纳米级CMOS逐次逼近A/D转换器设计研究与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为片上系统(SoC: System-on-Chip)的一种重要模块单元,A/D转换器(ADC: Analog-to-Digital Converter)的应用日益广泛。集成电路工艺尺寸的不断减小在推动数字电路迅速发展的同时增加了高性能模拟电路的设计难度,A/D转换器作为典型的数模混合信号电路,在纳米级CMOS工艺下既面临着机会也面临着挑战。作为应用最为广泛的一种ADC类型,逐次逼近(SAR: Successive Approximation Register)A/D转换器所含模拟电路较少,具有结构简单、功耗低、易集成等优点,在纳米级CMOS工艺下有很好的发展前景。
     基于多种SAR ADC结构类型,采用理论分析推导结合Matlab建模验证的方式,对SAR ADC D/A转换网络无源元件匹配性以及能耗进行了研究。详细分析和讨论了SAR ADC中比较器、开关以及电压基准的设计技术。在以上研究的基础上,基于纳米级CMOS工艺设计实现了两种SAR A/D转换器。
     基于SMIC 65nm CMOS低漏电工艺设计实现了一种8通道12-bit 200kS/s触摸屏SAR A/D转换器。提出了一种新型R-C混合式D/A转换结构,通过一种二进制比例的电容对实现了电阻梯的复用,减小了转换器的面积,整个ADC的面积小于0.13mm~2。提出了一种与SAR ADC工作原理完全兼容并且不增加任何额外时序逻辑的新型失调消除技术,有效减小了伪差分比较器的失调电压。提出了一种结合双端分段非线性补偿、对数项消除技术以及混合模式拓扑输出的新型温度补偿技术,提高了ADC内部电压基准源的温度稳定性。测试结果显示,12-bit SAR ADC具有70.13dB的信噪失真比(SNDR: Signal to Noise and Distortion Ratio),失调误差为1.28LSB,功耗仅为2.8mW,满足触摸屏SoC的应用要求。
     基于SMIC 90nm CMOS Logic工艺设计实现了一种8通道10-bit SAR A/D转换器。提出了一种能够用于高速低功耗系统的新型电平转换器,和传统结构相比,在速度和功耗方面都得到了显著优化。通过采用该新型电平转换器,并对内部R-C混合式D/A转换网络以及低失调伪差分比较器进行速度优化,该转换器实现了2.5MS/s的采样速率。整个ADC的面积为0.051mm~2。在3.3V模拟电压和1.0V数字电压下,当输入为100kHz,3.0V峰-峰值的正弦信号时,该10-bit ADC具有9.41-bits有效位(ENOB: Effective Number of Bits),功耗为6.62mW。
     通过采用双电源进行设计,两种纳米级ADC均在较小的面积下实现了良好的信噪比,优良指数(FoM: Figure-of-Merit)也分别达到5.32 pJ/conversion step和4.47 pJ/conversion step,已经达到同类设计的优秀水平。
A/D converters have been widely used as the SoCs’fundamental building blocks. With the silicon feature dimension downscaling into nanoscale, great improvement has been made in the performance of digital circuits, but making high performance analog circuits design increasingly difficult. As typical mixed signal circuits, A/D converters are facing both opportunities and challenges to realize high performance based on nanoscale CMOS. SAR A/D converter is one of the most popular ADCs due to its simple architecture, small area and easiness to be integrated with other blocks. SAR ADC contains less analog circuits and has advantages over other ADCs along with CMOS technology downscaling.
     Based on different types of SAR A/D converter, the passive components’mismatch and energy dissipation of internal D/A conversion networks is explored with theoretical derivation and verified by modeling using Matlab. The key design techniques for the comparators, switches and voltage references in SAR ADCs are discussed in detail. Two A/D converters suitable for different applications are designed and implemented in nanoscale CMOS process.
     An 8-channel 12-bit 200kS/s touch screen SAR ADC is realized based on SMIC 65nm CMOS low leakage process. The chip size is reduced to be less than 0.13mm~2 by using a novel R-C hybrid D/A conversion network, in which the resistor string is reused by a binary-ratioed capacitor pair. Without adding any additional control logic, a novel offset cancellation technique compatible with the operation of SAR ADC is proposed to reduce the offset of the pseudo-differential comparator. A novel temperature compensation technique used for the ADC internal bandgap voltage reference is proposed. With the double-end piecewise nonlinearity correction method, logarithm cancellation technique and the mixed mode output, the temperature stability of the internal voltage reference is improved. The measurement results of this 12-bit ADC show that the SNDR (Signal to Noise and Distortion Ratio) is 70.13dB and its power dissipation is only 2.8mW, meeting the requirement of the touch screen SoC application.
     An 8-channal 10-bit SAR ADC is realized based on SMIC 90nm CMOS Logic process. A novel voltage level-shifter suitable for high-speed and low power SoC is described. Compared with traditional one, this level-shifter can operate at higher speed and dissipate even less power. By taking this new level-shifter, together with the optimization on speed of the low-offset pseudo-differential comparator and the internal R-C hybrid D/A conversion network, the 10-bit ADC can operate in a sampling rate of up to 2.5MS/s. This SAR A/D converter occupies an area of 0.051mm2. Under the condition of 3.3V analog supply, 1.0V digital supply and a 100 kHz 3.0Vp-p sinusoidal input signal, the ENOB (Effective Number of Bits) of this ADC is measured to be 9.41 and the power dissipation is 6.62mW.
     Operated with two power supplies, both of these two nanoscale ADCs achieve high SNDR with small area. The FoM (Figure-of-Merit) of these two converters are 5.32-pJ/conv. step and 4.47 pJ/conv. step respectively, which are at the advanced level in this direction.
引文
[1]陈贵灿,邵志标,程军,等. CMOS集成电路设计.西安:西安交通大学出版社出版, 1999. 1-11.
    [2] Razavi B. Design of Analog CMOS Integrated Circuits. Asia: McGraw-Hill, 2005. 1-3.
    [3] Analog Devices. Touch Screen Controller. Norwood MA, USA, Nov. 2009. http://www.analog.com/en/analog-to-digital-converters/ad-converters/ad7877/products/product.html.
    [4] Long S L, Yin Q, Wu J H, etal. Design and Realization of a Successive Approximation ADC in SOC System. Research and Progress of SSE. 2007, 27(3). 380-385.
    [5] Ginsburg B P, Chandrakasan A P. Highly Interleaved 5-bit, 250-MSample/s, 1.2-mW ADC with Redundant Channels in 65-nm CMOS. IEEE JSSC 2008. 2008, 43(10). 2641-2650.
    [6] Scott M D, Boser B E, Pister K S J. An Ultralow-Energy ADC for Smart Dust. IEEE JSSC 2003. Jul. 2003, 38(7). 1123-1129.
    [7] Verma N, Chandrakasan A P. A 25μW 100kS/s 12bit ADC for Wireless Micro-Sensor Applications. 2006 ISSCC Digest of Technical Papers. Feb.2006. 222–223.
    [8] Texas Instruments. 10-/8-Bits, 1.25MSPS, Micro-Power, Miniature SAR Analog to Digital Converters. ADS7877 of Texas Instruments. Jun. 2005. 1-18.
    [9]唐永建.片上10位20兆赫兹流水线A/D转换器的设计.浙江大学硕士学位论文.杭州:浙江大学, 2005. 1-3.
    [10] Allan-Rev-1. 2009 ITRS ORTC. Dec. 2009. http://www.itrs.net/Links/2009- Winter/Presentations/Conference/ORTC_121609.pdf
    [11]张诗娟. 12位逐次逼近型A/D转换器的设计.华中科技大学硕士学位论文.武汉:华中科技大学, 2005. 8-10.
    [12] Schoeff J A. A monolithic analog subsystem for high-accuracy A/D conversion. 1973 ISSCC Digest of Technical Papers. 1973. 18-19.
    [13] Mccreary J L, Gray P R. All-MOS Charge Redistribution Analog-to-Digital Conversion Techniques-Part 1. IEEE JSSC 1975. Dec. 1975, SC-10(6). 371-379.
    [14] Dingwal A G E, Rosenthal B D. Low-power Monolithic COS/MOS Dual-Slope 11-bit A/D Converter. 1976 ISSCC Digest of Technical Papers. 1976. 146-147.
    [15] Tsugaru K, Sugimoto Y, Noda M, et al. A 10bit 40MHz ADC using 0.8μmBi-CMOS technology. Proceedings of the 1989 Bipolar Circuits on Technology Meeting. 1989. 48-51.
    [16] Matsuzawa A, Kagawa M, Kanoh M, et al. A 10b 30MHz Two-Step Parallel BiCMOS ADC with Internal S/H. 1990 ISSCC Digest of Technical Papers. 1990. 162-163.
    [17] Matsuzawa A, Kagawa M, Kanoh M, et al. A 10b 10MHz Triple-Stage Bi-CMOS A/D Converter. Digest of Technical Papers of 1990 Symposium on VLSI Circuits. 1990. 35-36.
    [18] Sone K, Nishida Y, Nakadai N. A 10-bit 100Msample/s Pipeline Subranging BiCMOS ADC. IEEE JSSC 1993. Dec. 1993, 28(12). 1180-1186.
    [19] Dorrer L, Kuttner F, Greco P, et al. A 3-mW 74-dB SNR 2-MHz continuous-time delta-sigma ADC with a tracking ADC quantizer in 0.13-μm CMOS. IEEE JSSC 2005. Dec. 2005, 40(12). 2416-2427.
    [20] Dorrer L, Kuttner F, Santner A, et al. A 2.2mW, Continuous-Time Sigma-Delta ADC for Voice Coding with 95dB Dynamic Range in a 65nm CMOS Process. Montreux of Switzerland: ESSCIRC 2006, 2006. 195-198.
    [21] Lee S C, Jeon Y D, Kwon J K, et al. A 10-bit 205-MS/s 1.0-mm2 90-nm CMOS Pipeline ADC for Flat Panel Display Applications. IEEE JSSC 2007. Dec. 2007, 42(12). 2688-2695.
    [22] Li J, Zeng X Y, Xie L, et al. A 1.8-V 22-mW 10-bit 30-MS/s Pipelined CMOS ADC for Low-Power Subsampling Applications. IEEE JSSC 2008. Jan. 2008, 43(2). 321-329.
    [23] Hwang S H, Moon J H, Jung S H, et al. Design of a 1.8V 6-bit 100MSPS 5mW CMOS A/D Converter with Low Power Folding-Interpolation Techniques. Montreux of Switzerland: ESSCIRC 2006, 2006. 548-551.
    [24] Azin M, Movahedian H, Bakhtiar M S. An 8-bit 160 MS/s folding-interpolating ADC with optimized active averaging/interpolating network. Kobe of Japan: ISCAS 2005, 2005. 6150-6153.
    [25] Chen C C, Chung Y L, Chiu C I. 6-b 1.6-GS/s flash ADC with distributed track-and-hold pre-comparators in a 0.18μm CMOS. 2009 ISSCC Digest of Technical Papers. 2009. 1-4.
    [26] Shaker M O, Gosh S, Bayoumi M A. A 1-GS/s 6-bit flash ADC in 90 nm CMOS. Cancun of Mexico: MWSCAS 2009, 2009. 144-147.
    [27] Tu W H, Kang T H. A 1.2V 30mW 8b 800MS/s time-interleaved ADC in 65nm CMOS. Honolulu of USA: Digest of Technical Papers of 2008 IEEE Symposiumon VLSI Circuits, 2008. 72-73.
    [28] Ginsburg B P, Chandrakasan A P. Dual Time-Interleaved Successive Approximation Register ADCs for an Ultra-Wideband Receiver. IEEE JSSC 2007. Feb. 2007, 42(2). 247-257.
    [29] Van Elzakker M, Van Tuijl E, Geraedts P, et al. A 1.9μW 4.4fJ/Conversion-step 10b 1MS/s Charge-Redistribution ADC. 2008 ISSCC Digest of Technical Papers. 2008. 244-245.
    [30] Verma N, Chandrakasan A P. An Ultra Low Energy 12-bit Rate-Resolution Scalable SAR ADC for Wireless Sensor Nodes. IEEE JSSC 2007. Jun. 2007, 42(6). 1196-1205.
    [31]许居衍,徐世六.关于A/D与D/A转换器发展动向的一些思考.微电子学. Aug. 1998, 28(4). 217-223.
    [32]王晶.模拟/数字转换技术及其发展趋势.微电子学. Jun. 2005, 35(3).221-225.
    [33] Tsang C W. Digitally Calibrated Analog-to-Digital Converters in Deep Sub-micron CMOS. A Ph.D thesis of the University of California, Berkeley. Berkeley: University of California, Berkeley, 2008. 1-6.
    [34] Grozing M, Berroth M, Gerhardt E, et al. High-Speed ADC Building Bocks in 90nm CMOS. Duisburg of Germany: SODC 2006, Sep. 2006. 1-4.
    [35] Lee J, Loux P, Link T, et al. A 5-b 10-Gsamples/s A/D converter for 10-Gb/s Optical Receivers. GaAs IC 2003. Nov. 2003. 204-207.
    [36] Schvan P, Bach J, Fait C, et al. A 24GS/s 6b ADC in 90nm CMOS. 2008 ISSCC Digest of Technical Papers. Feb. 2008. 544-545.
    [37]科技资讯.国科网.中科院微电子所研制成功国内领先水平的单通道超高速ADC芯片. Jan. 2010. http://www.tech110.net/news/html/n_385776.html.
    [38] Texas Instruments. 16-Channel, 24-Bit Analog-to-Digital Converter. Texas of USA, Oct. 2007. http://www.ti.com/cn/lit/gpn/ads1258.
    [39] Chipsea Technologies. CS1242. Shenzhen of China, 2007. http://www.chipsea. com/docc/product-detail-42.html.
    [40] Luo H, Han Y, Cheung R C C, etal. A high-performance, low-powerΣΔADC for digital audio applications. Journal of Semiconductors. May 2010, 31(5). 055009.
    [41] Murmanm B. A/D Converter Trends: Power Dissipation, Scaling and Digitally Assisted Architectures. San Jose of USA: CICC 2008, Sept. 2008. 105-112.
    [42]谢磊,李建,邓焕,等.一个高性能低功耗10位30MS/s流水线A/D转换器.半导体学报. Mar. 2007, 28(3). 453-459.
    [43] Guo D D, Li F L, Zhang C, et al. A 13-bit, 8MSample/s pipeline A/D converter.Journal of Semiconductors. Feb. 2009, 30(2). 025006.
    [44] Wang P, Long S L, Wu J H. Mismatch Calibration Techniques in Successive Approximation Analog-to-Digital Converters. Journal of Semiconductors. Sep. 2007, 28(9). 1369-1374.
    [45] Agarwal A, Mukhopadhyay S, Raychowdhury A, et al. Leakage power analysis and reduction for nanoscale circuits. Power Reduction in IEEE Computer Society. 2006.68-80.
    [46]朱华平,戴庆元,徐健.纳米级CMOS电路的漏电流及其降低技术.微处理机. Dec. 2005, 6 (6). 1-4.
    [47] Wong H S P, Frank D J, Solomon P M, et al. Nanoscale CMOS. Proceedings of the IEEE. Apr. 1999. 537-546.
    [48] Kang S M, Leblebici Y. CMOS Digital Integrated of Circuits Analysis and Design. The 3rd Edition. McGraw-Hill Companies. Oct. 2002. 121-306.
    [49] Davis J A, Venkatesan R, Kaloyeros A, et al. Interconnect limits on gigascale integration (GIS) in the 21st century. Proceedings of the IEEE. 2001. 89(3). 305-324.
    [50] Raghvendra S. DFM: Linking Design and Manufacturing. Kolkata of India: VLSID 2005. Jan. 2005. 705-708.
    [51] Miyamoto M, Ohta H, Kumagai Y, et al. Impact of Reducing STI-Induced Stress on Layout Dependence of MOSFET Characteristics. IEEE Transactions on Electron Devices. 2004. 51(3). 440-442.
    [52] Drennan P G, Kniffin M L, Locascio D R. Implications of Proximity Effects for Analog Design. San Jose of USA:CICC 2006. Sep. 2006. 169-176.
    [53] Matsuzawa A. Nano-scale CMOS and Low Voltage Analog to Digital Converter Design Challenges. Shanghai of China: ICSICT 2006. Oct. 2006. 1676-1679.
    [54] Ytterdal T, Wulff C. On the Energy Efficiency of Analog Circuits in Nanoscale CMOS Technologies. Sharjah of United Arab Emirates: ICM 2008. Dec. 2008. 240-243.
    [55] Liu J P, Lu J T. Probe into the Function of Touch Panel. Application Experience, 2008, 135(7). 41-43.
    [56] Craninckx J, Van der Plas G. A 65fJ/Conversion-Step 0-to-50MS/s 0-to-0.7mW 9b Charge-Sharing SAR ADC in 90nm Digital CMOS. 2007 ISSCC Digest of Technical Papers. 2007. 246-247.
    [57] Fotouchi B, Hodges D A. High-Resolution A/D Conversion in MOS/LSI. IEEE JSSC 1979. Dec. 1979, SC-14(6). 920-926.
    [58] Application note 728. Defining and Testing Dynamic Parameters in High-Speed ADCs, Part 1. Maxim Integrated Products. Feb. 2001. http://www.maxim-ic.com/an728
    [59] Walden R H. Analog-to-digital converter survey and analysis. IEEE Journal on Selected Areas in Communication. Apr. 1999, 17(4). 539-550.
    [60] Razavi B. Principles of Data Conversion System Design. USA: IEEE Press, 1995.
    [61] Van der P H, Remmers R. A 3.3 V 10 b 25 Msample/s two-step ADC in 0.35μm CMOS. 1999 ISSCC Digest of Technical Papers. 1999. 318-319.
    [62] Zjajo A, Van der P H, Vertregt M. A 1.8V 100mW 12-bits 80Msample/s two-step ADC in 0.18-μm CMOS. Estoril of Portugal: ESSCIRC 2003. Sep. 2003. 241-244.
    [63] Hernes B, Briskemyr A, Andersen T N, et al. A 1.2V 220MS/s 10b Pipelined ADC inplenented in 0.13μm Digital CMOS. 2004 ISSCC Digest of Technical Papers. Feb. 2004. 256-257.
    [64] Siragusa E, Galton I. A Digitally Enhanced 1.8V 15b 40MS/s CMOS Pipelined ADC. 2004 ISSCC Digest of Technical Papers. Feb. 2004. 2126-2138.
    [65] Aziz P M, Sorensen H V, Van der Spiegel J. An Overview of Sigma-Delta Converters. IEEE Signal Processing Magzine. Jan.1996, 13(1). 61-84.
    [66] Dallet D, Machado J. Dynamic Characterisation of Analogue-to-Digital Converters. Netherland: Springer. 2005. 3-15.
    [67] Liu W B, Chiu Y. An Equalization-Based Adaptive Digital Background Calibration Technique for Successive Approximation Analog-to-Digital Converters. Guilin of China: ASICON 2007. 2007. 289-292.
    [68] Chang Y K, Wang C S, Wang C K. A 8-bit 500-KS/s Low Power SAR ADC for Bio-Medical Applications. Jeju City of Korea: ASSCC 2007. 2007. 228-231.
    [69] Allen P E, Holberg D R. CMOS Analog Circuit Design. New York of USA: Oxford Press, 2002. 635-641.
    [70] Ginsburg B P, Chandrakasan A P. 500MS/s 5-bit ADC in 65-nm CMOS with Split Capacitor Array DAC. IEEE JSSC 2007. Feb. 2007, 42(2). 739-747.
    [71] Kim B, Yan L, Yoo J, etal. An Energy-Efficient Dual Sampling SAR ADC with Recuced Capacitive DAC. Taipei: ISCAS 2009. 2009. 972-975.
    [72] Razavi B, Wooley B A. Design Techniques for High-Speed, High-Resolution Comparators. IEEE JSSC 1992. Dec. 1992, 27(12). 1916-1926.
    [73] Doernberg J, Gray P R, Hodges D A. A 10-bit 5-Msample/s CMOS Two-Step Flash ADC. IEEE JSSC 1989. Apr. 1989, 24(2). 241-249.
    [74] Promitzer G. A 12-bit Low-Power Fully Differential Switched Capacitor Noncalibrating Successive Approximation ADC with 1MS/s. IEEE JSSC 2001. Jul. 2001, 36(7). 1138-1143.
    [75] Agnes A, Bonizzoni E, Malcovati P, et al. A 9.4-ENOB 1V 3.8μW 100kS/s SAR ADC with Time Domain Comparator. 2008 ISSCC Digest of Technical Papers. 2008. 246-247.
    [76] Agnes A, Bonizzoni E, Maloberti F. Design of an Ultra-low Power SA-ADC with Medium/High Resolution and Speed. Seattle of USA: ISCAS 2008. May 2008. 1-4.
    [77] Abo A M, Gray P R. A 1.5V, 10-bit, 14.3-MS/s CMOS Pipeline Analog-to-Digital Converter. IEEE JSSC 1999. May 1999, 34(5). 599-606.
    [78] Widlar R J. New Developments in IC Voltage Regulators. IEEE JSSC 1971. 1971, 2(16): 2-7.
    [79] Tsividis Y P. Accurate Analysis of Temperature Effects in IC-VBE Characteristics with Application to Bandgap Reference Sources. IEEE JSSC 1980. 1980,12(15): 1076-1084.
    [80] Zhang C, He S Z, Zhu Y, et al. A High Precision CMOS Bandgap Reference with Second-Order Curvature-Compensation. Guilin of China: ASICON 2007. Oct. 2007. 553-556.
    [81] Malcovati P, Maloberti F, Fiocchi C, et al. Curvature-Compensated BiCMOS Bandgap with 1-V Supply Voltage. IEEE JSSC 2001. 2001,7(36): 1076-1081.
    [82] Paul R, Patra A, Baranwal S, et al. Design of Second-Order Sub-Bandgap Mixed-Mode Voltage Reference Circuit for Low Voltage Applications. Kolkata of India: VLSID 2005. Jan. 2005. 307-312.
    [83] Sheng J G, Chen Z L, Shi B X, A CMOS Bandgap Reference with 1V Supply. Chinese Journal of Semiconductors. 2005, 4(26): 826-829.
    [84] Chang J M, Pedram M. Energy Minimization Using Multiple Supply Voltages. IEEE Transactions on VLSI Systems. Dec. 1997, 5(4). 436-443.
    [85] Diril A U, Dhillon Y S, Chatterjee A, et al. Level-Shifter Free Design of Low Power Dual Supply Voltage CMOS Circuits Using Dual Threshold Voltages. Kolkata of India: VLSID 2005. Jan. 2005. 1103-1107.
    [86] Hamada M, Takahashi M, Arakida H, et al. A Top-down Low Power Design Technique Using Cluster Voltage Scaling with Variable Supply Voltage Scheme. Santa Clara of USA: CICC’98. May 1998. 495-498.
    [87] Zhang B, Liang L P, Wang X J. A New Level Shifter with Low Power inMulti-Voltage System. Shanghai of China: ICSICT 2006. Oct. 2006. 1857-1859.
    [88] Fang W, Chang T. Using a touch-screen controller’s auxiliary inputs. Analog Applications Journal of Texas Instruments Incorporated. 4Q 2007. 5-8.
    [89] Mognon V R, dos Reis Filho C A. Capacitive-SAR ADC Input Offset Reduction by Stray Capacitance Compensation. Mexico: Proceedings of the 7th International Caribbean Conference on Devices, Circuits and Systems. Apr. 28-30, 2008. 1-6.
    [90] Cai J, Ran F, Xu M H. IC Design of 2Ms/s 10-bit SAR ADC with Low Power. Shanghai of China: HDP 2007. Jun. 2007. 1-3.
    [91] Lin Z J, Yang H G, Zhong L G. Modeling of Capacitor Array Mismatch Effect in Embedded CMOS CR SAR ADC. Shanghai of China: ASICON 2005. Oct. 2005. 982-986.
    [92] Zhu X Y. Impacts of CMOS Scaling on the Analog Design. PH.D. Thesis of Oklahoma State University. Oklahoma State of USA: Oklahoma State University, Jul. 2005. 18-21.
    [93] IEEE Standard for Terminology and Test Methods for Analog-to-Digital Converters. IEEE Std 1241-2000. Dec.2000.
    [94] Demler M J. High Speed Analog-to-Digital Conversion. San Diego of California: Academic Press, 1991.163-167.
    [95] Doernberg J, Lee H S, Hodges D A. Full-Speed Testing of A/D Converters. IEEE JSSC 1984. Dec. 1984, 19(6). 820-827.
    [96] Blair J. Histogram Measurement of ADC Nonlinearities Using Sine Waves. IEEE Transactions on Instrumentation and Measurement. Jun. 1994, 43(3). 373-383.
    [97] Maxim. Histogram Testing Determins DNL and INL Errors. Application Note 2085 of Maxim. May 31, 2003. 1-8.
    [98] Maxim. Dynamic Testing of High-Speed ADCs, Part 2. Application Note 729 of Maxim. Jan. 25, 2001. 1-15.
    [99] Peetz B E. Dynamic Testing of Waveform Recorders. IEEE Transactions on Instrumentation and Measurement. Mar. 1983, 32(1). 12-17.
    [100] Synopsys. Designware 10-bit, 1MSPS, 3.3V SAR ADC with 8:1 Input Mux. dsw_adc_10b_1msps_tsmc90lp. https://www.synopsys.com/dw/doc.php/ds/a/dwc _adc_10b_1msps_tsmc90lp.pdf.
    [101]徐峰,陈杉,李小珍,等.一种基于90nm工艺的10位电荷再分配型逐次逼近模数转换器IP.电子器件. Jun. 2009, 32(3). 596-600.
    [102] Rabaey J M, Niknejad A M, Nikolic B, et al. Embedding Mixed-Signal Design in Systems-on-Chip. Proceedings of the IEEE. Jun. 2006, 94(6). 1070-1088.
    [103] Liu W B, Chang Y C, Hsien S K, et al. A 600MS/s 30mW 0.13μm CMOS ADC Array Achieving Over 60dB SFDR with Adaptive Digital Equalization. 2009 ISSCC Digest of Technical Papers. Feb. 2009. 82-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700