疲劳裂纹扩展数值模拟方法及其在核压力管道LBB分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对核压力管道疲劳裂纹扩展的特点,提出一种可以直接施加本质边界条件的耦合有限元/无网格Galerkin算法(FE/EFG)。将整个计算模型划分成两种类型的子域,FE子域和EFG子域。在裂纹前沿附近区域设置EFG子域,其余区域设置FE子域,充分利用有限元法计算效率高,EFG方法计算精度高的特点,减少计算规模,提高计算精度。此外,在疲劳裂纹扩展模拟过程中,采用FE/EFG耦合算法,数值模型能够方便、快捷地得到更新。
     根据有限元方法与无网格方法之间的内在联系,提出整个数值模型区域采用有限单元进行离散。将这些单元按其使用性质和位置分为A、B、C三类。A类单元为常规有限单元;B类单元为与耦合面相连的单元;C类单元为处于EFG子域中的单元且仅作为背景积分网格使用,为了提高计算精度,可对其进一步细分。通过这种单元分类方式,FE/EFG耦合算法的计算程序流程更加清晰明了,同时提高了程序的通用性。
     本文针对当前三维裂纹应力强度因子计算方法中存在的困难,提出一种基于EFG方法的虚拟裂纹闭合法。在裂纹前沿附近区域设置一辅助有限元区域,用以计算该区域的刚度矩阵,将该刚度矩阵与辅助有限元节点位移相乘即可得到裂纹尖端的节点力,最终得到裂纹前沿的应变能释放率。通过应变能释放率与应力强度因子之间的关系确定应力强度因子。数值算例表明该方法计算精度高,即适合线性材料也适合非线性材料。
     在疲劳裂纹扩展模拟中,为了利用EFG方法高精度、无网格性的优点,同时避免EFG子域过大而带来计算量增大的不足,提出一种动态子域划分法。将整个数值模型区域采用有限元网格进行离散。计算中,裂纹附近区域的有限元网格仅作为EFG方法背景积分网格使用,通过一定的尺寸参数控制裂纹前沿附近EFG子域的规模,且EFG子域可随着裂纹前沿动态移动。这样,计算中,EFG子域和FE子域都可动态调整,从而减少了计算规模,提高了计算效率。
     采用Paris疲劳裂纹扩展公式对裂纹扩展过程进行数值模拟。根据压力管道破前漏(Leak before break,LBB)评估技术,只考虑I型疲劳裂纹扩展情况,这样裂纹扩展方向可由裂纹前沿的法线确定。采用本论文提出的数值方法模拟了中心裂纹板疲劳扩展过程并与实验结果作了比较,数值算例表明,两者结果一致;同时模拟了中心半椭圆形表面裂纹扩展的过程,计算得到的应力强度因子与文献中的结果一致。此外,数值模拟结果表明,半椭圆形表面裂纹扩展贯穿前裂纹沿深度方向扩展较快,贯穿后裂纹前沿逐渐向平直线发展,这与试验中观察到的现象一致。
     根据压力管道破前漏分析技术(LBB),在裂纹贯穿管壁后,需计算裂纹张开面积(COA)进而确定管内介质泄漏量是否达到了泄漏监测系统能够监测到的最小泄漏量,因此裂纹张开面积是一个重要的计算参数。针对目前各种工程方法在计算裂纹张开面积中的不足,给出一种能够有效计算压力管道裂纹张开面积的数值算法,并用中心裂纹板裂纹张开面积的计算证明了方法的正确性,通过与工程算法的比较,证明了数值算法的有效性。
     采用本论文提出的数值方法,模拟研究了典型核反应堆压力管道轴向、环向半椭圆形表面裂纹的疲劳扩展。数值模拟结果表明,内表面裂纹的扩展速率要稍快于外表面裂纹的扩展速率,两种类型的表面裂纹在贯穿前沿深度方向发展较快,贯穿后,裂纹前沿逐渐发展到平直状态。
     最后,阐述了常规LBB分析方法的基本步骤,并以中国实验快堆余热排放系统中间回路中压力管道的LBB分析为例来说明本文所提压力管道疲劳裂纹扩展数值模拟方法在核压力管道评估中的应用。算例结果表明,采用本文数值模拟方法对核压力管道进行LBB评估是可行和有效的。
In this paper, according to the characteristics of fatigue crack propagation of nuclear pressure pipe, a coupled finite element/meshless Galerkin algorithm (FE/EFG) is presented, by which the essential boundary conditions can be imposed directly. In order to take advantage of the merits of FE method and EFG method, the whole numerical model is discretized into two types of sub-domains, FE sub-domain and EFG sub-domain. A discretize scheme which can ruduce computing scale and improve calculation accuracy is taken to determine the two types of sub-domans by which EFG sub-domain is used on the part closed to the crack front, the remain part FE sub-domain.
     Based on the instrinc relation betwin the FE method and EFG method, the whole computational model is discretized using finite elements which are catigried into three types: A, conventional finite element, B, element linked to interface, C, element in EFG sub-domain, according to their utilize characteristics and location. C elements are only used as background integral grids and can be furtherly divided into several small sub-elements in order to improve computational precise. Using this kind of catigary scheme for elements, the apparentment and convention of computational programme can be improved evidently.
     In view of the deficiency of current methods to calculate stress intensity factor, a virtual crack closure method based on EFG is proposed by which an auxiliary finite element domain is set up to calculate the stiffness matrix of local area around the crack tip. Nodal force of crack tip is determined by multiplying the matrix and nodal displacement vector of the auxiliary finite element. Finally, strain energy release rate of crack front is determined, which can be eventually changed into stress intensity factor. It is showed by several numerical examples that the current method has high computational precision and is not only suitable for the linear material but also for nolinear material.
     In the simulation of fatigue crack propogation, in order to take advantage of the merit of EFG method and advoid the calculation increase due to the expand of EFG sub-domain, a kind of dynamic sub-domain partition method is proposed. Using the method, finite element grids are used to discretize the whole domain and the grids closed to crack front are only used as background integral grid for EFG method. EFG sub-domain can dynamically move together with crack front using a certain size parameter controlling the scale of EFG sub-domain near to crack front. Thus, EFG sub-domain and FE sub-domain can be adjusted dynamically, which greatly reduces the computing scale and increase calculation efficiency.
     Paris law is used to determine the stepinterval of crack growth. According to the leak before break technique (LBB), only mode I crack is considered in the study. Thus, the normal of crack front can be used as the crack propagation direction. The current method is used to simulate the extension of centre through crack and semic-elliptic surface crack. It is showed that the result including stress intensity factor obtained from current method is consistent to those from literature. Before penetration, the crack grow faster in depth than in other direction. After penetration, the shape of the crack front grow toward the shape of centre-penetrate crack, which is consistent to phenomenon observed in experiment.
     According to the LBB method, after the penetration, the crack opening area (COA) should be determined to estimate whether the medium leakage in pressure pipe is enough to be detected by monitor system of refrigerant. Therefore, crack opening area is a very important parameter for LBB technology. Noting the drawback of engineering algorithm for COA calculation, an numerical method is proposed to determine the COA of cracked pressure pipe and it’s efficiency is proved by means of the COA calculation of centre-crack panel and pressure pipe.
     The method presented in this paper is also used to simulate the propagation of surface crack of pressure pipe including axial surface semic-elliptic crack and circumferential surface semic-elliptic crack. It was found that the growth rate of inner surface semic-elliptic crack is faster than those of outer urface semic-elliptic crack and both two types of crack grow faster in depth direction than the other direction before penetration. After penetration, the shape of the crack front develop toward the shape of centre-penetrate crack, which is consistent to phenomenon observed in experiment.
     Finally, the basic steps of conventional LBB method are presented and the application of numerical method in the method is introduced by means of a typical example of LBB evaluation. The result from the example indicates that it is feasible to adopt numerical method in this paper to analyse the fracture of nuclear pressure pipe.
引文
[1]王泓.材料疲劳裂纹扩展和断裂定量规律的研究.西安:西北工业大学博士学位论文, 2002.
    [2] Richards C.E., Lindley. The influence of stress intensity and microstructure on fatigue crack propagation in ferritic materials [J]. Engineering Fracture Mechanics. 1972, 4: 951-978.
    [3] Paris, P.C., Erdogan. A critical analysis of crack propagation laws [J]. Journal of Basic Engineering, 1963, 85: 528-534.
    [4] Paris, P.C., Gomez, M.P. Anderson. A rational analytic theory of fatigue [J]. The Trend in Engineering, 1961, 13: 9-14.
    [5] Zheng X.L., Hirt M.A. Fatigue Crack Propagation in Steels [J]. Eng. Fract. Mech. 1983, 18(5), 965-973.
    [6] Clark, W.G. Fatigue crack growth characteristics of rotor steels [J]. Engng. Fract. Mech. 1971, 2(2): 287-299.
    [7] Suzuki, H., Mcevily. Microstructural effects on fatigue crack growth in low carbon steels [J]. Metallurgical Transactions. 1979:475-481.
    [8] Paris, P.C., Bucci R.J., Wessel E.T. Extensive study of low fatigue crack growth rates in A533 and A508 steels. In Stress Analysis and Growth of Cracks, Special Technical Publication [M]. 1972. Pp. 141-76.
    [9] Smith F.C., Smith R.A. Fatigue crack growth a fillet welded joint [J]. Engng. Fract. Mech. 1983, 18(4): 861-869.
    [10] Belytschko T., Gracie R. XFEM applications to dislocations and interfaces [J]. International Journal of Plasticity, 2007, 23(10): 1721-1738.
    [11] Oswald J., Gracie R., Khare R., Belytschko T. An extended finite element method for dislocations in complex geometries: Thin films and nanotubes [J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(21-26): 1872-1886.
    [12] Gracie R., Oswald J., Belytschko T.. A new extended finite element method for dislocations: Core enrichment and nonlinear formulation [J]. Journal of the Mechanics and Physics of Solids, 2008, 56(1): 200-214.
    [13] Belytschko T., Lu Y.Y., Gu L. Crack propagation by element-free Galerkin method [J]. Engineering Fracture Mechanics, 1995, 51:295-315.
    [14]谢琴,刘更,刘天祥.再生核粒子法及其应用[J].机械设计, 2003,增刊, 8-9.
    [15] Li S., Liu W.K. Meshfree and particle methods and their applications [J]. Applied MechanicsReview, 2002, 55: 1-34.
    [16] Zhang L.T., Liu W.K., et al. Survey of multi-scale meshfree particle methods [J]. Meshfree Method for Partial Differential Equations, Springer 2003, 441-458.
    [17] Liu G.R. Meshfree methods: Moving beyond the finite element method [M]. Boca Raton: CRC Press LLC, 2003
    [18] Gu Y.T., Liu G.R. A meshfree Weak-Strong (MWS) form method for time dependent problems [J]. Computational Mechanics, 35, 134-145.
    [19] Carpinteri A., Brighenti R., Spagnoli A. Fatigue growth simulation of part-through flaws in thick-walled pipes under rotary bending [J]. Int J Fatigue, 2000, 22: 1-9.
    [20] Carpinteri A., Brighenti R. Circumferential surface flaws in pipes under cyclic axial loading [J]. Eng Fract Mech, 1998, 60(4): 383-96.
    [21] Peng D., Wallbrink C., Jones R. An assessment of stress intensity factors for surface flaws in a tubular member [J]. Eng Fract Mech, 2005, 72: 357-71.
    [22] Wallbrink C., Peng D., Jones R. Assessment of partly circumferential cracks in pipes [J]. Int J Fract, 2005, 133(2): 167-81.
    [23] Wang Q.Z., Jia X.M., et al. More accurate stress intensity factor derived by finite element analysis for the ISMR suggested rock fracture toughness specimen-CCNBD [J]. Int J Rock Mech Min Sci, 2003, 40: 233-41.
    [24] Xiao Q.Z., Dhanasekar M. Coupling of FE and EFG using collocation approach [J]. Advances in Engineering Software, 2002, 33:507-515.
    [25] Rooke D.P., Cartwright D.J. Compendium of Stress Intensity Factors [M]. London: Her Majesty’s Stationary Office, 1976.
    [26] Tada H., Paris P.C., Irwin G.R. The Stress Factor Handbook [M]. Hellertown: Del Research Corporation, 1985.
    [27] Murakami Y. Stress Intensity Factors Handbook [M]. New York: Pergamon, 1987.
    [28] Shahani A.R., Habibi S.E. Stress intensity factors in a hollow cylinder containing circumferential semi-elliptical crack subjected to combined loading [J]. International Journal of Fatigue, 2007, 29: 128-140.
    [29]周维垣,肖洪天,吴劲松.三维间断位移法及强奇异和超奇异积分的处理方法[J].力学学报, 2002, 34(4): 645-651.
    [30] Hartranf R.J., Sih G.C. The use of eigenfunction expansions in the general solution of three dimensional crack problems [J]. J.Mathematics and Mechanics, 1969, 19: 123-138.
    [31] Kim J.H., Song J.H. Crack growt h and closure behaviour of surface cracks under axial loading [J]. Fatigue Fract Engng Mater St ruct, 1992, 15: 477-89.
    [32] Oh C.S., Song J.H. Crack growt h and closure behaviour of surface cracks under pure bending loading [J]. Int J Fatigue, 2001, 23: 25-28.
    [33] Nikishkov G.P., Atluri S.N. Calculation of fracture mechanics parameters for an arbitrary 3-D crack by the equivalent domain integral method [J]. International Journal for Numerical Methods in Engineering, 24: 1801-1822.
    [34] Morgan B., Shih C.F., Crack tip and associated domain integrals from momentum and energy balance [J]. Engineering Fracture Mechanics, 27(6): 615-641.
    [35] Anderson T.L. Fracture Mechanics: Fundamentals and Applications [M]. CRC Press.
    [36] Lu Y.Y., Belytschko T., Gu L. A new implementation of the element free Galerkin method [J]. Computer Methods in Applied Mechanics and Engineering, 113: 97-414.
    [37] Irwin G.R., One set of fast crack propagation in high strength steel and aluminum alloys [C]. Sagamore Research Conference Proceeding, 1956, 2: 289-350.
    [38] Rybicki E.F., Kanninen M.F. A finite element calculation of stress intensity factors by a modified crack closure integral [J]. Engineering Fracture Mechanics, 1977, 9: 931-938.
    [39] Raju J.S. Calculation of strain-energy release rates with high-order and singular finite-elements [J]. Engineering Fracture Mechanics, 1987, 28: 251-274.
    [40] Citatella R., Perella M. Multiple surface crack propagation: numerical simulations and experimental tests [J]. Fatigue Fract Engng Mater Struct, 2005, 28: 135-148.
    [41]孟广伟,郭学东,聂毓琴.二维反轴对称裂纹问题的SQCE列式及计算[J].吉林工业大学学报, 1994, 24(3): 54-57.
    [42]鞠彦忠,肖琦.三维表面平行裂纹SIF及尺寸效应的边界元分析[J].东北电力学院学报, 1994, 14(1): 52-56.
    [43]陶伟明,郭乙木,曹志远.三维有限裂纹体分析[J].固体力学学报, 2001, 22(3): 256-272.
    [44]陈梦成,余荷根,汤任基.三维裂纹问题的高精度数值解法[J].固体力学学报, 2002, 23(2): 207-211.
    [45]汤任基,高闯,陈梦成.三维基体裂纹与界面垂直接触的线奇异分析[J].力学学报, 1999, 31(3): 358-365.
    [46]黄佩珍,师俊平,李中华.求解界面裂纹应力强度因子的高次权函数法[J].固体力学学报, 2000, 21(2): 166-170.
    [47]冯西桥,何树延,董铎.核反应堆管道和压力容器的LBB分析[J].力学进展, 1998, 28(2):198-217.
    [48] US Nuclear Regulatory Commission- Evaluation of Potential for Pipe Breaks [M]. NUREG-1061, Washington, 1984.
    [49] International Atomic Energy Agency. Application of the LBB Concept [M]. IAEATECDOC710, Vienna, 1993.
    [50] International Atomic Energy Agency. Guidance of the Application of the LBB Concept [M]. IAEA TECDOC 774. Vienna, 1994.
    [51] Milne I, Ainsworth R A, et al. Assessment of the Integrity of Structures Containing Defects [R]. CEGB Report R/H/R6-Rev 3, 1985.
    [52] Moan G.D., Coleman C.E., et a1. Leak-before-break in the pressure tubes of CANDU reactors [J]. Int J Pres Ves Piping, 1990, 43(1): 1-21.
    [53] The Office of the Federal Register, Standard Review Plan, Section 3.6.3, Leak-Before-Break Evaluation Procedures [M]. Washington, 1987.
    [54] Wichman K., Lee S. Development of USNRC Standard Review Plan 3.6.3 for leak -before-break to nuclear power plant [J]. Int J Pres Ves Piping, 1990, 43(1): 57-65.
    [55] Ukadgaonker V.G., Babu R.S. Review of work related to leak-before-break assessment [J]. Int J Pres Ves Piping, 69(2): 135-148.
    [56] Zdarek J., Pecinka L., Joch J. LBB technology application to the primary piping system of the NPP V1 laslovske Bohunios [J]. Nuel Eng Design, 1993, 144(1): 69-76.
    [57] Tsurui A., Tanaka H., Tanaka T. An analytical method for leak before break assessment based upon stochastic fracture mechanics [J]. Nuel Eng Design,1994, 147(2): 171-18l.
    [58] Kiselev V.A., Rivkin E.Y, et a1. Application of leak-before-break concept to integrity and safety of PRW primary piping with WWER 1000 [J]. Nuel Eng Design, 1994, 15l: 409-424.
    [59] Rose R.T, Tomkins B., Townley C.H.A. Development of design procedures for fast reactors in the United Kingdom [J]. Int J Pres Ves Piping, 1989, 37: 99-112.
    [60] Aggarwal M.L., Kozluk M.T., et a1. A leak-before-break strategy for CANDU primary systems [J], Int J Pres Ves Piping, 1986, 25: 239-256.
    [61] Framatome R. LBB analysis of the weld A of the surge line with erection loads [R]. EERDC Report 0646, 1993.
    [62] Esteban A, Bolalos M.F., Figueras J.M. A plugging criterion for steam generator tubes based on leak-before-break [J]. Int J Pres Ves Piping, 1990, 43: 181-186.
    [63] Nam. K.W., Ando K., et a1. Leak-before-break conditions of plates and pipes under high fatigue stress [J]. Fract Eng Mater Struct, 1992, 15(8): 809-824.
    [64] Dong Y.M., Yang W., Hwang K.C. Elastic-plastic defect assessment based on ductile fracture Process [J]. Nuel Eng Design, 1993, 142(1): 27-41.
    [65] Dong Y.M., Yang W., Hwang K.C. A new effective approach to structure integrity assessment baaed on ductile fracture [J]. Fract Eng Mater Struct, 1990, l3 (3): 399-410.
    [66]费英琼,藏弧民,黄克智.基于延性撕裂的“PD6493高级评定方法及EPRI方法”的优化评定和应用对比研究[J].工程力学, 1994, 11(13): 18-27.
    [67]李志安,金志浩,宫殿民.压力容器的断裂理论与缺陷评定[M].大连,大连理工大学出版社, 1994.
    [68]徐宏.压力管道缺陷评定工程方法[D].武汉,华中理工大学, 1995.
    [69]姜苇.核安全技术中采用的核承压设备缺陷评定方法[C].第八届全国反应堆结构力学会议文集, 1994, 160-163.
    [70]何树延,熊敦士,应明,于溯源. LTHR-200压力壳的破前漏分析[J].压力容器, 1993, 10: 513-516.
    [71]高文道. LBB及其在PC工程中的应用[C].第八届全国反应堆结构力学会议文集, 1994, 312-3l8.
    [72]谷芳毓.国际反应堆结构力学的发展趋势[C].第九届全国反应堆结构力学会议论文汇编, 1996, 1-l2.
    [73]沈士明.国外核电站压力管道LBB研究综述[C].第九届全国反应堆结构力学会议论文汇编, 1996, 223-238.
    [74]冯西桥,何坩延.表面裂纹扩展的一种损伤力学方法[J].清华大学学报, 1997, 37(5): 78-82.
    [75] Boukharouba T., Pluvinage G. Prediction of semi-elliptical defect form, case of a pipe subjected to internal pressure [J]. Nuclear Engineering and Design, 1999, 188: 161-171.
    [76] Carpinteri A., Brighenti R., Spagnoli A. Part-through cracks in pipes under cyclic bending [J]. Nuclear Engineering and Design, 1998; 185:1-10.
    [77] Rahman S. Probalilistic fracture analysis of cracked pipes with circumferential flaws [J]. Int.J. Pres. Ves&Piping, 1997, 70: 223-236.
    [78] Moulin D., Delliou P.L. French experimental studies of circumferentially through-wall cracked austenitic pipes under static bending [J]. Int. J. Pres. Ves & Piping. 1996, 65: 343-352.
    [79]冯贤桂.天然气管道的疲劳可靠寿命计算[J].重庆大学学报, 2002, 25(7): 231-135.
    [80]金伟良,付勇,赵冬岩,白秉仁.具有裂纹损伤的海底管道断裂及疲劳评估[J].海洋工程, 23(3):179-183.
    [81]周剑秋,程凌.基于可靠性评价的含缺陷核压力管道疲劳寿命预测方法[J]. 2006, 35(2): 331-336.
    [82]刁顺等.几种油气输送管材料的疲劳特性与管道寿命预测.中国安全科学学报[J]. 2008, 18(1): 275-279.
    [83] Moulin D., Delliou P.L. French experimental studies of circumferentially through-wall cracked austenitic pipes under static bending [J]. Int. J. Pres. Ves & Piping. 1996, 65: 343-352.
    [84] Kashima K., Miura N., Kanno S., Miyazaki K., Ishiwata M., Gotoh N. A research program fordynamic fracture evaluation of Japanese carbon steel pipes [J]. Nuclear Engineering and Design. 1997, 174: 33-39.
    [85] Ancelet O., Chapuliot S., Henaff G. Experimental and numerical study of crack initiation and propagation under a 3D thermal fatigue loading in a welded structure [J]. International Journal of Fatigue, 2008, 30: 953-966.
    [86]潘勇琨,庄传晶,霍春勇,冯耀荣,李平全.含缺陷油气管道剩余疲劳寿命的预测[J]. 2001, 29(8): 127-133.
    [87] Bjorn B., Iradj S.F. Crack shape developments for LBB applications [J]. Engineering Fracture Mechanics, 2000, 67: 625-646.
    [88] GU Y.T., ZHANG L.C. Coupling of the meshfree and finite element methods for determination of the crack tip fields [J]. Engineering Fracture Mechanics, 2008, 75(5): 986-1004.
    [89]王建明,周学军.无网格方法理论及程序设计[M].山东大学出版社, 2009.
    [90]刘更,刘天祥,谢琴.无网格法及其应用[M].西北工业大学出版社, 2005.
    [91] Lucy L.B. A numerical approach to the testing of the fission hypothesis [J]. The Astron. J., 1977, 8(12): 1013-1024.
    [92] Belytschko T., Lu. Y.Y., Gu L. Element-free Galerkin methods [J]. Int. J. Numer. Mech. Engng. 1994, 37: 229-256.
    [93] Hu D. A., Long S. Y., Liu K. Y., Li G. Y., A modified meshless local Petrov- Galerkin method to elasticity problems in computer modeling and simulation [J]. Engineering Analysis with Boundary Elements, 2006, 30(5): 399-404.
    [94] Beissel S., Belytschko T. Nodal integration of the element-free Galerkin method [J]. Comput. Method Appl. Mech. Engrg., 1996, 139: 49-74.
    [95] Boots. B.N., Voronoi (Thiessen) Polygons [M]. Norwich, U. K.: Geo Books, 1986.
    [96] Okabe. A., Boots. B., Sugihara. K. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams [R]. Chichester, England: Wiley, 1992
    [97] Aurenhammer. F. Voronoi diagrams-a survey of a fundamental geometric data structure. ACM Trans. Math. Software, 1996, 23:469-483
    [98]张雄,刘岩石.无网格法[M].北京:清华大学出版社, 2004.
    [99] Belytschko T., Lu Y. Y., Gu L. Element-free Galerkin methods [J]. Int. J. Numer. Mech. Engng. , 1994, 37: 229-256.
    [100] Lancaster P., Salkauskas K. Surfaces generated by moving least squares methods [J]. Math. Comput., 1981, 37: 141-158.
    [101] Belytschko T., Organ D., Krongauz Y. A coupled finite element-element-free Galerkin method [J]. Computational Mechanics, 1995, 17: 186-195.
    [102]张敦福,朱维申,李术才.三维裂纹应力强度因子数值计算[J].岩石力学与工程学报, 2006, 25(2): 3835-3840.
    [103] Belytschko T., Lu Y. Y., Gu L. Element-free Galerkin methods. Int. [J]. Num. Meth. Eng 1994, 37:229-256.
    [104] Organ D., Fleming M., Terry T., Belytschko T. Continuous meshless approximation for nonconvex bodies by diffraction and transparency [J]. Comp. Mech., 1996, 18:75-89.
    [105] Cordes L.W., Moran B. Treatment of material discontinuity in the Element-free Galerkin method [J]. Comput. Meth. Appl. Mech. Eng. 1996, 139: 75-89.
    [106] Liu T., Liu G., Wang Q. An element-free Galerkin-finite element coupling method for elasto plastic contact problems [J]. ASME Journal of Tribology, 2005.
    [107] Rao B.N., Rahman S. A coupled meshless-finite element method for fracture analysis of cracks [J]. Pressure Vessels and Piping, 2001, 78(9): 647-657.
    [108] Karutz H., Chudoba R., KRATZING W.B. Automatic adaptive generation of a coupled finite element/element-free Galerkin discretization [J]. Finite Element in Analysis and Design, 2002, 38(11): 1075-1091.
    [109] Hegen. Element-free Galerkin methods in combination with finite element approaches [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 135(1-2): 143-166.
    [110] Ntonio H., Sonia F.M. Enrichment and coupling of the finite element and meshless method [J]. International Journal for Numerical Methods in Engineering, 2000, 48(3): 1615-1636.
    [111] Lacroix D., Bouilllard P.H. Improved sensitivity analysis by a coupled FE-EFG method [J]. Computers & Structure, 2003, 81(26-27): 2431-2439.
    [112]柳军,严波,赵莉,刘成.基于转换矩阵的FE/EFG耦合算法.计算力学学报, 2010, 27(4): 596-600.
    [113] Sukumar N., Moran B., Black T., Belytschko T. An element-free Galerkin method for three-dimensional fracture mechanics [J]. Computational Mechanics, 1997, 20(13): 170-175.
    [114] Zhu T., Zhang J., Atluri S.N. A meshless local boundary integral equation (LBIE) method for solving nonlinear problems [J]. Comput. Mech, 1998, 22(6): 174-186.
    [115] Belytschko T., Lu Y.Y. Singular Integration in Variationally Coupled FE-BE Method [J]. Engng. Mech., 1991, 117(4): 820-835.
    [116] Xiao Q.Z., Dhanasekar M. Coupling of FE and EFG using collocation approach [J]. Advances in Engineering Software, 2002, 33(7-10): 507-515.
    [117]柳军,严波.直接施加本质边界条件的FE/EFG耦合算法及其数值实现.计算力学学报,出版中.
    [118] Roak R.J., Young W.C. Formulas for stress and strain [R]. Mc Grawhill.
    [119]郭日修.弹性力学与张量分析[M].高等教育出版社, 2003.
    [120] Liu J., Yan B., Jiang N.B. Computational Method for Crack-Opening-Area of Nuclear Pressure Pipe with Circumferential Through-Wall Crack [C]. 18th International Conference on Nuclear Engineering, 2010, 5, 28.
    [121]柳军,严波,姜乃斌,孙英学.不连续问题的无网格分域算法[J].重庆大学学报, 2011,34(1): 128-133.
    [122] Shahani A.R., Habibi S.E. Stress intensity factors in a hollow cylinder containing circumferential semi-elliptical crack subjected to combined loading [J]. International Journal of Fatigue 2007, 29:128-140.
    [123]周维垣,肖洪天,吴劲松.三维间断位移法及强奇异和超奇异积分的处理方法[J].力学学报, 2002, 34(4): 645-651.
    [124] Citatella R., Perella M. Multiple surface crack propagation: numerical simulations and experimental tests [J]. Fatigue Fract Engng Mater Struct, 2005, 28: 135-148.
    [125] Roberto B. Application of the element-free Galerkin meshless method to 3-D fracture mechanics problems, Engineering Fracture Mechanics [J]. 2005, 72, 2808-2820.
    [126] Rybicki E.F., Kanninen M.F. A finite element calculation of stress intensity factors by modified crack-closure integral [J]. Engineering Fracture Mechanics, 1977, 9: 931-938
    [127] Raju I.S. Calculation of stain-energy release rates with high-order and singular finite-elements [J]. Engineering Fracture Mechanics, 1987, 28: 251-274.
    [128] Irwin G.R. One set of fast crack propagation in high strength steel and aluminum alloys [C]. Sagamore Research Conference Proceedings, 1956, 2: 289-305.
    [129]解德,钱勤,李长安.断裂力学中的数值计算方法及工程应用[M].科学出版社,2009.
    [130] Tanaka K. Fatigue crack p ropagat ion from a crack inclined to the cyclic tensile axis [J]. Eng Fracture M echanics, 1974, 6: 493 507.
    [131]李强,王波,李存铮,岑章志. T型焊接接头中疲劳裂纹扩展的三维边界元模拟[J].清华大学学报(自然科学版), 2002, 42(4): 470-473.
    [132] Bjorn B., Iradj S.F. Crack shape developments for LBB applications [J]. Engineering Fracture Mechanics, 2000, 67: 625-646.
    [133]应力强度因子手册[M].科学出版社, 1981.
    [134] Paris, P.L., Sih, G.C.,ASTM STP 381 (1964) 30.
    [135]周剑秋,张卫华.含缺陷压力管线疲劳寿命预测计算方法[J].南京化工大学学, 2007, 22(3): 36-38.
    [136] Genki Y., Shinohu Y. A study on probabilistic fracture mechanics for nuclear pressure vessels and piping [J]. Int. J. Press. Ves & Piping 1997, 73: 97-107.
    [137] Naoki M., Yukio T., Hiroshi S., Kazuhiko I. Comparison of stress intensity factor solutions for cylinders with axial and circumferential cracks [J]. Nuclear Engineering and Design, 2008, 238: 423-434.
    [138] Moulin D., Delliou P.L. French experimental studies of circumferentially through-wall cracked austenitic pipes under static bending [J]. Int. J. Pres. Ve s& Piping. 1996, 65:343-352.
    [139]金伟良,付勇,赵冬岩,白秉仁.具有裂纹损伤的海底管道断裂及疲劳评估[J].海洋工程. 23(3): 335-343.
    [140]周剑秋,程凌.基于可靠性评价的含缺陷核压力管道疲劳寿命预测方法.石油化工设备, 2006;35(2): 5-8.
    [141] D. Moulin, P. Le Delliou. French experimental studies of circumferentially through-wall cracked austenitic pipes under static bending. Int. J. Pres. Ves & Piping. 1996, 65:343-352.
    [142] Kashima K., Miura N., Kanno S., Miyazaki K., Ishiwata M., Gotoh N. A research program for dynamic fracture evaluation of Japanese carbon steel pipes [J]. Nuclear Engineering and Design. 1997, 174:33-39.
    [143] Ancelet O., Chapuliot S., Henaff G. Experimental and numerical study of crack initiation and propagation under a 3D thermal fatigue loading in a welded structure [J]. International Journal of Fatigue, 2008, 30: 953-966.
    [144]潘勇琨,庄传晶,霍春勇,冯耀荣,李平全.含缺陷油气管道剩余疲劳寿命的预测[J]. 2001, 29(8): 4-6.
    [145] Boukharouba T., Pluvinage G. Prediction of semi-elliptical defect form, case of a pipe subjected to internal pressure [J]. Nuclear Engineering and Design. 1999; 188: 161-171.
    [146] Andrea C., Roberto B., Andrea S. Part-through cracks in pipes under cyclic bending [J]. Nuclear Engineering and Design, 1998; 185: 1-10.
    [147] Rahman S. Probalilistic fracture analysis of cracked pipes with circumferential flaws [J]. Int.J.Pres.Ves&Piping. 1997, 70: 223-236.
    [148] Hideki S., Bo Y., Yasuho. Numerical simulation study of cracked aluminum panels repaired with a FRP composite patch with combined BEM/FEM [J]. Engineering Fracture Mechanics, 2005, 72: 2549-2563.
    [149]邓彩艳.焊接压力管道“先漏后断”评定理论及应用研究[D].天津大学硕士学位论文, 2006.
    [150] Smith E. Leak-before-break: estimating the leakage area associated with a through-wall circumferential crack in a steel piping system [J]. International Journal of Pressure Vessels and Piping, 1996, 65(2): 141-145.
    [151] Hasegawa K., Okamoto, A., Yokota, H., et al. Crack opening area of pressurized pipe forleak-before-break evaluation [J]. JSME International Journal, Series 1: Solid Mechanics, Strength of Materials, 1991, 34(3): 332-338.
    [152] Paris P. C., Tada H. The Application of Fracture Proof Design Methodology using Tearing Instability Theory to Nuclear Piping Postulating Circumferential through-wall Crack [R]. NUREG/CR-3464, Nuclear Regulatory Commission, 1983.
    [153] Mohammad Iranpour, Farid Taheri. A study on crack front shape and the correlation between the stress intensity factors of a pipe subject to bending and a plate subject to tension [J]. Marine Structures, 2006, 19: 193-216.
    [154] Zahoor A. Closed form expression for fracture mechanics analysis of cracked pipes [J]. Trans ASME J Pres. Ves. Technol. 1985, 107, 203~205.
    [155] Paris P. C., Tada H. The Application of Fracture Proof Design Methodology using Tearing Instability Theory to Nuclear Piping Postulating Circumferential through-wall Crack. NUREG/CR-3464, Nuclear Regulatory Commission, 1983.
    [156] Klecker R., Brust F. W., Wilkowski G. NRC leak-before-break(LBB.NRC)Analysis Method for Circumferentially Through-wall Cracked Pipes under Axial plus Bending Loads, NUREG/CR-4572, 1986.
    [157] Withrich C. Crack opening areas in pressure vessels and pipes [J]. Eng Fract Mech, 1983, l8(5): 1049-1057.
    [158] Bhandari S., Faidy C., Acker D. Computation of leak areas of circumferential cracks in piping for application in demonstrating LBB behavior [J]. Nuel Eng Design, 1992, 135(2): 141-49.
    [159] Zahoor A. Ductile Fracture Handbook [M], 1989, EPRI NP-6301.
    [160] Sanders J. L. Dugdale model for circumferential through-cracks in pipes loaded by bending [J]. Int J Fracture, 1987, 34(1): 71-81.
    [161] Irwin G. R. Fracture. In: Flugge, S. (Ed), Handbuch der Physik, Vol. VI. Springer-Verlag, Berlin, 1958, 551-590.
    [162] Kumar V., German M. Elasto-Plastic Fracture Analysis of Through-Wall and Surface flaws in cylinders [R]. 1988, EPRI NP-5596.
    [163] Kumar V., German M., Shih C. An engineering approach for elastic-plastic fracture analysis [R]. EPRI Report NP-1931. Palo Alto, CA: Electric Power Research Institute, 1981.7.
    [164] Kumar V., German M., Wilkening W., Andrews W., Delorenzi H., Mowbray D. Advances in elastic-plastic fracture analysis [R]. EPRI Final Report NP-3607. Palo Alto, CA: Electric Power Research Institute, August 1984.
    [165] Kishida K., Zahoor A. Crack-opening area calculations for circumferential through-wall pipe cracks [R]. EPRI Special Report NP-5959-SR. Palo Alto, CA: Electric Power Research Institute,August 1988.
    [166]熊冬庆,陆道纲.破前漏(LBB)分析方法在钠冷快堆管道分析中的应用探讨[J].核动力工程学报,2008,29(5): 9-14.
    [167] Abdollahian D., Chexal B. Calculation of leak rates through cracks in pipes and tubes [R]. EPRI NP-3395, 1983.
    [168] Bartholome G., Kastner W., Keim E. Design and calibration of leak detection systems by thermal hydraulica and fracture mechanics analysis [J]. Nuel Eng Design, 1993, 142(1): 1-13.
    [169]徐进良.小破口失水事故两相临界流研究[D].西安,两安交通大学, 1995.
    [170] Narabayashi T., Fujii M., et al. Experimental study on leak flow model through fatigue crack in pipe [J]. Nuel Eng Design, 199l, 128(1): 17-27.
    [171] Xu J. L., Chen T. K., Yang L. W. J. Two-phase critical discharge of initially saturated or sub-cooled water flowing in sharp edged tubes at high temperatures [J]. Thermal Science, 1995, 4(2): 193-199.
    [172]周洪范等(译).弹塑性断裂分析工程方法[M].北京,国防工业出版社, 1985.
    [173]董碧波.中国实验快堆高温钠管道蠕变分析方法研究[D].华北电力大学硕士学位论文,2006.
    [174] APPENDIX A16,RCC-MR [S].2002.
    [175] CAI Y. C., ZHU H. H. Direct imposition essential boundary conditions and treatment of material discontinuities in the EFG method [J], Computational Mechanics, 2004(4), 34: 330-338.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700