疲劳裂纹扩展研究及在装载机横梁寿命估算中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构和机械的疲劳是一个十分复杂的问题,疲劳研究是一个存在大量经验性规律和相互矛盾观点的研究领域。因为影响材料疲劳强度和寿命的因素很多,而且绝大多数影响因素目前还无法很好地从物理模型及数学模型上给予合理的定量描述,加之试验条件与实际应用条件之间存在较大差异,因此尽管研究已积累了大量理论成果与试验数据,仍然无法对疲劳强度和寿命问题做出比较通用而且比较准确的预测和分析。一方面,实际工程应用在疲劳研究指导下采取相关措施确实能有效防止疲劳破坏,但另一方面,使用的指导方针对不同应用甚至同样应用却仍然无法阻止疲劳破坏案例的发生。这说明疲劳问题不论从理论上还是在实践中都没有完全解决。随着现代社会发展多样性和节奏加快的需求,疲劳问题越来越成为国内外学术界和产业界关注的重点。
     本文研究了工程机械构件的疲劳问题。工程机械是人类社会应用广泛的重要工具之一,随着现代科学技术的发展,对工程机械结构提出了越来越高的要求,不仅要求有较高的承载力,减少原材料的使用,还要求结构有较高的疲劳寿命。因此,世界上发达国家都极为重视并开展工程机械强度评定、疲劳寿命估算和疲劳强度设计等方面的研究。利用现有理论进行构件疲劳强度分析、破坏预防和计算剩余寿命,常常与构件的具体形貌以及所处工况环境密切相关,计算分析的思路及使用的具体方法也相差很大,因而非常有必要对实际工程构件的疲劳问题进行研究。
     本文以实际工程机械构件疲劳破坏为背景开展构件疲劳寿命研究,主要以疲劳裂纹扩展理论为基础,研究疲劳裂纹扩展的宏观机理,提出疲劳裂纹扩展的改进公式,从有利于实际操作出发对公式中重要物理量进行研究,并提出了相应的计算公式;本论文结合实际工程构件的工作循环进行有限元模拟,对构件各种工况下的力学场量进行分析,得出疲劳寿命研究所需的应力分布载荷谱;本文提出规范化的疲劳分析技术路线,在分析中分别采用目前比较流行的理论公式以及本文建立的公式对具体工程构件进行疲劳寿命分析,并对结果进行对比比较。本文还针对影响疲劳裂纹扩展因素多样复杂的特点,对构件疲劳寿命进行优化设计,建立计算机神经网络对疲劳寿命进行评估分析。具体说来,本文工作结果表现为以下几个方面:
     总结分析了疲劳理论,断裂力学理论和损伤力学理论等各种历史研究及当代研究中,适用于工程机械构件应用的研究成果,包括关于疲劳裂纹产生、扩展的理论模型、机理、各种判据。将影响疲劳裂纹扩展的各种因素进行分类筛选,找出与本文研究密切相关的因素,为后面的研究奠定力学理论基础。
     重点研究了疲劳裂纹扩展的机理及其扩展公式。对承受动荷载的结构构件,在荷载大小远低于材料屈服强度甚至是疲劳极限的条件下仍能发生屈服乃至破坏,以往的研究对此类现象的机理没有作出直观易懂的解释。签于此,本文提出疲劳裂纹扩展的宏观扩展机理,即将动荷载的惯性效应产生的应力强度因子附加到构件的受载上去,也就是说,虽然发生疲劳破坏的构件承受的动荷载在瞬时力的大小上远远小于构件材料的屈服强度,但由于动荷载的惯性作用,构件上实际承受的荷载大小很可能超过其疲劳相关的承载能力而发生屈服并产生裂纹扩展。
     疲劳裂纹扩展的改进公式是根据所提出的疲劳机理以及目前疲劳裂纹扩展理论应用最广泛的判据提出的。裂纹扩展有两个重要的关节点,分别是裂纹扩展门槛值与材料断裂韧度。本文的判据分别是裂纹扩展实际驱动力大于裂纹门槛值时,裂纹就开始扩展。裂纹扩展实际驱动力大于材料的断裂韧度时,材料或构件就断裂,在此点之后就不存在裂纹的扩展问题,而在此值之前裂纹一直是按某一大小稳定扩展。本文在这两个判据的基础上,提出改进的疲劳裂纹扩展公式。改进公式完全由裂纹驱动力、裂纹扩展阻力和裂纹形态特征表示的,突出了简单易懂的物理意义和应用方便的特点,而且该公式所表示的曲线涵盖了整个裂纹扩展全过程,包含了影响裂纹扩展的所有重要因素。
     本文对改进公式中的裂纹扩展门槛值和材料的断裂韧度分别进行了研究。对于裂纹扩展门槛值,根据断裂力学中裂纹扩展裂尖中应力分布和裂尖处的塑性区的大小以及疲劳扩展的疲劳极限图,提出了用常规材料实验性能参数,如屈服强度、泊松比、弹性模量和加载参数应力比表示的裂纹扩展门槛值估算公式。而对材料的断裂韧度,则根据其标准试验的曲线,经简化提出了用材料性能参数和几何尺寸表示的估算公式。对两个公式分别进行了实例计算验证,其误差在工程允许的范围之内。
     为了验证所提出的公式以及其公式用于寿命计算的效果,本文以实际工程机械构件破坏为背景,进行了构件的寿命计算分析。在这项研究中,首先对机械构件在其工作循环周期内的承载工况进行分析,在此基础上,采用有限元进行数值模拟,得出构件的应力应变分布场量,建立了进行疲劳寿命研究所需的应力分布载荷谱。然后对构件进行疲劳寿命分析。由于疲劳寿命分析只是强度分析中的一个类别,在实际应用中如何区分判定并最终导入执行,必须遵循明确清晰的步骤,本文建立了如下技术路径。
     首先应判定是否属于疲劳问题,不是则归入其他强度问题,如果是则应选择疲劳寿命计算的方法,方法确定后再对构件进行疲劳强度校核。针对本文构件,通过分析表明发生的是疲劳累计损伤破坏,因而分别利用线性累积损伤理论、非线性损伤理论和有限元疲劳寿命模拟进行寿命计算,将三种方法的计算结果进行比较后发现,本构件完全可以满足工程设计的寿命要求。但现实构件却在使用期限非常短时就发生断裂。针对该情况,利用断裂力学的逆向分析思维,假设初始裂纹大小,采用最常使用的有裂纹估算公式和本文提出的裂纹扩展公式,分别估算可能隐含初始裂纹构件的寿命。通过与实际断裂情况比较表明,本文提出公式的结果与现有公式的结果相差不大,但本文提出的公式能更好地反映裂纹扩展的实际特点,是一个非常缓慢发展的过程。
     本文对影响裂纹扩展的各个因素进行了优化研究,并对各因素的重要程度进行了排序。结果表明,裂纹起裂角、初始裂纹大小和应力比是最重要的影响因素,而板厚等几何形状影响并不是特别重要。而且裂纹起裂角对疲劳裂纹扩展寿命的影响大于初始裂纹,这与以往研究中的认识是明显不同的。结果还表明,若对裂纹扩展曲线两个判据点的重要程度进行比较,门槛值的影响要远远大于材料断裂韧度,这也是以往研究中没有提到的。另外,本文还建立了神经网络模型对疲劳寿命进行人工智能预测。通过实施该项技术模拟,可以不用考虑计算公式,而直接输入影响裂纹扩展的各个具体因素数值,而得到构件的寿命估算。这些新的研究结果或认识虽然尚有待更多的试验与实例验证,同时打开了疲劳研究的新思路。
Fatigue is a very complicated problem for the structure and machinery. And fatigue researches contain a quantity of empirical laws and contradictory views. There are many influencing factors on fatigue strength and fatigue life. At present, most influencing factors can't quantitatively describe fatigue phenomenon with physical models or mathematical models. And there are big differences between test conditions and practical applications. Although a lot of theory results and test data have been obtained, accurate prediction and analysis for the fatigue strength and fatigue life can't realized better. One hand, fatigue destroy can be prevented efficiently with fatigue research results and taking related measures in actual engineering application. On the other hand, though the same principles guide the same applications, fatigue destroy accidents still can't be prevented. All facts show that fatigue problem still can't be solved completely on theories and practice. With the more requirements of rapid development diversity in society, fatigue more and more has been an important problem on academic circles and industry circles in home and abroad.
     The dissertation mainly studies the fatigue problem of the engineering machinery members. The engineering machinery is one of important tools in the human society application. With the development of modern science technology, more and more high demands are put forward for the engineering machinery. Not only high bearing capacity is demanded in order to decrease the material use, but also long fatigue life is requested for structure. The researches of machinery strength valuation, design and fatigue life estimation are paid more attention and developed. When the researches are done with the existing theories, the shape characteristics and case environments of machinery members become important influencing factors. Besides, calculation steps and use methods are also very different.
     Fatigue life researches were developed based on the destroy of actual machinery member in the dissertation. On the basis of fatigue crack propagation theory, macroscopic mechanism and new improved formula of fatigue crack propagation was proposed. Simultaneously, the important physical parameters of the formula were studied due to the actual application. Also, the FEM simulation of machinery member was done according to the working process of machinery. And the stress load spectrums were drawn in combination with the mechanical analysis of all working cases. All these results could provide theory basis for the later fatigue analysis. Moreover, the normalized fatigue analysis steps were presented. The popular theory formula and the improved formula were adopted to analyzed the fatigue life of actual machinery member, respectively. And the results were compared. At last, with the neural network intelligent technology, the optimization analysis of fatigue life was carried out because of many complex influencing factors in fatigue researches. In summary, the research results of this dissertation are as followed.
     Firstly, many existing theories were summarized in the dissertation, such as Fatigue theory, Fracture Mechanics theory, Damage Mechanics theory, fatigue crack propagation theory results, models and criterion. The related important factors of influencing crack propagation were found out by means of analysis of all factors, which provide preparation for the following research.
     The dissertation mainly focus on the researches of mechanism and formula for the fatigue crack propagation. Though the interior stress is far less than the yield strength or fatigue limit, the structure member bearing dynamic load still may yield or destroy. The existing theories don't explain this problem with reasonable methods. So, the macroscopic mechanism of fatigue crack propagation was proposed in the dissertation. Inertial effect of dynamic load was added to the member. That is, though stress magnitude acting on machinery member is far less than the yield strength of material, the actual stress magnitude may exceed the bearing capacity of member and induce further crack propagation.
     At present, there are two most wide used fatigue crack propagation criterions. They are crack propagation threshold and material fracture toughness. For the threshold, the criterion is that the crack will grow if the driving force is more than the threshold. And for the fracture toughness, the crack will grow steady if the driving force is less than the fracture toughness. Else, the member will destroy. On the basis of these two criterions, the improved fatigue crack propagation formula was presented. Physical meaning of the improved formula is simple and it is easy to be applied. The improved completed formula was induced by two crack propagation curve and it is suitable for the whole crack propagation process. Furthermore, the crack propagation curve contains all important factors affecting crack propagation.
     The two important parameters, crack propagation threshold and fracture toughness, in the improved formula, were also studied. For the crack propagation threshold, according to the stress distribution, plastic zone size around crack tip and fatigue limited curve of crack propagation, the new formula was put forward with routine test parameters of material capacity and loading parameters, such as, yield strength, Poisson ratio, elastic modulus and stress ratio. For the fracture toughness of material, based on the simplified curve, the formula is described with material capacity parameters and geometry size. The two formula were checked by test data, respectively. Allowable error is in the permission scope of the project.
     In order to check the effect of the improved formula, Fatigue life researches were developed based on the destroy of actual machinery member in the dissertation. Based on the analysis of bearing load case of the actual members in engineering machinery, the dissertation makes use of the FEM numerical simulation and obtains the stress-strain distribution of the members and builds the stress distribution load spectrum that is needed in the analysis of practical members fatigue life. Fatigue life analysis is only a sort of strength analysis, it must follow clear steps in practical application. This dissertation offers such a method.
     For the study object in this dissertation, firstly, it should justify whether it belongs to fatigue problem, if so, fatigue life calculation method is in need. Then, fatigue strength correction is needed. It shows that the members in this dissertation suffer the fatigue accumulative damage. Thus, linear accumulative damage theory and nonlinear damage theory are used to calculate life separately. Then, making use of Finite Element method, fatigue life was also obtained. Comparing the three calculation results, it can be found that the results satisfy the requirement of the engineering design without the fatigue damage within the scope of the bearing load in project. But practical members broke up within a short use time. For this problem, using the reverse analysis and supposing the size of initial crack and applying the crack estimation formula that is most acceptable and the improved formula in the dissertation, the life was estimated for the crack member. In compared with actual cases, the results of the improved formula are more suitable for the crack propagation process.
     In the dissertation, the fatigue life was also be predicted with neural network intelligent technology. By this technology, the importance of each influencing factor on crack propagation was ranked. It shows that the initial angle, initial crack size and stress ratio are all the most important influencing factors. But that of the plate thickness is secondary. Moreover, the initial angle is more important than the initial crack size, which is very different from the past researches. It also shows that the importance of crack threshold is far more than that of fracture toughness, which isn't mentioned in the previous researches. All researches in the dissertation will be tested by more tests and data in future. And all works also present new aims of the fatigue researches.
引文
[1]李舜酩.机械疲劳与可靠性设计[M].北京:科学出版社,2006:14-15
    [2]霍立兴.焊接结构的断裂行为及评定[M].北京:机械工业出版社,2000:3-10
    [3]Zheng Xiulin. A further study on fatigue crack initiation life—mechanical model for fatigue crack initiation[J]. International Journal of Fatigue, Vol.8, Issue 1,1986(1):17-21
    [4]W. Geary. A review of some aspects of fatigue crack growth under variable amplitute loading[J]. International Journal of Fatigue, Vol.14, Issue 6,1992(11):377-386
    [5]Ryan J. Harbour, Ali Fatemi, Will V. Mars. Fatigue life analysis and predictions for NR and SBR under variable amplitude and multiaxial loading conditions[J]. International Journal of Fatigue, Vol.30, Issue 7,2008(7):1231-1247
    [6]郑松林.低幅交变载荷对前轴疲劳强度强化的研究[D].吉林工业大学博士学位论文,1999.12
    [7]V. Adrov. A new damage parameter for fatigue life predictions under local strain analysis[J]. International Journal of Fatigue, Vol.15, Issue 6,1993(11):451-453
    [8]A. Fatemi, L. Yang. Cumulative fatigue damage and life prediction theories:a survey of the state of the art for homogeneous materials [J]. International Journal of Fatigue, Vol.20, Issue 1, 1998(1):9-34
    [9]Yuki Nakamura, Tatsuo Sakai, Hideo Hirano, K.S. Ravi Chandran. Effect of alumite surface treatments on long-life fatigue behavior of a cast aluminum in rotating bending [J]. International Journal of Fatigue, Vol.32, Issue 3,2010(3):621-626
    [10]刘青峰.疲劳裂纹扩展仿真技术研究及在车辆工程中的应用[D].北京交通大学博士学位论文,2004.7
    [11]阳光武.机车车辆零部件的疲劳寿命预测仿真[D].西南交通大学博士学位论文,2005.3
    [12]Z. Wang, X. Zhang. Predicting fatigue crack growth life for cold-worked holes based on existing closed-form residual stress models[J]. International Journal of Fatigue, Vol.25, Issues 9-11,2003(9-11):1285-1291
    [13]H. Adib, G. Pluvinage. Theoretical and numerical aspects of the volumetric approach for fatigue life prediction in notched components[J]. International Journal of Fatigue, Vol.25, Issue 1,2003(1):67-76
    [14]王刚.低周疲劳寿命与累积损伤规律若干问题的研究[D].哈尔滨工业大学博士学位论文,2001.1
    [15]张莉.多轴非比例低周疲劳寿命的研究[D].哈尔滨工业大学博士学位论文,2003.10
    [16]范志超.压力容器用钢16MnR中温应力控制下的低周疲劳行为及寿命评估技术研究[D].浙江大学博士学位论文,2003.12
    [17]S. K. Koh. Fatigue life simulation and estimation of an autofrettaged thick-walled pressure vessel with an external groove[J]. International Journal of Fatigue, Vo.18, Issue 1,1996(1): 49-56
    [18]管德清.焊接钢结构疲劳强度与寿命预测理论的研究[D].湖南大学博士学位论文,2003.1
    [19]F. Walther, D. Eifler. Fatigue life calculation of SAE 1050 and SAE 1065 steel under random loading[J]. International Journal of Fatigue. Vol.29, Issues 9-11,2007(9-11):1885-1892
    [20]Yongming Liu, Sankaran Mahadevan. Multiaxial high-cycle fatigue criterion and life prediction for metals[J]. International Journal of Fatigue, Vol.27, Issue 7,2005(6):790-800
    [21]Carlos Navarro, Sergio Munoz, Jaime Dominguez. On the use of multiaxial fatigue criteria for fretting fatigue life assessment[J]. International Journal of Fatigue, Vol.30, Issue 1,2008(1): 32-44
    [22]T. H. T. Chan, Z. X. Li, J. M. Ko. Fatigue analysis and life prediction of bridges with structural health monitoring data—PartⅡ:application[J]. International Journal of Fatigue, Vol.23, Issue 1,2001(1):55-64
    [23]薛红军.结构疲劳断裂中的若干可靠性问题研究[D].西北工业大学博士学位论文,2000.5
    [24]李其.抽油杆表面裂纹及剩余寿命的可靠性研究[D].哈尔滨工程大学博士学位论文,2006.6
    [25]李佳.材料疲劳可靠性分析智能仿真方法的研究[D].东北大学博士学位论文,2003.7
    [26]苏彦江.构件随机疲劳可靠性分析方法与应用研究[D].西南交通大学博士学位论文,2001.4
    [27]靳慧.工程机械金属结构系统疲劳可靠性分析研究[D].西南交通大学博士学位论文,2001.4
    [28]Changduk Kong, Taekhyun Kim, Dongju Han, Yoshihiko Sugiyama. Investigation of fatigue life for a medium scale composite wind turbine blade [J]. International Journal of Fatigue, Vol.28, Issue 10,2006(10):1382-1388
    [29]吕海波.结构疲劳可靠性分析方法研究[D].南京航空航天大学博士学位论文,2000.1
    [30]丁克勤.工程结构疲劳裂纹随机扩展及可靠性分析方法研究[D].中科研院力学研究所博士论文,1997.6
    [31]De-Guang Shang, Da-Kang Wang, Ming Li, Wei-Xing Yao. Local stress-strain field intensity approach to fatigue life prediction under random cyclic loading[J]. International Journal of Fatigue, Vol.23, Issue 10,2001(11):903-910
    [32]F. Morel. A critical plane approach for life prediction of high cycle fatigue under multiaxial variable amplitude loading [J]. International Journal of Fatigue, Vol.22, Issue 2,2000(2): 101-119
    [33]B.B. Harral. The application of a statistical fatigue life prediction method to agricultural equipment [J]. International Journal of Fatigue, Vol.9, Issue 2,1987(4):115-118
    [34]杨继运.材料抗断裂性能的固体力学研究[D].北京航空航天大学博士学位论文,2004.1
    [35]王弘.40Cr、50车轴钢超高周疲劳性能研究及疲劳断裂机理探讨[D].西南交通大学博士学位论文,2004.10
    [36]刘浩文.疲劳裂纹扩展的逻辑框架[J].力学进展,1993.2:15-21
    [37]曾春华.奇妙的疲劳现象[M].北京:科学出版社,1986:97-115
    [38]郑修麟.一个普遍的疲劳裂纹扩展公式[J].西北工业大学学报,Vol.3,No.4,1985:439-446
    [39]黄小平.高强度钢潜艇锥柱结构疲劳性能研究[D].哈尔滨工业大学博士学位论文,2001.1
    [40]王雷.多轴随机载荷下疲劳寿命预测方法的研究[D].东北大学博士学位论文,2002.8
    [41]王泓.材料疲劳裂纹扩展和断裂定量规律的研究[D].西北工业大学博士学位论文,2002.1
    [42]马君峰.疲劳全寿命分析的归一化模型研究[D].西北工业大学博士学位论文,1998.12
    [43]戴永谦.发动机悬置软垫断裂模拟[D].大连理工大学博士学位论文,2006.1
    [44]Sebastien Amiable, Stephane Chapuliot, Andrei Constantinescu, Antoine Fissolo. A comparison of lifetime prediction methods for a thermal fatigue experiment J]. International Journal of Fatigue, Vol.28, Issue 7,2006(7):692-706
    [45]程文明.集装箱门式起重机动态仿真与疲劳寿命研究[D].西南交通大学博士学位论文,2000.5
    [46]Richard A. Everett Jr. The effects of load sequencing on the fatigue life of 2024-T3 aluminum alloy [J]. International Journal of Fatigue, Vol.19, Issue 93,1997(6):289-293
    [47]范天佑.断裂力学[M].北京:科学出版社,2003
    [48]J.C. Newman Jr, I.S. Raju. An empirical stress-intensity factor equation for the surface crack[J]. Engineering Fracture Mechanics, Vol.15, Issues 1-2,1981:185-192
    [49]I.S. Raju, J.C. Newman Jr. Stress-intensity factors for a wide range of semi-elliptical surface cracks in finite-thickness plates[J]. Engineering Fracture Mechanics, Vol.11, Issue 4,1979: 817-829
    [50]X. B. Lin, R. A. Smith. Stress intensity factors for corner cracks emanating from fastener holes under tension[J]. Engineering Fracture Mechanics, Vol.62, Issue 6,1999(4):535-553
    [51]X. B. Lin, R. A. Smith. Finite element modelling of fatigue crack growth of surface cracked plates:Part III:Stress intensity factor and fatigue crack growth life[J]. Engineering Fracture Mechanics, Vol.63, Issue 5,1999(7):541-556
    [52]R.A.Smith. An introduction to fracture mechanics for engineers Part Ⅱ:Using the stress intensity factor to characterise fracture and fatigue crack growth.International[J]. Journal of Materials in Engineering Applications, Vol. I, Issue 4,1979(6):227-235
    [53]H. Noguchi, R. A. Smith, J. J. Carruthers. Stress intensity factors of embedded elliptical cracks and an assessment of the ASME XI defect recharacterisation criteria[J]. International Journal of Pressure Vessels and Piping, Vol.70, Issue 1,1997(1):69-76
    [54]何庆芝.工程断裂力学[M].北京:北京航空航天大学出版社,1993.6
    [55]傅祥炯.结构疲劳与断裂[M].北京:科学出版社,1995:107-120
    [56]赵子华.金属疲劳断口定量反推研究综述[J].机械强度,2008,30(3):508-514
    [57]Laird C. The influence of metallurgical structure on the mechanisms of fatigue crack propagation in Fatigue Crack Propagation[M]. Special Technical Publication,415,1967: 131-168
    [58]Kobayashi T, Shockey D A. The relationship between fracture surface roughness and fatigue load parameters [J]. International Journal of Fatigue,2001(24):135-142
    [59]Sozanska M, Iacovlello F, Cwajna J. Quantitative analysis of fatigue fracture surface in the duplex steel[J]. Image Anal Stereol,2002(21):55-59
    [60]高文柱,吴欢,赵永庆.金属材料疲劳裂纹扩展研究综述[J].钛工业进展,Vo1.24,No.6.2007(12):33-37
    [61]Hong-qian XUE, Hua TAO, Ren-ping SHAO. Effect of stress ratio on long life fatigue behavior of Ti-Al alloy under flexural loading[J]. Transactions of Nonferrous Metals Society of China, Vol.18, No.3,2008(6):499-505
    [62]A.H. Noroozi, G. Glinka, S. Lambert. A study of the stress ratio effects on fatigue crack growth using the unified two-parameter fatigue crack growth driving force[J]. International Journal of Fatigue, Vol.29, No.9-11,2007(9-11):1616-1633
    [63]Li-Min Zhou, Jang-Kyo Kim, Yiu-Wing Mai. On the single fibre pull-out problem:effect of loading method[J].Composites Science and Technology, Volume 45, Issue 2,1992:153-160
    [64]S. Mall, G. Ramamurthy, M. A. Rezaizdeh. Stress ratio effect on cyclic debonding in adhesively bonded composite joints[J]. Composite Structures, Vo.8, Issue 1,1987:31-45
    [65]李庆芬.断裂力学及其工程应用[M].哈尔滨工程大学出版社,2007(10):135-137
    [66]B. Zuccarello, N.F. Adragna. A novel frequency domain method for predicting fatigue crack growth under wide band random loading[J]. International Journal of Fatigue, Vo.29, No.6,2007(7):1065-1079
    [67]Tong J, Byrne J. Effect of frequency on fatigue crack growth at elevated temperature[J]. Fatigue Fract Engng Master Struct,1999(22):185-93
    [68]A.M.Abdel Mageed, R.K. Pandey. Mixed mode crack growth under static and cyclic loading in Al-alloy sheets[J].Engineering Fracture Mechanics, Vol.40, Issue 2,1991:371-385
    [69]V. S. Srinivasan, A. Nagesha, M. Valsan. Effect of hold-time on low cycle fatigue behaviour of nitrogen bearing 316L stainless steel[J]. International Journal of Pressure Vessels and Piping, Vol.76, No.12,1999(10):863-870
    [70]牟在根.钢结构设计与原理[M].北京:人民交通出版社,2004:120-121
    [71]Ch. Bichler, R. Pippan. Effect of single overloads in ductile metals:A reconsideration[J]. Engineering Fracture Mechanics, Vo.74,No.8,2007(5):1344-1359
    [72]Qin-Zhi Fang, T.J. Wang, H.M. Li. Overload effect on the fatigue crack propagation of PC/ABS alloy[J]. Polymer, Vol.48, No.22,19,2007(10):6691-6706
    [73]H. J. C. Voorwald, M. A. S. Torres, C. C. E. Pinto Junior. Modelling of fatigue crack growth following overloads[J]. International Journal of Fatigue, Vol.13, No.5,1991(9):423-427
    [74]W. J. Mills, R. W. Hertzberg. Load interaction effects on fatigue crack propagation in 2024-T3 aluminum alloy[J]. Engineering Fracture Mechanics, Vol.8, No.4,1976:657-664
    [75]Wheeler O E. Spectrum loading and crack growth[J]. J Basic Engng, Transactions of ASME, Series D,1972,94(1):181-186
    [76]Wolf, Elber. Fatigue crack closure under cycle tension[J]. Engineering Fracture Mechanics, Vol.2,No.1,1970(7):37-44
    [77]K. Stamoulis, A.E. Giannakopoulos. Size effects on strength, toughness and fatigue crack growth of gradient elastic solids[J]. International Journal of Solids and Structures, Vol.45, No.18-19,2008(9):4921-4935
    [78]Dlouhy, B. Strnadel. The effect of crack propagation mechanism on the fractal dimension of fracture surfaces in steels[J]. Engineering Fracture Mechanics, Vol.75, Issues 3-4,2008(2-3): 726-738
    [79]Jung-Kyu Kim, Dong-Suk Shim. The variation in fatigue crack growth due to the thickness effect[J]. International Journal of Fatigue, Vol.22, Issue 7, August 2000:611-618
    [80]T.V. Duggan, M.W. Proctor, L.J. Spence. Stress intensity calibrations and compliance functions for fracture toughness and crack propagation test specimens[J]. International Journal of Fatigue, Vol.1, Issue 1,1979(1):37-47
    [81]Young-Gab Chun, Su-Il Pyun. Crack closure in the fatigue crack propagation of a Cu-2wt.%Be alloy in dry air and ammoniacal solution[J]. Materials Science and Engineering A, Vol.206, Issue 1,1996(2):49-54
    [82]S.G. Russell.An investigation of the fracture process zone near the tip of a steadily propagating tensile crack[J]. International Journal of Solids and Structures, Vol.25, Issue 10, 1989:1157-1175
    [83]Nisitani Hironobu, Goto Masahiro, Kawagoishi Norio. A small-crack growth law and its related phenomena. Engineering Fracture Mechanics, Vol.41, Issue 4,1992(3):499-513
    [84]王利君.裂纹扩展新理论验证及其影响因素分析[D].华南理工大学硕士论文,2005.6
    [85]Ritchie R O. Near-threshold fatigue crack propagation in steels[J]. Int Metals Rev,1977(5-6): 205-230
    [86]Cui W C, A state-of-the-art review on fatigue life prediction methods for mental structures[J]. J.Mar. Sci.Technol,2002.07:123-131
    [87]王永廉.疲劳裂纹理论门槛值的确定方法[J].结构与环境工程,Vol.29,No.3,2002:32-37
    [88]Chen D L, Weiss B, Stickler R. Effect of stress ratio and loading condition on the fatigue threshold[J]. Int J Fatigue,1991,14:325-329
    [89]刘文珽.疲劳裂纹门槛值的研究[J].航空学报,vol.10,No.12,1989:559-661
    [90]Wu X J, Wallace W, Koul A K. A new approach to fatigue threshold[J]. Fatigue Fract Mater Struct,1995,18(7/8):833-845
    [91]Zhao Y X, Yang B, Liang H Q, et al. New method for measuring random thresholds of long fatigue crack propagation[J]. Applied Mathematics and Mechanics,2005,26(6):761-766.
    [92]王德俊.疲劳强度设计.中国机械设计大典[M].江西科学技术出版社,2002:1089-1244
    [93]Liu H W. The fracture mechanics approach to fatigue of P C Paris[M]. Syracuse, NY: Syracuse University Press,1964:127-132
    [94]D.L. Chen, B. Weiss, R. Stickler. Effect of stress ratio and loading condition on the fatigue threshold[J]. International Journal of Fatigue, Vol.14, Issue 5,1992(9):325-329
    [95]S. Kwofie. Equivalent stress approach to predicting the effect of stress ratio on fatigue threshold stress intensity range[J]. International Journal of Fatigue, Vol.26, Issue 3,2004(3): 299-303
    [96]Zhao Xiaopeng. The effects of stress ratio on fatigue threshold[J]. International Journal of Fatigue. Vol.12, Issue 2,1990(3):127-130
    [97]J. Zhang, X. D. He, S. Y. Du. A simple engineering approach in the prediction of the effect of stress ratio on fatigue threshold[J]. International Journal of Fatigue, Vol.25, Issues 9-11, 2003(9-11):935-938
    [98]D. Kujawski, F. Ellyin. A unified approach to mean stress effect on fatigue threshold conditions[J]. International Journal of Fatigue, Vol.17, Issue 2,1995(2):101-106
    [99]Xiaoping Huang, Torgeir Moan.Improved modeling of the effect of R-ratio on crack growth rate[J]. International Journal of Fatigue, Vol.29, No.4,2007(4):591-602
    [100]赵少汴.抗疲劳设计[M].北京:机械工业出版社,1994.1
    [101]鲍文博.一个适用的ΔKth—R的关系式[J].试验技术与试验机,1988(3):11-14
    [102]R.O. Ritchie, J.F. Knott, J.R. Rice. On the relationship between critical tensile stress and fracture toughness in mild steel[J]. Journal of the Mechanics and Physics of Solids, Vol.21, No.6,1973(11):395-410
    [103]R.W. Rice. Relation of tensile strength-porosity effects in ceramics to porosity dependence of Young's modulus and fracture energy, porosity character and grain size[J]. Materials Science and Engineering A, Vol.112,1989(6):215-224
    [104]J.M. Krafft, W.H. Cullen Jr. Organizational scheme for corrosion-fatigue crack propagation data[J]. Engineering Fracture Mechanics, Vol.10, Issue 3,1978:609-650
    [105]G.T Hahn, A.R Rosenfield. Local yielding and extension of a crack under plane stress[J]. Acta Metallurgica, Vol.13, Issue 3,1965(3):293-306
    [106]F. Minami, M. Toyoda, K. Satoh. A probabilistic analysis on thickness effect in fracture toughness[J]. Engineering Fracture Mechanics, Vol.26, Issue3,1987:433-444
    [107]Zhao Y X, He CM, Yang B. Probabilistic models for long fatigue crack growth rates of LZ50 axle steel[J]. Applied Mathematics and Mechanics,2005,26(8):1093-1099
    [108]Kim Wallin. Master curve analysis of the "Euro" fracture toughness data set[J]. Engineering Fracture Mechanics, Vol.69, Issue 4,2002(3):451-481
    [109]Xiao-Zhi Hu. An asymptotic approach to size effect on fracture toughness and fracture energy of composites[J]. Engineering Fracture Mechanics, Vol.69, Issue 5,2002(3):555-564
    [110]J. P. Tronskar, M. A. Mannan, M. O. Lai. Measurement of fracture initiation toughness and crack resistance in instrumented Charpy impact testing[J]. Engineering Fracture Mechanics, Vol.69, Issue 3,2002(2):321-338
    [111]靳小军,霍立兴.X65管线钢焊缝金属断裂韧度的统计分布[J].焊接,2002,23(6):75-78
    [112]李禾,李仁增,董爱民.云纹干涉法测定金属材料断裂韧度[J].机械强度,Vol.30,No.1,2008:29-32
    [113]郝丽丽,果春焕,杨卓青.高撕裂阻力金属延性断裂韧度测试方法探讨[J].机械强度,Vo1.29,No.3,2007:454-458
    [114]刘敏,霍立兴.延性断裂韧度统计分布的数值模拟方法[J].焊接学报.Vol.21,No.2,2000:14-17
    [115]Hai Qiu, Manabu Enoki, Yoshiaki Kawaguchi. A model for the static fracture toughness of ductile structural steel[J].Engineering Fracture Mechanics, Vol.70, Issue 5,2002(3):599-609
    [116]D.Broek. Elementary Engineering Fracture Mechanics[M]. Noordhoff International Publishing, Leyden,1974
    [117]高湖海主编.装载机械[M].北京:冶金工业出版社,1995
    [118]李梦贤.装载机工作装置结构分析方法研究[D].山东大学硕士论文,1999
    [119]吕洪勇,杜文正,赵晋升.ZLK15型轮式装载机[J].工程机械,2006(1):14-15
    [120]机械工程材料性能数据手册编委会,机械工程材料性能数据手册[M].北京:机械工业出版社,1994.12:99-100
    [121]王宝中等.表面形貌特征参数在薄钢板轧制中的应用[J].河北冶金,2002(3):20-22
    [122]王吉忠.装载机结构强度的分析方法及力学模型的建立[J].工程机械,1996.10:6-10
    [123]迟永滨.装载机工作装置钢结构计算方法研究[J].机械强度,2002.24(1):136-139
    [124]张春华.基于现代设计理论和方法的装载机工作装置设计与研究[D].昆明理工大学,2005:4-8
    [125]Mike Cobo, Richard Ingram, Sabri Cetinkunt. Modeling identification and real-time control of bucket hydraulic system for a wheel type loader earth moving equip-ment[J]. Mech Atronics,1998(12),8(8):863-885
    [126]Engeniusz Rusinski, Przemystaw Moczko, Jerzy Czmochowski. Numerical and experimental analysis of a mine's loader boom crack[J]. Automation in Construction, Vol.17, Issue 3, 2008(3):271-277
    [127]S.S.Rao工程中的有限元法[M].傅子智译.北京:科学出版社,1991:204-280
    [128]殷国富,成尔京UGNX2产品设计实例精解[M].北京:机械工业出版社,2005
    [129]博弈创作室ANSYS9.0经典产品基础教程与实例详解[M].北京:中国水利水电出版社,2006
    [130]王伟民,焦恩璋等.双伸缩臂装载机动臂有限元分析[J].南京林业大学学报,1994(6):31-34
    [131]唐艳芹,王玉兴等铲运机动臂应力场有限元分析[J].建筑机械,2001(7):43-45
    [132]丁华,朱茂桃等.液压挖掘机动臂的有限元分析[J].中国公路学报,2003(10):118-120
    [133]姚俊.装载机工作装置摇臂的有限元分析及优化[J].工程机械,2000(11):16-18
    [134]Gerard Fleury, Pierre Mistrot. Numerical assessment of fore-and-aft suspension performance to reduce whole-body vibration of wheel loader drivers. Journal of Sound and Vibration,2006, 298 (3):672-687
    [135]Yang Cenkan, Zhang Tiezhu. Optimum design of linkages for the working device of loaders. International Journal of Mechanical Sciences,1988,30(12):964-969
    [136]黄炎.弹性薄板理论[M].北京:国防科技大学出版社,1992.10
    [137]李志安等.过程装备断裂理论与缺陷评定[M].北京:化学工业出版社,2005.06:95-97
    [138]庄茁,蒋持平.工程断裂与损伤[M].北京:机械工业出版社,2004
    [139]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,2004
    [140]熊峻江.疲劳断裂可靠性工程学[M].北京:国防工业出版社,2008
    [141]Colin R Gagg, Peter R Lewis. In-service fatigue failure of engineered products and structures-Case study review[J].Engineering Failure Analysis, Vol.16, Issue 6,2009.09:1775-1793
    [142]Sebastien Amiable, Stephane Chapuliot, Andrei Constantinescu. A comparison of lifetime prediction methods for a thermal fatigue experiment[J].International Journal of Fatigue, Vol. 28, Issue 7,2006(7):692-706
    [143]F.A.Conle, C.C.Chu. Fatigue analysis and the local stress-strain approach in complex vehicular structures[J].International Journal of Fatigue, Vol.19, Issue 93,1997(6):317-323
    [144]吴小珍.铸造起重机主梁结构的疲劳寿命研究[D].武汉科技大学,2003:40-47
    [145]成凯等.装载机工作装置的有限元分析[J].农业机械学报,Vol.32,No.6,2001:18-21
    [146]李哲林等.装载机的工作性能分析[J].中国建设信息,2008(3):64-65
    [147]杨先勇.桥式起重机主梁疲劳寿命研究[D].武汉科技大学,2005:45-67
    [148]Eugeniusz Rusinski, Przemyslaw Moczko, Jerzy Czmochowski. Numerical and experimental analysis of a mine's loader boom crack[J].Automation in Construction, Vol.17, Issue 3,2008: 271-277
    [149]张朝晖ANSYS11.0结构分析工程应用实例解析[M].北京:机械工业出版社,2008(8):418-516
    [150]黄康,仰荣德.基于ANSYS的汽车横向稳定杆疲劳分析[J].机械设计,Vol.25,No.12,2008(12):65-68
    [151]肖林京,隋秀华,苗德俊.基于ANSYS中带式输送机滚筒疲劳寿命分析研究[J].煤矿机械,Vol.29,No.11,2008:28-30
    [152]Rui-Jie Wang, De-Guang Shang. Low-cycle fatigue life prediction of spot welds based on hardness distribution and finite element analysis[J]. International Journal of Fatigue, Vol.31, Issue 3,2009(3):508-514
    [153]Hamid Jahed, Behrooz Farshi, Mohammad Hosseini. Fatigue life prediction of autofrettage tubes using actual material behaviour[J]. International Journal of Pressure Vessels and Piping, Vol.83, Issue 10,2006(10):749-755
    [154]Yongming Liu, Brant Stratman, Sankaran Mahadevan. Fatigue crack initiation life prediction of railroad wheels[J]. International Journal of Fatigue, Vol.28, Issue 7,2006(7):747-756
    [155]M. M. Abdel Wahab, I. A. Ashcroft, A. D. Crocombe, P. A. Smith. Numerical prediction of fatigue crack propagation lifetime in adhesively bonded structures[J]. International Journal of Fatigue, Vol.24, Issue 6,2002(6):705-709
    [156]中国航空研究院.应力强度因子手册[M].北京:科学出版社,1993:93-127
    [157]李晓飞,胡毓仁.基于小波分析的疲劳应力历程模拟[J].上海交通大学学报,Vo1.36,No.11,2002:1568-1571
    [158]张诗捷.7475铝合金在横幅及变幅加载历程下的裂纹扩展研究[J].航空材料学报,Vo1.9,No.4,1989:45-56
    [159]L.P. Borrego, J.M. Costa. Fatigue crack growth in thin aluminium alloy sheets under loading sequences with periodic overloads[J]. Thin-Walled Structures, Vol.43, Issue 5,2005(5): 772-788
    [160]X. Zhang, A.S.L. Chan, G.A.O. Davies. Numerical simulation of fatigue crack growth under complex loading sequences[J]. Engineering Fracture Mechanics, Vol.42, Issue 2,1992(5): 305-321
    [161]G.T Hahn, A.R Rosenfield. Local yielding and extension of a crack under plane stress[J]. Acta Metallurgica, Vol.13, Issue 3,1965(3):293-306
    [162]张德丰MATLAB神经网络应用设计[M].北京:机械工业出版社,2009.9:92-119
    [163]S. Gareth Pierce, Keith Worden, Abderrezak Bezazi.Uncertainty analysis of a neural network used for fatigue lifetime prediction[J]. Mechanical Systems and Signal Processing, Vol.22, Issue 6,2008(8):1395-1411
    [164]K.Genel. Application of artificial neural network for predicting strain-life fatigue properties of steels on the basis of tensile tests[J]. International Journal of Fatigue, Vol.26. Issue 10, 2004(10):1027-1035
    [165]T. Todd Pleune, Omesh K. Chopra. Using artificial neural networks to predict the fatigue life of carbon and low-alloy steels[J]. Nuclear Engineering and Design, Vol.197, Issues 1, 2000(4):1-12
    [166]M.A. Herzog, T. Marwala, P.S. Heyns. Machine and component residual life estimation through the application of neural networks[J]. Reliability Engineering & System Safety, Vol.94, Issue 2,2009(2):479-489
    [167]F. Iacoviello, D. Iacoviello, M. Cavallini. Analysis of stress ratio effects on fatigue propagation in a sintered duplex steel by experimentation and artificial neural network approaches[J]. International Journal of Fatigue, Vol.26, Issue 8,2004(8):819-828
    [168]李佳,平安.随机载荷下材料疲劳寿命可靠性分析的智能仿真系统[J].机械强度,Vol.23,No.1,2001:19-21
    [169]张鑫,阎楚良.基于神经网络的结构疲劳寿命仿真的研究[J].计算机仿真,Vol.19,No.6,2002:41-43
    [170]刘文卿.实验设计[M].北京:清华大学出版社,2005.2

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700