeter range [J]. IRE Trans. Microwave Theory Tech. 1960, 8 (7): 402~409.
    [26] Cohn S B. Microwave band pass filters containing high Q dielectric resonators [J]. IEEE Trans. Microwave Theory Tech. 1968, 16: 218~227.
    [27] Masse D J, Pucel R A, Readey D W, etal. A new low loss high-k temperature compensated dielectric for microwave applications [J]. Proc IEEE. 1971, 59: 1628~1629.
    [28] Plourde J K, Linn D F, O'Bryan H M, et al. Ba_2Ti_9O_(20) as a microwave dielectric resonator [J]. J Am Ceram. Soc. 1975, 58: 418~420.
    [29] Wakino K, Katsube M, Tamura H, et al. Microwave dielectric materials [M]. (In Japanese). IEE Four Joint Conv. 1977. 235.
    [30] Wakino K, Nishikawa T, Yamura H, et al. microwave band pass filers containing dielectric resonator with improved temperature stability and spurious response [J]. IEEE MTT-Int. Microwave Symp. Dig. 1975.63~65.
    [31] 高春华,黄新友.微波介质陶瓷及其展望[J].陶瓷.2002,1:42~45.
    [32] 何进,杨传仁.微波介质陶瓷材料综述[J].电子元件与材料.1995,4:7~13.
    [33] Rase D E, Roy R, Phase equilibria in the system BaO-TiO_2 [J]. J Am Ceram. Soc. 1955, 38(3): 102~113.
    [34] Shinya Nakai. Band-pass, low-pass filters adopt shield plate near surface [J]. JEE. 1995, 11: 17~20.
    [35] Toshikazu E. Bluetooth conformity paints bright outlook for TDK's chip antennas [J]. AEI. 2000, 9: 30.
    [36] Templeton D H, Dauben C H. Polarized octahedral in barium tetratitanate [J]. J Chem Phy. 1960, 32(5): 1515~1518.
    [37] Jonker G H, Kwestroo W. The ternary system BaO-TiO_2-SnO_2 and BaO-TiO_2-ZrO_2 [J]. J Am Ceram Soc. 1958, 41(10): 390~394.
    [38] Plourde J K, Linn D F, O'Bryan H M, et al. Ba_2Yi_9O_(20) as a microwave dielectric resonator [J]. J Am Ceram. Soc. 1975, 58(10): 418~420.
    [39] 韩家平,张绪礼,王筱珍等.BaO-TiO_2系中Ba_2Yi_9O_(20)相形成的研究[J].硅酸盐学报.1996,24(2):173~178.
    [40] 宋英,王福平,张明福.BaO-TiO_2系陶瓷微波介电性能的近期研究进展[J].硅酸盐通报.1998,17(3):50~52.
    [41] Huang C L, Weng M H. Liquid phase sintering of (Zr, Sn)TiO_4 microwave dielectric ceramics [J]. Mater Res Bull. 2000, 35: 1881~1888.
    [42] Christoffersen R, Davies P K, Wei X, et al. Effect of Sn substitution on cation ordering in (Zr_(1-x)Sn_x)TiO_4 microwave dielectric ceramics [J]. J Am Ceram Soc. 1994, 77: 1441~1450.
    [43] Yoon K H, Kim E S. Dielectric characteristics of zirconium tin titanate ceramics at microwave frequencies [J]. Res Bull. 1995, 30(7): 813~820.
    [44] 主依琳,赵梅瑜,吴文骏等.低温烧结(Zr_(0.8)Sn_(0.2))TiO_4陶瓷的晶相组成与微波介电性能[J].无机材料学报.2005,20(3):613~617.
    [45] Nishigaki S, Kato H, Yano S, et al. Microwave dielectric properties of (Ba, Sr)O-Sm_2aO_3-YiO_2 Ceramics [J]. Am Ceram Soc Bull. 1987, 66(9): 1405~1410.
    [46] Ohsato H, Ohhashi T, Kato H, et al. Microwave dielectric properties and structure of the Ba_(6-3x)Sm_(8+2x)Ti_(18)O_(54) solid solutions [J]. Jpn J Appl Phys. 1995, 34:187~189.
    [47] Imaeda M, Ito K, Mizuta M, et al, Microwave dielectric properties of Ba_(6-3x)Sm(8+2x)Ti_(18)O_(54) solid solutions with Sr substituted for Ba [J]. Jpn J Appl Phys. 1997, 36(9): 6012~6015.
    [48] Ohsato H., Kato H, Mizuta M, et al. Microwave dielectric properties of Ba_(6-3x)Sm_(8+2x)Ti_(18)O_(54) (R=Nd and La) solid solutions with zero temperature coefficient of the resonant frequency [J]. Jpn J Appl Phys. 1995, 34(9): 5413~5417.
    [49] Kolar D, Stadler Z, Gaberscek S, et al. Ceramic and dielectric properties of selected compositions in the BaO-TiO_2-Nd_2O_3 system [J]. Bet Dtsch Kerma Ges. 1978, 55(7): 346~348.
    [50] Kolar D, Gaberscek S, Stadler Z, et al. High stability, low loss dielectrics in the system BaO-Nd_2O_3-TiO_2-Bi_2O_3 [J]. Ferroelectrics. 1980, 27: 269~272.
    [51] Valant M, Areon I. and Koder A. Extended X-ray absorption fine structure study of incorporation of Bi and Pb atoms into the crystal structure of Ba_(4.5)Nd_9Ti_(18)O_(54) [J]. J Mater Res. 1997, 12(3): 799~80.
    [52] Valant M, Areon I, Koder A. Extended X-ray absorption fine structure study of incorporation of Bi and Pb atoms into the crystal structure of Ba_(45)Nd_9Ti_(18)O_(54)[J]. J Mater Res. 1997, 12(3): 799~80.
    [53] 张传忠.微波陶瓷及其应用[J] 压电与声光.1987,9(5):9~16.
    [54] Nomura S, Toyama K, Kaneta K. Ba(Mg_(1/3)Ta_(2/3))O_3 ceramics with temperaturestable, high dielectric constant and low microwave loss [J]. Jpn J Appl Phys. 1982, 21(10): 624~26.
    [55] Tamura H, Konoike T, Sakabe Y, et al. Improved high-Q dielectric resonator with complex perovskite structure [J]. Commu Am Ceram Soc. 1984, 4: C59~61.
    [56] 刘丹丹,吴顺华,王伟.(Ba_(1-x)Sr_x)(Mg_(1/3)Ta_(2/3))O_3微波陶瓷介电性能研究[J].硅酸盐学报.2004,32(4):679~683.
    [57] Endo K, Fujimoto K, Murakawa K. Dielectric properties of ceramics in Ba(CO_(1/3)Nb_(2/3))O_3-Ba(Zn_(1/3)Nb_(2/3))O_3 solid solutions [J]. Commu Am Ceram Soc. 1987, 70(9): C215~218.
    [58] Matsumoto K, Hiuga T, Takeda K. Ba(Mg_(1/3)Ta_(2/3))O_3 ceramics with ultra low loss at microwave frequencies [M]. Proc. 6th IEEE Inter Symp. On Appl. Of Ferroelectrics. 1986, 118~121.
    [59] Onoda M, Jun K, Kumiko K. Ba(Zn_(1/3)Nb_(2/3))O_3-Sr(Zn_(1/3)Nb_(2/3))O_3 solid solution ceramics with temperature-stable high dielectric constant and low microwave loss [J]. Jpn J Appl Phys. 1982, 21(12):1707~1710.
    [60] Cho S Y, Hyuk Youn, Hong K S. A new microwave dielectric ceramics based on the solid solution system between Ba(Ni_(1/3)Nb_(2/3))O_3 and Ba(Zn_(1/3)Nb_(2/3))O_3 [J]. J Mater Res. 1997, 12(6): 1558~1562.
    [61] Galasso F, Pyle J. Preparation and study of ordering in A(B_(0.33)'Nb_(0.67))O_3 perovskite-type compounds [J]. Acta Cryst. 1963, 16:1561.
    [62] You C C, Huang C L, Wei C, et al. Improved high-Q dielectric resonator sintered at low firing temperature [J]. Jpn J Appl Phys. 1995, 34: 1911~1915.
    [63] Kell R C, Greenham A C, Olds G.C E. High permittivity temperature-stable dielectric ceramics with low microwave loss [J]. J Am Ceram Soc. 1973, 56(7): 352~354.
    [64] Takahashi H, Baka Y, Ezaki K. Dielectric characteristics of (A_(1/2)~(1+)A_(1/2)~(3+))TiO_3 ceramics at microwave frequencies [J]. Jpn J Appl Phys. 1991, 30(9B): 2339~2342.
    [65] Ezaki K, Baba Y, Takahashi H. Microwave dielectric properties of CaO-Li_2O-Ln_2O_3-TiO_2 ceramics [J]. Jpn J Appl Phys. 1993, 32(9B): 4319~4322.
    [66] Takahashi H, Baba Y, Ezaki K. Microwave dielectric properties and crystal structure of CaO-Li_2O-(1-x)Sm_2O_(3-x)Ln_2O_3-TiO_2 ( Ln: lanthanide) ceramic system [J]. Jpn J Appl Phys. 1996, 35(9B): 5069~5073.
    [67] 王传声,叶天培,王正义.LTCC技术在移动通信领域的应用[J].世界产品与技 术.2002,1:19~23.
    [68] Takada T, Wang S F, Jang S J. Microwave dielectric properties of BaO-TiO_2- WO_3 ceramics sintering with glasses(A)[M]. 1995 IEEE International Microwave Symposium(C). Seattle, Washington. 1995, 626~629.
    [69] Huang C L, Weng M H. Low temperature sintering and microwave dielectric properties of Ba_2Yi_9O_(20) ceramics using glass additions [J]. Mater Res Bull. 2000, 35: 2445~2456.
    [70] Kim D W, Lee D G.. Low-temperature firing and micorwave dielectric properties of BaTi_4O_9 with Zn-B-O glass system [J]. Mater Res Bull. 2001, 36: 585~595.
    [71] Houivet D, Fallah J E, Haussonne J M. Phases in La_2O_3 and NiO doped (Zr, Sn)TiO_4 microwave dielectric ceramics [J]. J Eur Ceram Soc. 1999, 19: 1095~1099.
    [72] Huang C L, Weng M H, Chen H L. Effects of additives on microstructures and microwave dielectric properties of (Zr, Sn)TiO_4 ceramics [J]. Materials chemistry and physics. 2001, 71: 7117~7122.
    [73] Jean J H., Lin S C. Low temperature co-fired processing of ZrO_2-SnO_2-TiO_2 ceramics [J]. J Am Ceram Soc. 2000, 83(6): 1417~1422.
    [74] Borisevich A Y, Davies P K. Effect of V_2O_5 doping on the sintering and dielectric properties of M-phase Li_(1-x+y)Nb_(1-x-3y)Ti_(x+4y)O_3 ceramics [J]. J Am Ceram Soc. 2004, 87(6): 1047~1052.
    [75] Choi J W, Kang C Y, Yoon S.J. Microwave dielectric properties of B_2O_3 doped Ca[(Li_(1/3)Nb_(2/3))_(0.9)Ti_(0.1)]O_3 ceramics [J]. Ferroelectrics. 2001,262:167~172.
    [76] 童建喜,张启龙,朱玉良等.低温烧结Ca[(Li_(1/3)Nb_(2/3))_(0.7)Ti_(0.3)]O_(3-δ)陶瓷及其微波介电性能[J].材料科学与工程学报.2003,21(6):859~861.
    [77] Kim D H, Lim S K, Hee B H, et al. Low temperature sintering ceramics in ZnO-RO_2-TiO_2-Nb_2O_5 (R=Sn, Zr, Ce) Ceramic system with FeVO_4 addition (A)[M]. IEEE 7th International Conference on Solid Dieletrics(C). Eindhoven, Netherlands. 2001. 195~198.
    [78] Kim D W. Structural transition and microwave dielectric properties of ZnNb_2O_6 -TiO_2 sintered at low temperatures [J]. Jpn J Appl Phys. Part Ⅰ. 2002, 41(3A): 1465-1469.
    [79] 张启龙,杨辉,王家邦等.低温烧结ZnNb_2O_6/YiO_2复合陶瓷的制备及介电性能研究[J].材料科学与工程学报.2003,21(5):694~696.
    [80] ZHang Y C, Yue Z X, Gui Z L, et al. Effects of CaF_2 addition on the microstructure and microwave dielectric properties of ZnNb_2O_6 ceramics [J]. Ceram Int. 2003, 9(5): 555~559.
    [81] Yang Q H, Kim E S, Kim Y J, et al. Effect of PbO-B_2O_3-V_2O_5 glass on the microwave dielectric properties of ceramics [J]. Mater Chem Phys. 2003, 79: 236~238.
    [82] 傅剑,李承恩,赵梅瑜等,低温烷结PZT压电陶瓷研究进展[J].材料导报.2001,14(1):38~39.
    [83] Cheng C M, Lo S H, Yang C F. The effect of CuO on the sintering and properties of BiNbO_4 microwave ceramics [J]. Ceram Int. 2000, 26:113~117.
    [84] Zou WC, Yang C F, Chen Y C, et al. Improvement in the sintering and microwave properties of BiNbO4_ microwave ceramics by V_2O_5 addition [J]. J Eu Ceram. Soc. 2000, 20: 991-996.
    [85] 姚尧,赵梅瑜,王依琳等.BiNbO_4微波介质陶瓷的研究[J].无机材料学报.1998,13(2):176~180.
    [86] Huang C L, Weng M H. The microwave dielectric properties and the microstructures of Bi(Nb, Ta)O_4 ceramics [J]. Jpn J Appl Phys. Part Ⅰ. 1999, 38(10): 5949~5952.
    [87] Huang C L, Weng M H. Low-fire BiYaO_4 dielectric ceramics for microwave applications [J]. Mater Lett. 2000, 43: 32~35.
    [88] Huang C L, Weng M H. Low firable BiNbO4 based microwave dielectric ceramics [J]. Ceram Int. 2001, 27: 343~350.
    [89] Cho S Y, Youn H J, Kim D W, et al. Interaction of BiNbO_4-based low-firing ceramics with silver electrodes [J]. J Am Ceram Soc. 1998, 81(11): 3038~3041.
    [90] Kagata H, Inone T, Kato J, et al. Low fired bismuth-based dielectric ceramics [J]. Jpn JAppl Phys. Part Ⅰ. 1992, 31(9): 3152~3155.
    [91] Chen S Y, Lee SY, Lin YJ. Phase transformation, reaction and microwave characteristics of Bi_2O_3-ZnO-Nb_2O_5 [J]. JEur Ceram Soc. 2003, 23:873~881.
    [92] Matjatz V, Peter K D. Crystal chemistry and dielectric properties of chemically substituted (Bi_(1.5)Zn_(1.0)Nb_(1.5))O_7 and Bi_2(Zn_(2/3)Nb_(4/3))O_7 [J]. J Am Ceram Soc. 2000, 83(1): 147~153.
    [93] Kato J, Kagaya H, Nishimoto K. Dielectric properties of (PbCa)(MeNb)O_3 at microwave frequencies [J]. Jpn. J. Appl. Phys. 1992, 31: 3144~3147.
    [94] Chen X M, Lu X J. Characterization of CaTiO_3-modified Pb(Mg_(1/3)Nb_(2/3))O_3 dielectrics [J]. J Appl Phys, 2000, 87: 2516~2519.
    [95] Kucheiko S, Choi J W, Kim H J, et al. Microwave characteristics of (Pb, Ca)(Fe, Nb, Sn)O_3 dielectric materials [J]. J Am Ceram Soc. 1997, 80(11): 2937~2940.
    [96] Chiu C C, Desu S B. Microstructure and properties of lead ferro-niobate ceramics Pb(Fe_(0.5) Nb_(0.5) )O_3 [J]. Mater Sci Eng. 1993, B21: 26~35.
    [97] Kagata H, Kato J, Nishimoto K, et al. Dielectric properties of Pb-based perovskite substituted by Ti for B-site at microwave frequencies [J]. Jpn J Appl Phys. 1993, 32: 4332~4334
    [98] Kucheiko S, Choi J W, Kim H J, et al. Microwave characteristics of (Pb, Ca)(Fe, Nb, Sn)O_3 Dielectric Materials [J]. J Am Ceram Soc. 1997, 80(11): 2937~2940.
    [99] Alexander Golovchansky. Zinc titanates dielectric ceramics prepared by sol-gel process [J]. J Korean Phys Soc.1998, 32(2): 1167.
    [100] Kim H T, Kim S H. Low-temperature sintering and microwave dielectric properties of zinc metatitanate-rutile mixtures using boron [J]. J Am Ceram Soc. 1999, 82(11): 3043~3048.
    [101] Sheinkman A I, Sheinkman F P. Phase formation sequence during the reaction of zinc oxide with titanium dioxide [J]. Neorg Mater. 1977, 13(8):
    [102] Kim H T, Byun J D, Kim Y H. Microstructure and microwave dielectrics properties of modified zinc titanates(Ⅱ) [J]. Mater Res Bull. 1998, 32(6):955~986
    [103] Chang Y S. Synthesis and characterization of zinc titanate nano-crystal powders by sol-gel technique [J]. J Cryst Growth.2002, 243:319~326.
    [104] Wang S F. Preparation and characterization of sol-gel derived ZnTiO_3 nanocrystals [J]. Mater Res Bull. 2003, 38: 1283.
    [105] 王玉梅,李玲霞,吴霞宛等(Zn_(1-x)Mg_x)TiO_3微波陶瓷系统介电性能的研究,[J].硅酸盐学报.2004,32(8):911~915.
    [106] Li L Z, Liu F Q. Preparation and Characterizations of ZnTiO_3 powder by Sol-Gel Process [J]. Journal of Sol-Gel Science and Technology. 2005,33:103~106
    [107] Dong Q, L G.. Deformation-induced reactions of ZnO and TiO_2 [J]. Journal of materials science. 2004, 39:5389~5392.
    [108] Kim H T. Low-fired (Zn,Mg)TiO_3 microwave dielectrics [J]. J Am Ceram Soc, 1999, 82(12): 3476~3480.
    [109] Kim H T. Structure and microwave dielectric properties of (Zn_(1-x)Ni_x)TiO_3 ceramics [J]. J Mater Res, 2003, 18(5): 1067.
    [110] Kim H T. Structure and microwave dielectric properties of (Zn_(1-x)Co_x)TiO_3 ceramics [J]. J Am Ceram Soc, 2003, 86(11): 1874~1878.
    [111] JunL, Xing X R, Yu R B. Low-temperature synthesis and characterization of (Zn,Ni)TiO_3 ceramics by a modified sol-gel route[J].J Alloys and compounds.2005
    [112] 侯育冬,唐斌.MgO含量对ZTM体系六方钛铁矿相热稳定性的影响[J].功能材料,2002,20(4):603~606.
    [113] Chang Y S. Synthesis and characterization of zinc titanate doped with magnesium [J]. Solid State Commun. 2003, 128: 203~208.
    [114] Chang Y S, Chang Y H, Chen I G. The structure and properties of zinc titanate doped with strontium[J] J Alloys and compounds.2003, 354:303~309.
    [115] Li Bo. Low-fired microwave dielectrics in ZnO-TiO_2 ceramics doped with CuO and B_2O_3 [J]. J Mater Sci. 2002, 13: 415~418.
    [116] 曹春娥,顾幸勇合编.无机材料测试技术[M].武汉:武汉理工大学出版社.2001.13~17.
    [117] 唐宗熙,张其勋.微波介质谐振器介电参数的测量[J].计量学报.1996,17(4):297~309.
    [118] 周洪庆,刘敏,杨南如等.微波介质复介电系数测试理论及方法[J].硅酸盐通报.1997,6:59~63.
    [119] 唐宗熙.介质谐振器介电参数频响特性及频率温度系数的测量[J].计量学报.2002,23(1):57~61.
    [120] J. Yang, J H Swisher. The Phase Stability of Zn_2Yi_3O_8. Materials Characterization[J]. 1996,37:153~159
    [121] N. Fujimura, T.Nishihara, S Goto, J Xu,Y Ito, Control of preferred orientation for ZnO_x films: Control of self-texture[J]. J Cryst Growth 1993, 130:269
    [122] 陆佩文,无机材料科学基础[M].武汉:武汉工业大学出版社.2002.65~69.
    [123] R L Coble, Sintering Crystalline Solids. Ⅰ. Intermediate and Final State Diffusion Models [J]. J Appl Phys. 1961, (32):787
    [124] R L Coble, Sintering Crystal Solids Ⅱ. Experimental Test of Diffusion Models in Porous Compacts [J]. J Appl Phys. 1961, (32):793
    [125] R L Coble, Transparent Alumina and Method of Preparation .U.S. Pat. 3026 210, March 21 (1962)
    [126] R Coble, J E Burke, Sintering in Ceramics [J]. Prog Ceram Sci. 1963,(3): 197
    [127] P J Jorgensen, J H Westbrook, Role of Solute Segregation at Grain Boundaries during Final-State Sintering of Alumina [J]. J Am Ceram Soc, 1964, 47(7): 332.
    [128] C A Handwerker, Massachusetts Insitute of Technology.Cambridge, MA, 1983
    [129] C A Handwerker, P A Morris, R L Coble, Effect of Chemical Inhomogeneities on Grain Growth and Microstructure in Al_2O_3 [J]. J Am Ceram Soc, 1989, 72(1): 130
    [130] 傅英松,刘建勇,石勇等(Zr,Sn)YiO_4系微波介质陶瓷的研究发展[J].陶瓷学报.2005,2(26).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700