β-胡萝卜素的高压稳态和超快光谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
类胡萝卜素是自然界中最丰富的天然色素之一,广泛存在于包括人类在内的生物有机体内,在光合作用、预防人类疾病等方面起重要作用。人们采用稳态光谱、时间分辨超快光谱以及理论方法对类胡萝卜素的激发态能级结构及其动力学特性进行了广泛的研究,为探索类胡萝卜素的光物理和光化学功能的机制提供了重要信息。然而,这方面尚有一些不清楚的问题,如某些中间电子态或振动态是否存在、其弛豫过程如何,以及外界环境对各电子态和振动态能级及其弛豫过程有何影响等。这些问题导致人们还不能准确地了解类胡萝卜素在自然界中发挥其重要生物功能的物理机制。
     本文认为将高压极端条件与常规的光谱学手段相结合是解决上述问题的有效方法。由于高压条件可以放大分子间相互作用,所以研究高压条件下的稳态吸收和拉曼光谱,能够深入探讨环境因素对类胡萝卜素的电子态和振动态能级的影响;由于某些不同起源的光谱成分在高压下呈现不同的变化规律,所以进行高压条件下的时间分辨超快光谱研究会使某些常压条件下不易区分的过程变得易于区分和指认,从而有望澄清类胡萝卜素激发态动力学研究中的一些不易解决的问题。基于上述思想,本文选择常压条件下类胡萝卜素家族中研究成果最为丰富的β-胡萝卜素(β-carotene)为研究对象,研究了其高压稳态及飞秒时间分辨瞬态吸收光谱,同时进行了相应的理论分析。本文的研究成果揭示了影响类胡萝卜素稳态及超快光谱特征的内在和外在因素,提出了新的激发态能量弛豫路径,为深入探讨类胡萝卜素在自然界中发挥其生物功能的物理机制提供了重要依据。
     为了给高压实验结果的分析提供必要的基础,本文首先研究了常压条件下β-carotene吸收光谱的溶剂效应。实验测得了β-carotene在32种溶剂中的吸收光谱,用多模时域公式对光谱进行了分析。结果表明,β-carotene吸收光谱的0-0带能量和带宽受溶剂极化率影响较大,受溶剂极性影响较小,溶剂极性对带宽的影响比对0-0带能量的影响大得多。除了溶剂极性和极化率等参数之外,溶剂分子的大小和运动状态等微观因素也是影响吸收光谱的原因。
     随后进行了高压条件下β-carotene在正己烷和二硫化碳溶液中的稳态吸收和拉曼光谱研究。在二硫化碳溶液中,β-carotene吸收光谱随压力的红移和展宽程度都比正己烷溶液中的大,这是由于二硫化碳中溶质溶剂之间的色散相互作用对压力更敏感。为了解释不同溶剂中β-carotene分子S0→S2的跃迁偶极矩随压力变化趋势相反的实验结果,提出有效溶剂分子模型,这一模型进一步证明溶剂分子的大小、位置和取向等微观因素都影响类胡萝卜素在自然界中的捕光能力。通过比较两种溶剂中几个有代表性的拉曼振动模式的峰位随压力的变化关系,提出了键长缩短和电子振动耦合的竞争机制,证实C=C伸缩振动在S1→S0能量内转换过程中发挥了重要作用。拉曼光谱的实验结果还表明,高压条件下β-carotene分子结构发生了微小的扭转,这为分析瞬态吸收光谱的实验结果提供了必要的信息。
     采用Gaussian 03软件提供的密度函数理论方法研究了两端β-环扭转对β-carotene基态势能面和振动光谱的影响。计算发现,β-carotene分子中的C6-C7键很容易被扭转,这种扭转可以产生两个具有Ci对称性的稳定异构体—顺式(cis)结构和反式(trans)结构,trans→cis异构化只需要克服较低的势垒。虽然高压条件下两端β-环的微小扭转不会导致基态分子发生异构,但会使分子势能面趋于平坦。
     基于以上实验和理论分析结果,进行了高压条件下β-carotene在正己烷溶液中的瞬态吸收光谱研究。研制出了适合瞬态光谱实验的压机,搭建了高压条件下飞秒时间分辨泵浦-探测实验平台,在此平台上完成了β-carotene的瞬态吸收光谱实验,采用单值分解和全局拟合方法对实验数据进行了分析。比较各个光谱成分的能级位置及其动力学过程随压力的变化关系,发现β-carotene瞬态吸收光谱中的第二个成分对应的是S1态的cis→trans异构过程。提出S1→S0无辐射弛豫速率同时受到能隙和溶剂粘度的影响,这为人们认识天然色素-蛋白质复合物中类胡萝卜素的高效能量传递功能提供了重要参考。
     本论文将高压条件和飞秒时间分辨光谱技术相结合,首次实现了高压条件下整个白光谱段的瞬态光谱测量。这是研究超快动力学过程的新方法,为人们探讨深层次的物理和化学问题提供了全新的技术手段。
Carotenoids are one of the most abundant pigments found in nature. They are present in most organisms including humans. Carotenoids play an important role in photosynthesis, protection against various diseases in humans, etc. The energy levels and dynamics of carotenoid excited states have been extensively investigated using steady-state and ultrafast time-resolved spectroscopy as well as theoretical analysis. These investigations have provided valuable information for elucidating the biological functions of carotenoids. However, lots of problems are still needed to be resolved, such as whether some intermediate electronic or vibrational states are really existent, how about their relaxation dynamics and environment dependence, and so on. Therefore, the physical mechanisms of the biological functions of carotenoids in nature have not been well and truly understood.
     The combination of high-pressure conditions and ordinary spectroscopic technique was proposed, in this dissertation, to clarify the aforementioned problems. Some intermolecular interactions can be amplified when being pressured, so the investigation on the steady-state spectroscopies under high pressure can reveal the enverimental effects on the electronic and vibrational levels. Some transient species can be correctely assigned under high pressure because of their different behavior when being pressed, so ultrafast spectroscopies under high pressure can be expected to clarify some puzzling problems in the ultrafast dynamics of carotenoids. For these reasons, the steady-state and femtosecond time-resolved transient absorption spectra ofβ-carotene, the most extensively investigated carotenoid at ambient condition, were measured under high pressure and theoretical analysis were also performed. This work illustrated the internal and external factors that affect the steady-state and ultrafast spectroscopies of carotenoids and proposed a new energy relaxation pathway, and therefore provided some novel insights for elucidating the biological functions of carotenoids in nature.
     In order to understand the results under high pressure, the solvent effect on the absorption spectra ofβ-carotene at ambient condition were firstly investigated. The absorption spectra in 32 solvents were measured and the time-domain formula was used to analyze the absorption spectra. The 0-0 band wavenumber and bandwidth depend mainly on polarizability and slightly on polarity of solvent, and polarity of solvents contributes much more to the bandwidth than to the wavenumber of 0-0 band. Besides the polarizability and polarity, other microcosmic factors, such as the size and movement actions of the solvent molecules, can also affect the absorption spectra. It is essential to take the microscopic characteristics of the solvent molecules into account in the investigation of the environment effect on carotenoids.
     Steady-state absorption and Raman spectra ofβ-carotene in hexane and CS2 solventions were investigated under high pressure. Both the red shift and broadening of the absorption spectra are stronger in CS2 than that in n-hexane because of the more sensitive pressure dependence of dispersive interactions in CS2. This was ascribed to the large polarizability and small size of CS2 molecule. The opposite pressure dependent behavior of the S0→S2 transition moment in these two solventions was explained with the effective solvent molecules model, which confirmed that the light-harvesting function of carotenoids can be influenced by the microcosmic factors of the solvent molecules, such as relative dimension, location and orientations. The diverse pressure dependences of several representatives Raman bands were explained using a competitive mechanism involving bond length changes and vibronic coupling. This model shows that the in-phase C=C stretching mode plays an essential role in the internal conversion from S1 to S0 states in carotenoids. It can also be concluded from the Raman spectra thatβ-carotene molecules have undergone a small structural torsion under high pressure. This conclusion offers us valuable information for analyzing the transient absorption spectra ofβ-carotene under high pressure.
     Density functional theory as implemented in the Gaussian 03 program package was used to investigate the effect ofβ-rings rotation on the potential energy surface and vibrational spectroscopic characteristics ofβ-carotene. It can be found from the calculation that C6-C7 bond ofβ-carotene molecule is easily to be twisted; two stable isomers (cis and trans) having Ci symmetry can be obtained by this rotation; the energy barrier for trans→cis isomerization is quite low. Although the small structural torsion ofβ-carotene molecule under high pressure can not result in the isomerization, it can make the potential energy surface more flat.
     The high-pressure transient absorption spectra ofβ-carotene in hexane solvention were finally investigated based upon the above experimental and theoretical analysis. We developed a new high-pressure cell that was suitable for the transient spectroscopy, built the femtosecond time-resolved transient absorption spectroscopic system under high pressure, and measured the high-pressure transient absorption spectra ofβ-carotene using this system. The time-resolved spectral data were analyzed by singular value decomposition followed by global fitting. Comparing the pressure dependences of the energy levels and the kinetics behavior of different spectral components, it can be concluded that cis→trans isomerization takes place at S1 state. The rate constant of the radiationless S1→S0 internal conversion process is affected by both the energy gap between S1 and S0 states and the viscosity of solvent. This conclusion can offer important insights into the efficient energy-transfer functions of carotenoids in natural pigment-protein complexes.
     This work realized the combination of high-pressure conditions and femtosecond time-resolved transient spectroscopic technique. The high-pressure transient absorption spectra ofβ-carotene in the whole white light region were measured for the first time. This is a new technique to investigate ultrafast processes, and therefore opens a fire-new approach to deeply explore physical and chemical issues.
引文
1 H. K. Mao, R. J. Hemley. Ultrahigh-Pressure Transitions in Solid Hydrogen. Rev. Mod. Phys. 1994, 66:671~692
    2 W. H. Su, S. E. Liu, D. P. Xu, W. R. Wang, B. Yao, X. M. Liu, Z. G. Liu, Z. Zhong. Effects of Local Mechanical Collision with Shear Stress on the Phase Transformation from Alpha-Quartz to Coesite Induced by High Static Pressure. Phys. Rev. B 2006, 73:144110-1~7
    3 S. Gréauxa, L. Gautrona, D. Andrault, N. B. Casanovac, N. Guignot, M. A. Bouhifde. Experimental High Pressure and High Temperature Study of the Incorporation of Uranium in Al-rich CaSiO3 Perovskite. Phys. Earth Planet. Interiors. 2009, 174:254~263
    4 M. Imada, A. Fujimori, Y. Tokura. Metal-Insulator Transitions. Rev. Mod. Phys. 1998, 70:1039~1263
    5 C. Q. Jin, J. S. Zhou, J. B. Goodenough, Q. Q. Liu, J. G. Zhao, L. X. Yang, Y. Yu, R. C. Yu, T. Katsura, A. Shatskiy, E. Ito. High-Pressure Synthesis of the Cubic Perovskite BaRuO3 and Evolution of Ferromagnetism in ARuO(3) (A = Ca, Sr, Ba) Ruthenates. Proc. Nat. Acad. Sci. USA 2008, 105:7115~7119
    6 G. Jenner. Comparative Activation Modes in Organic Synthesis. The Specific Role of High Pressure. Tetrahedron 2002, 58:5185~5202
    7 V. Schettino, R. Bini. Molecules under Extreme Conditions: Chemical Reactions at High Pressure. Phys. Chem. Chem. Phys. 2003, 5:1951~1965
    8 R. J. Hemley. Effects of High Pressure on Molecules. Annu. Rev. Phys. Chem. 2000, 51:763~800
    9 X. S. Wang, C. H. Tang, B. S. Li, X. Q. Yang, L. Li, C. Y. Ma. Effects of High-Pressure Treatment on Some Physicochemical and Functional Properties of Soy Protein Isolates. Food Hydrocolloid 2008, 22:560~567
    10 S. Y. Lim, B. G. Swanson, S. Clark. High Hydrostatic Pressure Modification of Whey Protein Concentrate for Improved Functional Properties. J. Dairy Scie. 2008, 91:1299~1307
    11 M. Gross, R. Jaenicke. The Influence of High Hydrostatic Pressure onStructure, Function and Assembly of Proteins and Protein Complexes. Eur. J. Biochem. 1994, 221:617~630
    12 A. Ellervee, J. Linnanto, A. Freiberg. Spectroscopic and Quantum Chemical Study of Pressure Effects on Solvated Chlorophyll. Chem. Phys. Lett. 2004, 394:80~84
    13 K. Timpmann, A. Ellervee, T. Pullerits, R. Ruus, V. Sundstr?m, A. Freiberg. Short-Range Exciton Couplings in LH2 Photosynthetic Antenna Proteins Studied by High Hydrostatic Pressure Absorption Spectroscopy. J. Phys. Chem. B 2001, 105:8436~8444
    14 J. A. Ihalainen, M. R?tsep, P. E. Jensen, H. V. Scheller, R. Croce, R. Bassi, J. E. I. Korppi-Tommola, A. Freiberg. Red Spectral forms of Chlorophylls in Green Plant PSI-A Site-Selective and High-Pressure Spectroscopy Study. J. Phys. Chem. B 2003, 107:9086~9093
    15 A. F. Goncharov, R. J. Hemley. Probing Hydrogen-Rich Molecular Systems at High Pressures and Temperatures. Chem. Soc. Rev. 2006, 35:899~907
    16 R. Bini. Laser-Assisted High-Pressure Chemical Reactions. Acc. Chem. Res. 2004, 37:95~101
    17刘云宏,朱文学,董铁有,张仲欣.食品高压杀菌技术.食品科学. 2005, 26:155~158
    18刘世献,闫治成,刘弘,宋浩.高压加工技术在食品加工中的应用研究.食品科学. 2000, 21:171~172
    19 D. F. P. Bundy, H. T. Hall, H. M. Strong, R. H. Wentorf. Man-Made Diamonds. Nature 1955, 176:51~55
    20 A. F. Goncharov, V. V. Struzhkin. Raman Spectroscopy of Metals, High-Temperature Superconductors and Related Materials under High Pressure. J. Raman Spectrosc. 2003, 34:532~548
    21 S. Lowitzer, B. Winkler, M. Tucker. Thermoelastic Behavior of Graphite from in situ High-Pressure High-Temperature Neutron Diffraction. Phys. Rev. B 2006, 73:214115-1~8
    22 F. F. Li, Q. L. Cui, T. Cui, Z. He, Q. Zhou, G. T. Zou. In situ Brillouin Scattering Study of Water in High Pressure and High Temperature Conditions,J. Phys.: Condens. Matter 2007, 19:425205-1~9
    23 Y. H. Han, J. F. Luo, C. X. Gao, H. A. Ma, A. M. Hao, Y. C. Li, X. D. Li, J. Liu, M. Li, H. W. Liu, G. T. Zou. Phase Transition of Graphitic-C3N4 under High Pressure by in situ Resistance Measurement in a Diamond Anvil Cell. Chin. Phys. Lett. 2005, 22:1347~1349
    24 H. Z. Liu, L. H. Wang, X. H. Xiao, D. Carlo F, J. Feng, H. K. Mao, R. J. Hemley. Anomalous High-Pressure Behavior of Amorphous Selenium from Synchrotron X-Ray Diffraction and Microtomography. Proc. Nat. Acad. Sci. USA 2008, 105:13229~13234
    25 Y. J. Wang, J. Z. Zhang, L. L. Daemen, Z. J. Lin, Y. S. Zhao, L. P. Wang. Thermal Equation of State of Rhenium Diboride by High Pressure-Temperature Synchrotron X-Ray Studies. Phys. Rev. B 2008, 78:224106-1~5
    26 E. H. Abramson, J. M. Brown, L. J. Slutsky. Applications of Impulsive Stimulated Scattering in the Earth and Planetary Sciences. Annu. Rev. Phys. Chem. 1999, 50:279~313
    27 R. A. Forman, G. J. Piermarini, J. D. Barnett, S. Block. Pressure Measurement Made by the Utilization of Ruby Sharp-Line Luminescence. Science 1972, 176:284~285
    28 J. D. Barnet, S. Block, G. J. Piermarini. An Optical Fluorescence System for Quantitative Pressure Measurement in the Diamond-Anvil Cell. Rev. Sci. Instrum. 1973, 44:1~9
    29 G. J. Piermarini, S. Block, J. D. Barnett, R. A. Forman. Calibration of the Pressure Dependence of the R1 Ruby Fluorescence Line to 195 Kbar. J. Appl. Phys. 1975, 46:2774~2780
    30 H. K. Mao, J. Xu, P. M. Bell. Calibration of the Ruby Pressure Gauge to 800 Kbar under Quasi-Hydrostatic Conditions. J. Geophys. Res. 1986, 91:4673~4676
    31 A. W. Lawson, T. Y. Tang. A Diamond Bomb for Obtaining Powder Pictures at High Pressures. Rev. Sci. Instrum. 1950, 21:815
    32 J. C. Jamieson, A. W. Lawson, N. D. Nachtrieb. New Device for Obtaining X-Ray Diffraction Patterns from Substances Exposed to High Pressure. Rev. Sci.Instrum. 1959, 30:1016~1019
    33 H. K. Mao, P. M. Bell. Hign-Pressure Physics: The 1-Megabar Mark on the Ruby R1 Static Pressure Scale. Science 1976, 191:851~852
    34 H. K. Mao, P. M. Bell. Hign-Pressure Physics: Sustained Static Generation of
    1.36 to 1.72 Megabars. Science 1978, 200:1145~1147
    35 R. L. Fork, B. I. Greene, C. V. Shank. Generation of Optical Pulses Shorter Than 0.1 Psec by Colliding Pulse Mode Locking. Appl. Phys. Lett. 1981, 38:671~672
    36 J. A. Valdmanis, R. L. Fork, J. P. Gordon. Generation of Optical Pulses as Short as 27 Femtoseconds Directly from a Laser Balancing Self-Phase Modulation, Group-Velocity Dispersion, Saturable Absorption, and Saturable Gain. Opt. Lett. 1985, 10:131~133
    37 R. L. Fork, C. H. B. Cruz, P. C. Becker, C. V. Shank. Compression of Optical Pulses to Six Femtoseconds by using Cubic Phase Compensation. Opt. Lett. 1987, 12:483~485
    38 D. E. Spence, P. N. Kean, W. Sibbett. 60-Fsec Pulse Generation from a Self-Mode-Locked Ti: Sapphire Laser. Opt. Lett. 1991, 16:42~44
    39 A. Stingl, M. Lenzner, C. Spielmann, F. Krausz, A. J. Schmidt. Sub-10-fs Mirror-Dispersion-Controlled Ti:Sapphire Laser. Opt. Lett. 1995, 20:602~604
    40 I. D. Jung, F. X. Kartner, N. Matuschek, D. Sutter, F. M. Genoud, G. Zhang, U. Keller, V. Scheuer, M. Tilsch, T. Tschudi. Self-Starting 6.5fs from a KLM Ti:Sapphire Laser. Opt. Lett. 1997, 22:1009~1011
    41 A. Baltuska, Z. Wei, M. S. Pschenichnikov, D. A. Wiersma. Optical Pulse Compression to 5fs at 1MHz Repetition Rate. Opt. Lett. 1997, 22:102~104
    42 M. Nisoli, S. De Silvestri, O. Svelto, R. Szipocs, K. Ferencz, C. Spielman, S. Sartania, F. Krausz. Compression of High-Energy Laser Pulses Below 5fs. Opt. Lett. 1997, 22:522~524
    43韩海年,魏志义,苍宇,张杰.阿秒激光脉冲的新进展.物理. 2003, 32:762~765
    44曹伟,兰鹏飞,陆培祥.利用43飞秒的强激光脉冲实现单个阿秒脉冲输出的新机理.物理学报. 2007, 56:1608~1612
    45 D. Strickland, G. Mourou. Compression of Amplified Chirped Optical Pulses. Opt. Commu. 1985, 56:219~221
    46 P. Maine, D. Strickland, P. Bado. Generation of Ultrahigh Peak Power Pulse by Chirped-Pulse Amplification. Ieee J. Quantum Electron. 1988, 24:398~403
    47 S. A. Crooker, J. A. Hollingsworth, S. Tretiak, V. I. Klimov. Spectrally Resolved Dynamics of Energy Transfer in Quantum-Dot Assemblies: Towards Engineered Energy Flows in Artificial Materials. Phys. Rev. Lett. 2002, 89:186802~186805
    48 S. Amarie, J. Standfuss, T. Barros, W. Kuhlbrandt, A. Dreuw, J. Wachtveitl. Carotenoid Radical Cations as a Probe for the Molecular Mechanism of Nonphotochemical Quenching in Oxygenic Photosynthesis. J. Phys. Chem. B 2007, 111:3481~3487
    49邹华,周常河.飞秒光谱全息技术及飞秒整形技术的应用.激光与光电子学进展. 2005, 42:24~29
    50邢卉,唐火红,江兵,蔡建文,程光华,刘青,黄文浩,夏安东.聚甲基丙烯酸甲酯掺杂ce3+的飞秒激光三维信息存储.光学学报. 2006, 26:874~877
    51 W. B. Bosma, S. Mukamel, B. I. Greene, S. Schmitt-Rink. Femtosecond Pump-Probe Spectroscopy of Conjugated Polymers: Coherent and Sequential Contributions. Phys. Rev. Lett. 1992, 68:2456~2459
    52 G. Cerullo, C. Manzoni, L. Lüer, D. Polli. Time-Resolved Methods in Biophysics. 4. Broadband Pump-Probe Spectroscopy System with Sub-20fs Temporal Resolution for the Study of Energy Transfer Processes in Photosynthesis. Photochem. Photobiol. Sci. 2007, 6:135~144
    53沈元壤.非线性光学原理.北京:科学出版社. 1984:308~326
    54尚小明,王丛方,王晶晶,邹英华,杨文军,宋延林,罗传秋,陈惠英.翠绿亚胺碱的超快光克尔和光致吸收效应.物理学报. 1997, 46:2363~2368
    55 L. Guo, X. C. Ai. Femtosecond Optical Kerr Effect of Pbs Nanoparticles Modification Effect. Mater. Chem. Phys. 2000, 63:30~36
    56 J. L. Li, S. F. Wang, H. Yang, Q. H. Gong, X. An, H. Y. Chen, D. Qiang. Femtosecond Third-Order Optical Nonlinearity of C60 and Its Derivative at a Wavelength of 810 nm, Chem. Phys. Lett. 1998, 288:175~178
    57 Q. H. Gong, J. L. Li, T. Q. Zhang, H. Yang. Ultrafast Third-Order Optical Nonlinearity of Organic Solvents Investigated by Subpicosecond Transient Optical Kerr Effect. Chin. Phys. Lett. 1998, 15:30~31
    58杨宏,张铁桥,王树峰,龚旗煌.钛蓝宝石飞秒超快光谱技术及其应用进展.物理学报. 2000, 49:1292~1296
    59赵晓辉,马菲,吴义室,艾希成,张建平.飞秒时间分辨拉曼光谱用于研究β-胡萝卜素单重激发态内转换和振动弛豫过程.物理学报. 2008, 57:298~305
    60胡明列,王清月,栗岩峰,王专,柴路,张伟力.飞秒激光在双折射微结构光纤中模式控制的四波混频效应的实验研究.物理学报. 2005, 54:4411~4415
    61邓莉,孙真荣,林位株,文锦辉.亚10 Fs激光脉冲产生中的受激拉曼散射与四波混频效应.物理学报. 2008, 57:7668~7673
    62 S. Alves, F. L. S. Cuppo, A. M. F. Neto. Determination of the Nonlinear Refractive Index of Lyotropic Mixtures with and Without Ferrofluid Doping: A Time-Resolved Z-Scan Experiment in Millisecond Time Scales. J. Opt. Soc. Am. B-Opt. Phys. 2006, 23:67~74
    63 F. Zerbetto, M. Z. Zgierski, G. Orlandi, G. Marconi. Vibronic Coupling in Polyenes and Their Derivatives. Interpretation of the Absorption and Emission Spectra of a Derivative of Dodecahexaene. J. Chem. Phys. 1987, 87: 2505~2512
    64王业勤,李勤生.天然类胡萝卜素——研究进展、生产、应用.北京:中国医药科技出版社. 1996:125~132
    65姜建国,王飞,陈倩.类胡萝卜素生物功效与生物技术.北京:化学工业出版社. 2007:27~56
    66 H. A. Frank, R. J. Cogdell. Carotenoids in Photosynthesis. Photochem. Photobiol. 1996, 63:257~264
    67 J. T. Landrum, R. Bone. Antioxidant and Prooxidant Properties of Carotenoids. Arch. Bioch. Biophys. 2001, 385:20~27
    68惠伯棣.类胡萝卜素化学及生物化学.北京:中国轻工业出版社. 2005:241~280
    69 K. Schulten, M. Karplus. On the Origin of a Low-Lying Forbidden Transition in Polyenes and Related Molecules. Chem. Phys. Lett. 1972, 14:305~309
    70 R. Pariser. A Semi-Empirical Theory of the Electronic Spectra and Electronic Structure of Complex Unsaturated Molecules. I. J. Chem. Phys. 1953, 21: 466~471
    71 R. Pariser, R. G. Parr. A Semi-Empirical Theory of the Electronic Spectra and Electronic Structure of Complex Unsaturated Molecules. II. J. Chem. Phys. 1953, 21:767~776
    72 P. Tavan, K. Schulten. Electronic Excitations in Finite and Infinite Polyenes. Phys. Rev. B 1987, 36:4337~4358
    73 T. Polívka, V. Sundstr?m. Ultrafast Dynamics of Carotenoid Excited States-From Solution to Natural and Artificial Systems. Chem. Rev. 2004, 104: 2021~2071
    74 M. R. Wasielewski, L. D. Kispert. Direct Measurement of the Lowest Excited Singlet State Lifetime of All-Trans-β-Carotene and Related Carotenoids. Chem. Phys. Lett. 1986, 128:238~243
    75惠伯棣,朱蕾,欧阳清波,曾悦.类胡萝卜素的命名.中国食品添加剂. 2003, 4:48~54
    76 T. Sashima, H. Nagae, M. Kuki, Y. Koyama. A New Singlet-Excited State of All-Trans-Spheroidene as Detected by Resonance-Raman Excitation Profiles. Chem. Phys. Lett. 1999, 299:187~194
    77 J. P. Zhang, T. Inaba, Y. Watanabe, Y. Koyama. Excited-State Dynamics among the 1Bu+, 1Bu? and 2Ag? States of All-Trans-Neurosporene as Revealed by Near-Infrared Time-Resolved Absorption Spectroscopy. Chem. Phys. Lett. 2000, 332:351~358
    78 H. H. Billsten, D. Zigmantas, V. Sundstr?m, T. Polívka. Dynamics of Vibrational Relaxation in the S1 State of Carotenoids Having 11 Conjugated C=C Bonds. Chem. Phys. Lett. 2002, 355:465~470
    79 R. Fujii, T. Inaba, Y. Watanabe, Y. Koyama, J. P. Zhang. Two Different Pathways of Internal Conversion in Carotenoids Depending on the Length of the Conjugated Chain. Chem. Phys. Lett. 2003, 369:165~172
    80 A. Sutresno, Y. Kakitani, P. Zou, C. Y. Li, Y. Koyama, H. Nagae. Presence and Absence of Electronic Mixing in Shorter-Chain and Longer-Chain Carotenoids: Assignment of the Symmetries of 1Bu- and 3Ag- States Located just below the 1Bu+ State. Chem. Phys. Lett. 2007, 447:127~133
    81 H. Nagae, Y. Kakitani, Y. Koyama. Theoretical Description of Diabatic Mixing and Coherent Excitation in Singlet-Excited States of Carotenoids. Chem. Phys. Lett. 2009, 474:342~351
    82 D. Niedzwiedzki, J. F. Koscielecki, H. Cong, J. O. Sullivan, G. N. Gibson, R. R. Birge, H. A. Frank. Ultrafast Dynamics and Excited State Spectra of Open-Chain Carotenoids at Room and Low Temperatures. J. Phys. Chem. B 2007, 111:5984~5998
    83 H. Cong, D. M. Niedzwiedzki, G. N. Gibson, H. A. Frank. Ultrafast Time-Resolved Spectroscopy of Xanthophylls at Low Temperature. J. Phys. Chem. B 2008, 112:3558~3567
    84 C. C. Gradinaru, J. T. M. Kennis, E. Papagiannakis, I. H. M. Vanstokkum, R. J. Cogdell, G. R. Fleming, R. A. Niederman, R.Van Grondelle. An Unusual Pathway of Excitation Energy Deactivation in Carotenoids: Singlet-to-Triplet Conversion on an Ultrafast Timescale in a Photosynthetic Antenna. Proc. Natl. Acad. Sci. U.S.A. 2001, 98:2364~2369
    85 D. S. Larsen, E. Papagiannakis, I. H. M. Van Stokkum, M. Vengris, J. T. M. Kennis, R. Van Grondelle. Excited State Dynamics ofβ-Carotene Explored with Dispersed Multi-Pulse Transient Absorption. Chem. Phys. Lett. 2003, 381:733~742
    86 H. A. Frank, J. A. Bautista, J. Josue, Z. Pendon, R. G. Hiller, F. P. Sharples, D. Gosztola, M. R. Wasielewski. Effect of the Solvent Environment on the Spectroscopic Properties and Dynamics of the Lowest Excited States of Carotenoids. J. Phys. Chem. B 2000, 104:4569~4577
    87 H. M. Vaswani, C. P. Hsu, M. H. Gordon, G. R. Fleming. Quantum Chemical Evidence for an Intramolecular Charge-Transfer State in the Carotenoid Peridinin of Peridinin-Chlorophyll-Protein. J. Phys. Chem. B 2003, 107:7940~7946
    88 G. Mcdermott, S. M. Prince, A. A. Freer, A. M. Hawthornwaite-Lawless, M. Z. Papiz, R. J. Cogdell, N. W. Isaacs. Crystal Structure of an Integral Membrance Light-Harvesting Comples from Photosynthetic Bacteria. Nature 1995, 374:517~521
    89 Y. X. Weng, L. Li, Y. Liu, L. Wang, G. Z. Yang. Surface-Binding Forms of Carboxylic Groups on Nanoparticulate TiO2 Surface Studied by the Interface-Sensitive Transient Triplet-State Molecular Probe. J. Phys. Chem. B 2003, 107:4356~4363
    90 L. Zhang, J. Yang, L. Wang, G. Z. Yang, Y. X. Weng. Direct Observation of Interfacial Charge Recombination to the Excited-Triplet State in All-Trans-Retinoic Acid Sensitized TiO2 Nanoparticles by Femtosecond Time-Resolved Difference Absorption Spectroscopy. J. Phys. Chem. B 2003, 107:13688~13697
    91张蕾,全冬晖,汪力,杨国桢,翁羽翔.全反式类胡萝卜醛(All-Trans-β-Apo-8’-Carotenal)的飞秒时间分辨瞬态吸收光谱.中国科学G. 2004, 34:1~14
    92王水才,蔡霞,贺俊芳,刘晓,彭菊芳,刘晓,李良璧,匡廷云.从捕光天线到反应中心分子能量传递研究.光子学报. 2003, 32:641~645
    93王水才,蔡霞,贺俊芳,刘晓,彭菊芳,李良璧,匡廷云.从核心天线到反应中心分子传能研究.光子学报. 2003, 32:848~852
    94郭立俊,郭俊华,刘源,徐春和,钱士雄.高等植物外周捕光天线LHCⅡ中的超快光动力学过程.发光学报. 2004, 25:242~246
    95杨美英,贺红霞,王艳,高倩倩,付雷,朱筱娟.番茄茄红素β-环化酶基因高效沉默载体构建.分子植物育种. 2007, 5:43~46
    96檀琮萍,梁成伟,苏忠亮,秦松.雨生红球藻β-胡萝卜素酮化酶基因克隆、分析及叶绿体表达载体构建.海洋通报. 2007, 26:35~40
    97赵文恩,康保珊,焦凤云,张软爱.类胡萝卜素的抗癌作用与基因表达的联系.生物学杂志. 2006, 23:1~6
    98任丹丹,彭光华,黄红霞,张声华.菹草类胡萝卜素抗癌作用与机理的研究.华中农业大学学报(自然科学版). 2006, 2:199~202
    99 G. Orlandi, F. Zerbetto, M. Z. Zgierski. Theoretical Analysis of Spectra ofShort Polyenes. Chem. Rev. 1991, 91:867~891
    100 M. R. Wasielewski, D. G. Johnson, E. G. Bradford, L. D. Kispert. Temperature Dependence of the Lowest Excited Singlet-State Lifetime of All-Trans-β-Carotene and Fully Deuterated All-Trans-β-Carotene. J. Chem. Phys. 1989, 91:6691~6697
    101 R. E. Connors, D. S. Burns, R. Farnoosh, H. A. Frank. Computational Studies of the Molecular Structure and Electronic Spectroscopy of Carotenoids. J. Phys. Chem. 1993, 97:9351~9355
    102 R. J. Weesie, J. C. Merlin, J. Lugtenburg, G. Britton, F. J. H. M. Jansen, J. P. Cornard. Semiempirical and Raman Spectroscopic Studies of Carotenoids. Biospectrosc. 1999, 5:19~33
    103 M. Garavelli, F. Bernardi, M. Olivucci, M. A. Robb. DFT Study of the Reactions between Singlet-Oxygen and a Carotenoid Model. J. Am. Chem. Soc. 1998, 120:10210~10222
    104 F. Himo. Density Functional Theory Study of theβ-Carotene Radical Cation. J. Phys. Chem. A 2001, 105:7933~7937
    105 J. D. Guo, Y. Luo, F. Himo. Density Functional Theory Study of the Canthaxanthin and Other Carotenoid Radical Cations. Chem. Phys. Lett. 2002, 366:73~81
    106 D. M. Niedzwiedzki, J. O. Sullivan, T. Polívka, R. R. Birge, H. A. Frank. Femtosecond Time-Resolved Transient Absorption Spectroscopy of Xanthophylls. J. Phys. Chem. B 2006, 110:22872~22885
    107 Z. D. Pendon1, J. O. Sullivan1, I. Van Der Hoef, J. Lugtenburg, A. Cua, D. F. Bocian, R. R. Birge, H. A. Frank. Stereoisomers of Carotenoids: Spectroscopic Properties of Locked and Unlocked Cis-Isomers of Spheroidene. Photosynth. Res. 2005, 86:5~24
    108 H. M. Vaswani, C. P. Hsu, M. H. Gordon, G. R. Fleming. Quantum Chemical Evidence for an Intramolecular Charge-Transfer State in the Carotenoid Peridinin of Peridinin-Chlorophyll-Protein. J. Phys. Chem. B 2003, 107:7940~7946
    109 Y. Gao, A. L. Focsan, L. D. Kispert, D. A. Dixon. Density Functional TheoryStudy of theβ-Carotene Radical Cation and Deprotonated Radicals. J. Phys. Chem. B 2006, 110:24750~24756
    110 S. Amarie, J. Standfuss, T. Barros, W. Kühlbrandt, A. Dreuw, J. Wachtveitl. Carotenoid Radical Cations as a Probe for the Molecular Mechanism of Nonphotochemical Quenching in Oxygenic Photosynthesis. J. Phys. Chem. B 2007, 111:3481~3487
    111 V. Schettino, F. L. Gervasio, G. Cardini, P. R. Salvi. Density Functional Calculation of Structure and Vibrational Spectra of Polyenes. J. Chem. Phys. 1999, 110:3241~3250
    112 A. M. Dokter, M. C. Van Hemert, C. M. I. Velt, K. Van Der Hoef, J. Lugtenburg, H. A. Frank, E. J. J. Groenen. Resonance Raman Spectrum of All-Trans-Spheroidene. DFT Analysis and Isotope Labeling. J. Phys. Chem. A 2002, 106:9463~9469
    113 S. Schlücker, A. Szeghalmi, M. Schmitt, J. Popp, W. Kiefer. Density Functional and Vibrational Spectroscopic Analysis ofβ-Carotene. J. Raman Spectrosc. 2003, 34:413~419
    114 A. C. Wirtz, M. C. Van Hemert, J. Lugtenburg, H. A. Frank, E. J. J. Groenen. Two Stereoisomers of Spheroidene in the Rhodobacter Sphaeroides R26 Reaction Center: A DFT Analysis of Resonance Raman Spectra. Biophysic. J. 2007, 93:981~991
    115 M. L. Mackenthru, R. D. Tom, T. A. Moore. Lobster Shell Carotenoprotein Origanisation in situ Studied by Photoacoustic Spectroscopy. Nature 1979, 279:265~266
    116 I. Y. Chan, A. J. Hallock. Absorption Study of an Aggregated Porphyrin under High Pressure. J. Chem. Phys. 1997, 107:9297~9301
    117 S. Webster, D. N. Batchelder. Absorption, Luminescence and Raman Spectroscopy of Poly(P-Phenylene Vinylene) at High Pressure. Polymer 1996, 37:4961~4968
    118 H. Wang, H. F. Zheng, Q. Sun. Raman Spectroscopic Studies of the Phase Transitions in Hexane at High Pressure. Applied Spectrosc. 2005, 59:1498~1500
    119 H. Li, B. Zhong, L. He, G. Yang, Y. Li, S. Wu, J. Liu. High Pressure Effects on the Luminescent Properties and Structure of Coumarin 153. Appl. Phys. Lett. 2002, 80:2299~2301
    120 P. Palozza, R. Sestito, N. Picci, P. Lanza, G. Monego, F. O. Ranelletti. The Sensitivity to Beta-Carotene Growth-Inhibitory and Proapoptotic Effects is Regulated by Caveolin-1 Expression in Human Colon and Prostate Cancer Cells. Carcinogenesis. 2008, 29:2153~2161
    121 J. Wang, Y. Wang, Z. X. Wang, L. Li, J. Qin, W. Q. Lai, Y. Fu, P. M. Suter, R. M. Russell, M. A. Grusak, G. W. Tang, S. A. Yin. Vitamin A Equivalence of Spirulina Beta-Carotene in Chinese Adults as Assessed by Using a Stable-Isotope Reference Method. Amer. J. Clin. Nutr. 2008, 87:1730~1737
    122 J. P. Hermann, D. Ricard, J. Ducuing. Optical Nonlinearities in Conjugated Systems:β-Carotene. Appl. Phys. Lett. 1973, 23:178~180
    123 S. Hassing, O. S. Mortensen. Kramers-Kronig Relations and Resonance Ramam Scattering. J. Chem. Phys. 1980, 73:1078~1083
    124 F. Inagaki, M. Tasumi, T. Miyazawa. Excitation Profile of the Resonance Raman Effect ofβ-Carotene. J. Mol. Spectrosc. 1974, 50:286~303
    125 L. C. Hoskins. Effects of Solvent on the Excitation Profile of theν2 Line ofβ-Carotene. J. Chem. Phys. 1980, 72:4487~4490
    126 S. A. Lee, C. K. Chan, J. B. Page, C. T. Walker. Temperature-Dependent Resonance Raman Profiles ofβ-Carotene in Carbon Disulfide. J. Chem. Phys. 1986, 84:2497~2502
    127 T. Noguchi, H. Hayashi, M. Tasumi, G. H. Atkinson. Solvent Effects on the Ag C=C Stretching Mode in the 21ag- Excited State ofβ-Carotene and Two Derivatives: Picosecond Time-Resolved Resonance Raman Spectroscopy. J. Phys. Chem. 1991, 95:3167~3172
    128 J. A. Burt, X. H. Zhao, J. L. Mchalea. Inertial Solvent Dynamics and the Analysis of Spectral Line Shapes: Temperature-Dependent Absorption Spectrum ofβ-Carotene in Nonpolar Solvent. J. Chem. Phys. 2004, 120: 4344~4354
    129 M. Yoshizawa, H. Aoki, H. Hashimoto. Vibrational Relaxation of the 2Ag-Excited State in All-Trans-β-Carotene Obtained by Femtosecond Time-Resolved Raman Spectroscopy. Phys. Rev. B 2001, 63:180301-1~4
    130 M. Yoshizawa, H. Aoki, M. Ue, H. Hashimoto. Ultrafast Relaxation Kinetics of Excited States in a Series of Mini- and Macro-β-Carotenes. Phys. Rev. B 2003, 67:174302-1~8
    131 D. W. Mccamant, P. Kukura, R. A. Mathies. Femtosecond Time-Resolved Stimulated Raman Spectroscopy: Application to the Ultrafast Internal Conversion inβ-Carotene. J. Phys. Chem. A 2003, 107:8208~8214
    132 P. Kukura, D. W. Mccamant, R. A. Mathies. Femtosecond Time-Resolved Stimulated Raman Spectroscopy of the S2 (1Bu+) Excited State ofβ-Carotene. J. Phys. Chem. A 2004, 108:5921~5925
    133 T. Siebert, M. Schmitt, V. Engel, A. Materny, W. Kiefer. Population Dynamics in Vibrational Modes During Non-Born-Oppenheimer Processes: CARS Spectroscopy Used as a Mode-Selective Filter. J. Am. Chem. Soc. 2002, 124:6242~6243
    134 T. Siebert, R. Maksimenka, A. Materny, V. Engel, W. Kiefer, M. Schmitt. The Role of Specific Normal Modes During Non-Born-Oppenheimer Dynamics: The S1–S0 Internal Conversion ofβ-Carotene Interrogated on a Femtosecond Time-Scale with Coherent Anti-Stokes Raman Scattering. J. Raman Spectrosc. 2002, 33:844~854
    135 T. Hornung, H. Skenderovi?, M. Motzkus. Observation of All-Trans-β-Carotene Wavepacket Motion on the Electronic Ground and Excited Dark State Using Degenerate Four-Wave Mixing (DFWM) and Pump–DFWM. Chem. Phys. Lett. 2005, 402:283~288
    136 J. Hauer, H. Skenderovi?, K. L Kompa, M. Motzkus. Enhancement of Raman Modes by Coherent Control inβ-Carotene. Chem. Phys. Lett. 2006, 421:523~528
    137 C. J. Cramer, D. G. Trular. Implicit Solvation Models: Equilibria, Structure, Spectra, and Dynamics. Chem. Rev. 1999, 99:2161~2200
    138 P. O. Andersson, T. Gillbro, L. Ferguson, R. J. Cogdell. Absoption Spectral Shifts of Carotenoids Related to Medium Polarizability. Photochem. Photobiol.1991, 54:353~359
    139 L. Onsager. Electric Moments of Molecules in Liquids. J. Am. Chem. Soc. 1936, 58: 1486~1493
    140 N. S. Bayliss. The Effect of the Electrostatic Polarization of the Solvent on Electronic Absorption Spectra in Solution. J. Chem. Phys. 1950, 18:292~296
    141 M. Nicol, J. Swain, Y. Y. Shum, R. Merin, R. H. H. Chen. Solvent Stark Effect and Spectral Shifts. II. J. Chem. Phys. 1968, 48:3587~3596
    142 H. Torii, M. Tasumi. Correlation Between Redshifts and Widths of the O-O Band in the Absorption Spectra (11Bu←11Ag) of All-Trans-β-Carotene in Solution. J. Chem. Phys. 1993, 98:3697~3702
    143 O. E. Weigang, Jr. D. D. Wild. Spectral Solvent Shift. II. Interactions of Variously Substituted Hydrocarbons with Polynuclear Aromatic Hydrocarbons. J. Chem. Phys. 1962, 37:1180~1187
    144 O. E. Jr. Weigang. Spectral Solvent Shift. I. Paraffin Hydrocarbon Solvent Interactions with Polynuclear Aromatic Hydrocarbons. J. Chem. Phys. 1960, 33:892~899
    145 X. Y. Li, K. X. Fu. Continuous Medium Theory for Nonequilibrium Solvation: New Formulations and an Overview of Theories and Applications. J. Theo. & Comp. Chem. 2005, 4:907~983
    146 N. Liver, A. Nitzan, A. Amirav, J. Jortner. The Effect of Small Cluster Environment on Molecular Oscillator Strengths and Spectra. J. Chem. Phys. 1988, 88:3516~3523
    147 R. A. L. Vallée, M. V. D. Auweraer, F. C. D. Schryver, D. Beljonne, M. Orrit. A Microscopic Model for the Fluctuations of Local Field and Spontaneous Emission of Single Molecules in Disordered Media. Chem. Phys. Chem. 2005, 6:81~91
    148 M. Kuki, H. Nagae, R. J. Cogdell, K. Shimada, Y. Koyama. Solvent Effect on Spheroidene in Nonpolar and Polar Solutions and the Environment of Spheroidene in the Light-Harvesting Complexes of Rhodobacter Sphaeroides 2.4.1 as Revealed by the Energy of the 1Ag?→1Bu+ Absorption and the Frequencies of the Vibronically Coupled C=C Stretching Raman Lines in the1Ag? and 1Bu? States. Photochem.Photobio. 1994, 59:116~124
    149 H. Nagae, M. Kuki, R. J. Cogdell, Y. Koyama. Shifts of the 1Ag?→1Bu+ Electronic Absorption of Carotenoids in Nonpolar and Polar Solvents. J. Chem. Phys. 1994, 101:6750~6765
    150 I. Renge, R. V. Grondelle, J. P. Dekker. Matrix and Temperature Effects on Absorption Spectra ofβ-Carotene and Pheophytina in Solution and in Green Plant Photosystem II. J. Photochem. Photobiol. A. 1996, 96:109~121
    151 C. Laurence, P. Nicolet, M. T. Dalati, J. L. M. Abboud, R. Notario. The Empirical Treatment of Solvent-Solute Interactions: 15 Years OfΠ*. J. Phys. Chem. 1994, 98:5807~5816
    152 T. Abe, J. L. M. Abboud, F. Belio, E. Bosch, J. I. Garcia, J. A. Mayoral, R. Notario, J. Ortega, M. Rosés. Empirical Treatment of Solvent-Solute Interactions: Medium Effects on the Electronic Absorption Spectrum ofβ-Carotene. J. Phys. Org. Chem. 1998, 11:193~200
    153 Z. G. Chen, C. Lee, T. Lenzer, K. Oum. Solvent Effects on the S0(11Ag-)→S2 (11Bu+) Transition ofβ-Carotene, Echinenone, Canthaxanthin, and Astaxanthin in Supercritical CO2 and CF3H. J. Phys. Chem. A 2006, 110:11291~11297
    154 A. N. Macpherson, T. Gillbro. Solvent Dependence of the Ultrafast S2-S1 Internal Conversion Rate ofβ-Carotene J. Phys. Chem. A 1998, 102:5049~5058
    155 R. L. Christensen, B. E. Kohler. Low Resolution Optical Spectroscopy of Retinyl Polyenes: Low Lying Electronic Levels and Spectral Broadness. Photochem. Photobiol. 1973, 18:293~301
    156 R. L. Christensen, M. Goyette, L. Gallagher, J. Duncan, B. Decoster, J. Lugtenburg, F. J. Jansen, I. Van Der Hoef. S1 and S2 States of Apo- and Diapocarotenes. J. Phys. Chem. A 1999, 103:2399~2407
    157 N. E. Craft, J. H. Soares. Relative Solubility, Stability, and Absorptivity of Lutein andβ-Carotene in Organic Solvents. J. Agric. Food Chem. 1992, 40:431~434
    158杨晓占,李萍,戴松晖,吴大诚,李瑞霞,杨建会,肖海波.番茄红素可见吸收光谱和荧光光谱的测量与分析.光谱学与光谱分析. 2005,125:1830~1833
    159戴松晖,李萍,杨晓占,吴大诚,李瑞霞,杨建会,肖海波.不同溶剂中番茄红素的荧光光谱及其特性研究.光学学报. 2006, 25:141~146
    160 P. Wang, R. Nakamura, Y. Kanematsu, Y. Koyama, H. Nagae, T. Nishio, H. Hashimoto, J. P. Zhang. Low-Lying Singlet States of Carotenoids Having 8–13 Conjugated Double Bonds as Determined by Electronic Absorption Spectroscopy. Chem. Phys. Lett. 2005, 410:108~114
    161 S. Mukamel, S. Abe, Y. J. Yan, R. Islampour. Generating Function for Electronic Spectra of Poiyatomic Molecules. J. Phys. Chem. 1985, 89: 201~204
    162 Y. J. Yan, S. Mukamel. Eigenstate-Free, Green Function, Calculation of Molecular Absorption and Fluorescence Line Shapes. J. Chem. Phys. 1986, 85: 5908~5923
    163 S. Mukamel. Stochastic Theory of Resonance Raman Line Shapes of Polyatomic Molecules in Condensed Phases. J. Chem. Phys. 1985, 82:5398~5408
    164 H. Torii, M. Tasumi. Vibrational Structure and Temperature Dependence of The Electronic Absorption (11Bu←11Ag) of All-Trans-β-Carotene. J. Phys. Chem. 1990, 94:227~231
    165 J. L. Mchale. Subpicosecond Solvent Dynamics in Charge-Transfer Transitions: Challenges and Opportunities in Resonance Raman Spectroscopy. Acc. Chem. Res. 2001, 34:265~272
    166 A. B. Myers, R. R. Birge. The Effect of Solvent Environment on Molecular Electronic Oscillator Strengths. J. Chem. Phys. 1980, 73:5314~5321
    167 M. Lindrum, I. Y. Chan. High Pressure Investigation of Absorption Spectra of J-Aggregates. J. Chem. Phys. 1996, 104:5359~5364
    168 H. G. Drickamer, C. W. Frank, C. P. Slichter. Optical versus Thermal Transitions in Solids at High Pressure. Proc. Nat. Acad. Sci. USA 1972, 69:933~937
    169 S. H. Lin. Effect of High Pressures on Molecular Electronic Spectra and Electronic Relaxation. J. Chem. Phys. 1973, 59:4458~4467
    170 D. Curie, D. E. Berry, F. Williams. Theory of the Effects of Hydrostatic Pressure on the Radiative Transitions of Impurities in Crystals. Phys. Rev. B 1979, 20:2323~2334
    171 C. P. Slichter, H. G. Drickamer. Analysis of the Effect of Pressure on Optical Spectra. Phys. Rev. B 1980, 22:4097~4108
    172 D. Curie, D. E. Berry, F. Williams. Franck-Condon Principle for Ions and Molecules in Crystals under Hydrostatic Pressure. Phys. Rev. B 1980, 22:4109~4113
    173 D. E. Berry, R. C. Tompkins, F. Williams. Analysis of the Effects of High Pressure on the Spectra of Molecular Crystals. J. Chem. Phys. 1982, 76:3362~3370
    174 I. Renge. Mechanisms of Solvent Shifts, Pressure Shifts, and Inhomogeneous Broadening of the Optical Spectra of Dyes in Liquids and Low-Temperature Glasses. J. Phys. Chem. A 2000, 104:7452~7463
    175 I. Renge. Pressure Shift Mechanisms of Spectral Holes in the Optical Spectra of Dyes in Polymer Host Matrices. J. Phys. Chem. A 2000, 104:3869~3877
    176 I. Renge. A Model of Inhomogeneous Broadening and Pressure Induced Hole Shifts in the Optical Spectra of Organic Chromophores in Glasses. J. Phys. Chem. A 2001, 105:9094~9103
    177 I. Renge. Influence of Temperature and Pressure on Shape and Shift of Impurity Optical Bands in Polymer Glasses. J. Phys. Chem. A 2006, 110:3533~3545
    178 I. Renge. Lennard-Jones Model of Frequency-Selective Barochromism and Thermochromism of Spectral Holes in Glasses. J. Phys. Chem. B 2004, 108:10596~10606
    179 I. Renge. Lennard-Jones Approach to Optical Zero-Phonon Spectra of Impurities in Glasses. Chem. Phys. Lett. 2005, 405:404~409
    180 I. Renge. Influence of High Pressure on Optical Impurity Spectra. J. Chem. Phys. 2007, 127:034504-1~9
    181 I. Renge, R. Van Grondelle, J. P. Dekkery. Pigment Spectra and Intermolecular Interaction Potentials in Glasses and Proteins. Biophys. J. 2007,93:2491~2503
    182 Z. Z. Ho, T. A. Moore, S. H. Lin, R. C. Hanson. Pressure Dependence of the Absorption Spectrum ofβ-Carotene. J. Chem. Phys. 1981, 74:873~881
    183 Z. Z. Ho, R. C. Hanson, S. H. Lin. Studies of Resonance Raman Scattering: High-Pressure Effects inβ-Carotene. J. Phys. Chem. 1985, 89:1014~1019
    184 A. Ellervee, A. Freiberg. Pressure Solvation of Photosynthetic Pigments. Diff. Def. Forum 2002, 208-209:135~138
    185 A. Gall, A. Ellervee, J. N. Sturgis, N. J. Fraser, R. J. Cogdell, A. Freiberg, B. Robert. Membrane Protein Stability: High Pressure Effects on the Structure and Chromophore-Binding Properties of the Light-Harvesting Complex LH2. Biochem. 2003, 42:13019~13026
    186 K. Leiger, A. Freiberg, M. G. Dahlbom, N. S. Hush, J. R. Reimers. Pressure-Induced Spectral Changes for the Special-Pair Radical Cation of the Bacterial Photosynthetic Reaction Center. J. Chem. Phys. 2007, 126:215102-1~13
    187 A. Ishizumi, M. Kasami, T. Mishina, S. Yamamoto, J. Nakahara. Optical Kerr Effect in Carbon Disulfide under High Pressure. High Press. Res. 2003, 23:201~204
    188 I. Cibulka, L. Hnědkovsky. Liquid Densities at Elevated Pressures of N-Alkanes from C5 to C16: A Critical Evaluation of Experimental Data. J. Chem. Eng. Data 1996, 41:657~668
    189 W. E. Danforth Jr. The Dielectric Constant of Liquids under High Pressure. Phys. Rev. 1931, 38:1224~1235
    190 S. Yamamoto, Y. Ishibashi, Y. Inamura, Y. Katayama, T. Mishina, J. Nakahara. Pressure Dependence of Local Structure in Liquid Carbon Disulfide. J. Chem. Phys. 2006, 124:144511-1~5
    191 Y. Fujita, S. Ikawa. Molecular Dynamics Study of Liquid Carbon Disulfide and Benzene: Effect of Pressure on the Far-Infrared Collision-Induced Absorption. J. Chem. Phys. 1995, 103:9580~9588
    192 M. D. Stephens, J. G. Saven, J. L. Skinner. Molecular Theory of Electronic Spectroscopy in Nonpolar Fluids: Ultrafast Solvation Dynamics and Absorption and Emission Line Shapes. J. Chem. Phys. 1997, 106:2129~2144
    193 L. A. Brey, G. B. Schuster, H. G. Drickamer. High Pressure Fluorescence Studies of Radiative and Nonradiative Processes in Diphenyl Hexatriene, Diphenyl Octatetraene, and Retinyl Acetate. J. Chem. Phys. 1979, 71:2765~2772
    194 A. Freer, S. Prince, K. Sauer, M. Papiz, A. H. Lawless, G. Mcdermott, R. Cogdell, N. W. Isaacs. Pigment–Pigment Interactions and Energy Transfer in the Antenna Complex of the Photosynthetic Bacterium Rhodopseudomonas Acidophila. Structure 1996, 4:449~462
    195 J. Koepke, X. Hu, C. Muenke, K. Schulten, H. Michel. The Crystal Structure of the Light-Harvesting Complex II (B800–850) from Rhodospirillum Molischianum. Structure 1996, 4:581~597
    196 T. Polívka, D. Niedzwiedzki, M. Fuciman, V. Sundstr?m, H. A. Frank. Role of B800 in Carotenoid-Bacteriochlorophyll Energy and Electron Transfer in LH2 Complexes from the Purple Bacterium Rhodobacter Sphaeroides. J. Phys. Chem. B 2007, 111:7422~7431
    197 L. Rimai, R. G. Kilponen, D. Gill. Excitation Profiles of Laser Raman Spectra in the Resonance Region of Two Carotenoid Pigments in Solution. J. Am. Chem. Soc. 1970, 92:3824~3825
    198 L. Rimai, M. E. Heyde, D. Gill. Vibrational Spectra of Some Carotenoids and Related Linear Polyenes. A Raman Spectroscopic Study. J. Am. Chem. Soc. 1973, 95:4493~4501
    199 Y. Koyama, M. Kito, T. Takii, K. Saiki, K. Tsukida, J. Yamashita. Configuration of the Carotenoid in the Reaction Centers of Photosynthetic Bacteria. Comparision of the Resonance Raman Spectrum of the Reaction Center of Rhodopseudomonas Sphaeroides G1C with Those of Cis-Trans Isomers ofβ-Carotene. Biochim. Biophys. Acta. 1982, 680:109~118
    200 Y. Koyama, I. Takatsuka, M. Nakata, M. Tasumi. Raman and Infrared Spectra of the All-Trans, 7-Cis, 9-Cis, 13-Cis and 15-Cis Isomers ofβ-Carotene: Key Bands Distinguishiing Stretched or Terminal-Bent Configurations from Central-Bent Configurations. J. Raman Spectrosc. 1988, 19:37~49
    201 S. Saito, M. Tasumi, C. H. Engster. Resonance Raman Spectra (5800-40 Cm-1)of All-Trans and 15-Cis Isomers ofβ-Carotene in the Solid State and in Solution. Measurements with Various Laser Lines from Ultraviolet to Red. J. Raman Spectrosc. 1983, 14:299~309
    202 S. Saito, M. Tasumi. Normal-Coordinate Analysis ofβ-Carotene Isomers and Assignments of the Raman and Infrared Bands. J. Raman Spectrosc. 1983, 14:310~321
    203 H. Okamoto, S. Saito, H. Hamaguchi, M. Tasumi, C. H. Eugster. Resonance Raman Spectra and Excitation Profiles of Tetradesmethyl-β-Carotene. J. Raman Spectrosc. 1984, 15:331~335
    204 H. Hayashi, S. Saito, M. Tasumi. Analysis of the Resonance Raman Spectra of
    13C- and 2H-Substituted Carotenoids. J. Raman Spectrosc. 1985, 16:27~31
    205 R. J. Cogdell, H. A. Frank. How Carotenoids Function in Photosynthetic Bacteria. Biochim Biophys Acta, 1987, 895:63~79
    206 L. Moroni, M. Ceppatelli, C. Gellini, P. R. Salvi, R. Bini. Excitation of Crystalline All-Trans Retinal under Pressure. Phys. Chem. Chem. Phys. 2002, 4:5761~5767
    207 H. Hashimoto, Y. Koyama. Time-Resolved Resonance Raman Spectroscopy of Tripletβ-Carotene Produced from All-Trans, 7-Cis, 9-Cis, 13-Cis, and 15-Cis Isomers and High-Pressure Liquid Chromatography Analyses of Photoisomerization Via the Triplet State. J. Phys. Chem. 1988, 92:2101~2108
    208 H. Hashimoto, Y. Koyama, Y. Hirata, N. Matagat. S1 and T1 Species ofβ-Carotene Generated by Direct Photoexcitation from the Ail-Trans, 9-Cis, 13-Cis, and 15-Cis Isomers as Revealed by Picosecond Transient Absorption and Transient Raman Spectroscopies. J. Phys. Chem. 1991, 95:3072~3076
    209 R. Fujii, K. Furuichi, J. P. Zhang, H. Nagae, H. Hashimoto, Y. Koyama. Cis-To-Trans Isomerization of Spheroidene in the Triplet State as Detected by Time-Resolved Absorption Spectroscopy. J. Phys. Chem. A 2002, 106:2410~2421
    210 R. A. Auerbach, R. L. Christensen, M. F. Granville, B. E. Kohler. Absorption and Emission of 2,12-Dimethyltridecahexaene. J. Chem. Phys. 1981, 74:4~9
    211 H. Nagae, M. Kuki, J. P. Zhang, T. Sashima, Y. Mukai, Y. Koyama. VibronicCoupling Through the in-Phase, C=C Stretching Mode Plays a Major Role in the 2Ag- to 1Ag- Internal Conversion of All-trans-β-Carotene. J. Phys. Chem. A 2000, 104:4155~4166
    212 H. Hashimoto, Y. Koyama. The C=C Stretching Raman Lines ofβ-Carotene Isomers in the S1 State as Detected by Pump-Probe Resonance Raman Spectroscopy. Chem. Phys. Lett. 1989, 154:321~325
    213 P. O. Andersson, S. M. Bachilo, R. L. Chen, T. Gillbro. Solvent and Temperature Effects on Dual Fluorescence in a Series of Carotenes. Energy Gap Dependence of the Internal Conversion Rate. J. Phys. Chem. 1995, 99:16199~16209
    214 D. W. Mccamant, J. E. Kim, R. A. Mathies. Vibrational Relaxation inβ-Carotene Probed by Picosecond Stokes and Anti-Stokes Resonance Raman Spectroscopy. J. Phys. Chem. A 2002, 106:6030~6038
    215 P. Hohenberg, W. Kohn. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136:B864~B871
    216 A. D. Becke. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A 1988, 38:3098~3100
    217 C. Lee, W. Yang, R. G. Parr. Development of the Colle-Salvetti Correlateion-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37:785~789
    218 J. P. Perdew. Density-Functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas. Phys. Rev. B 1986, 33:8822~8824
    219 J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais. Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation. Phys. Rev. B 1992, 46:6671~6687
    220 F. Terstrgen, V. Buβ. Influence of DFT-Calculated Electron Correlation on Energies and Geometries of Retinals and of Retinal Derivatives Related to the Bacteriorhodopsin and Rhodopsin Chromophores. J. Mol. Struct. (Theochem), 1998, 430:209~218
    221 M. Kertesz, C. H. Choi, S. Yang. Conjugated Polymers and Aromaticity. Chem.Rev. 2005, 105:3448~3481
    222 M. P. Andersson, P. Uvdal. New Scale Factors for Harmonic Vibrational Frequencies using the B3LYP Density Functional Method with the Triple-ΖBasis Set 6-311+G(d,p). J. Phys. Chem. A 2005, 109:2937~2941
    223 J. P. Merrick, D. Moran, L. Radom. An Evaluation of Harmonic Vibrational Frequency Scale Factors. J. Phys. Chem. A 2007, 111:11683~11700
    224 S. J. Yang, M. Kertesz, V. Zólyomi, J. Kürti. Application of a Novel Linear/Exponential Hybrid Force Field Scaling Scheme to the Longitudinal Raman Active Mode of Polyyne. J. Phys. Chem. A 2007, 111:2434~2441
    225 M. Tommasini, D. Fazzi, A. Milani, M. D. Zoppo, C. Castiglioni, G. Zerbi. Intramolecular Vibrational Force Fields for Linear Carbon Chains Through an Adaptative Linear Scaling Scheme. J. Phys. Chem. A 2007, 111:11645~11651
    226 L. F. C. Oliveira, S. O. Dantas, E. S. Velozo, P. S. Santos, M. C. C. Ribeiro. Resonance Raman Investigation and Semi-Empirical Calculation of the Natural Carotenoid Bixin. J. Mol. Struct. 1997, 435:101~107
    227 Y. M. Kuroda, R. Fujii, N. Ko-Chi, T. Sashima, Y. Koyama, M. Abe, R. Gebhard, I. Van Der Hoef, J. Lugtenburg. Changes in Molecular Structure upon Triplet Excitation of All-Trans-Spheroidene in n-Hexane Solution and 15-Cis-Spheroidene Bound to the Photo-Reaction Center from Rhodobacter Sphaeroides as Revealed by Resonance-Raman Spectroscopy and Normal-Coordinate Analysis. J. Phys. Chem. A 2002, 106:3566~3579
    228 A. Dreuw. Influence of Geometry Relaxation on the Energies of the S1 and S2 States of Violaxanthin, Zeaxanthin, and Lutein. J. Phys. Chem. A 2006, 110:4592~4599
    229 M. O. Senge, H. Hope, K. M. Smith. Structure and Conformation of Photosynthetic Pigments and Related Compounds 3. Crystal Structure ofβ-Carotene. Z. Naturforsch. 1992, 47c:474~476
    230 F. Zerbetto, M. Z. Zgierski, G. Orlandi. Correlation Between the Frequency of the Franck-Condon Active C=C Ag Stretch Vibration and the Excitation Energy of the 1Bu Electronic State in Polyenes. Chem. Phys. Lett. 1987, 141:138~142
    231 J. I. Steinfeld.著.李铁津,蒋栋成,朱自强.译.分子和辐射—近代分子光谱学导论.北京:科学出版社. 1983:127~134
    232 Y. Wang, L. Mao, X. Hu. Insight into the Structural Role of Carotenoids in the Photosystem I: A Quantum Chemical Analysis. Biophysic. J. 2004, 86:3097~3111
    233 D. F. Ghanotakis, J. C. Paula, D. M. Demetriou, N. R. Bowlby, J. Petersen, G. T. Babcock, C. F. Yocum. Isolation and Characterization of the 47 kDa Protein and the Dl–D2-Cytochrome b-559 Complex. Biochim. Biophys. Acta 1989, 974:44~53
    234 H. A. Frank. Spectroscopic Studies of the Low-Lying Singlet Excited Electronic States and Photochemical Properties of Carotenoids. Arch. Biochem. Biophys. 2001, 385:53~60
    235 J. A. Pople. Electron Interaction in Unsaturated Hydrocarbons. Trans. Faraday Soc. 1953, 49:1375~1385
    236 J. P. Zhang, L. H. Skibsted, R. Fujii, Y. Koyama. Transient Absorption from the 1Bu+ State of All-Trans-β-Carotene Newly Identified in the Near-Infrared Region. Photochem. Photobiol. 2001, 73:219~222
    237 G. Cerullo, D. Polli, G. Lanzani, S. D. Silvestri, H. Hashioto, R. J. Cogdell. Photosynthetic Light Harvesting by Carotenoids: Detection of an Intermediate Excited State. Science 2002, 298:2395~2398
    238 D. Polli, G. Cerullo, G. Lanzani, S. D. Silvestri, K. Yanagi, H. Hashimoto, R. J. Cogdell. Conjugation Length Dependence of Internal Conversion in Carotenoids: Role of the Intermediate State. Phys. Rev. Lett. 2004, 93:163002-1~4
    239 D. Kosumi, M. Komukai, H. Hashimoto, M. Yoshizawa. Ultrafast Dynamics of All-Trans-β-Carotene Explored by Resonant and Nonresonant Photoexcitations. Phys. Rev. Lett. 2005, 95:213601-1~4
    240 M. Sugisaki, K. Yanagi, R. J. Cogdell, H. Hashimoto. Unified Explanation for Linear and Nonlinear Optical Responses inβ-Carotene: A Sub-20-fs Degenerate Four-Wave Mixing Spectroscopic Study. Phys. Rev. B. 2007, 75:155110-1~11
    241 F. L. De Weerd, I. H. M. Van Stokkum, R. Van Grondelle. Subpicosecond Dynamics in the Excited State Absorption of All-Trans-β-Carotene. Chem. Phys. Lett. 2002, 354:38~43
    242 T. Siebert, V. Engel, A. Materny, W. Kiefer, M. Schmitt. Probing the Kinetics of a Nonadiabatic Transition Initiating out of Vibrationally Excited as Well as Ground State Modes with Femtosecond Time-Resolved Transient Gratings. J. Phys. Chem. A 2003, 107:8355~8362
    243 M. Fujiwara, K. Yamauchi, M. Sugisaki, A. Gall, B. Robert, R. J. Cogdell, H. Hashimoto1. Energy Dissipation in the Ground-State Vibrational Manifolds ofβ-Carotene Homologues: A Sub-20-Fs Time-Resolved Transient Grating Spectroscopic Study. Phys. Rev. B 2008, 77:205118-1~10
    244 J. P. Zhang, T. Inaba, Y. Watanabe, Y. Koyama. Sub-Picosecond Time-Resolved Absorption Spectroscopy of All-Trans-Neurosporene in Solution and Bound to the LH2 Complex from Rhodobacter Sphaeroides G1C. Chem. Phys. Lett. 2000, 331:154~162
    245 P. Zuo, A. Sutresno, C. Y. Li, Y. Koyama, H. Nagae. Vibrational Relaxation on the Mixed Vibronic Levels of the 1Bu+ and 1Bu- States in All-Trans-Neurosporene as Revealed by Subpicosecond Time-Resolved, Stimulated Emission and Transient Absorption Spectroscopy. Chem. Phys. Lett. 2007, 440:360~366
    246 S. Yamaguchi, H. Hamaguchi. Femtosecond Ultraviolet-Visible Absorption Study of All-Trans→13-Cis·9-Cis Photoisomerization of Retinal. J. Chem. Phys. 1998, 109:1397~1408
    247 D. Kosumi, K. Yanagi, T. Nishio, H. Hashimoto, M. Yoshizawa. Excitation Energy Dependence of Excited States Dynamics in All-Trans-Carotenes Determined by Femtosecond Absorption and Fluorescence Spectroscopy. Chem. Phys. Lett. 2005, 408:89~95
    248 P. O. Andersson, T. Gillbro. Photophysics and Dynamics of the Lowest Excited Singlet State in Long Substituted Polyenes with Implications to the Very Long-Chain Limit. J. Chem. Phys. 1995, 103:2509~2519
    249 D. Ghosh, J. Hachmann, T. Yanai, G. K. L. Chan. Orbital Optimization in theDensity Matrix Renormalization Group, with Applications to Polyenes andβ-Carotene. J. Chem. Phys. 2008, 128:144117-1~14
    250 T. Polívka, D. Zigmantas, H. A. Frank, J. A. Bautista, J. L. Herek, Y. Koyama, R. Fujii, V. Sundstr?m. Near-Infrared Time-Resolved Study of the S1 State Dynamics of the Carotenoid Spheroidene. J. Phys. Chem. B 2001, 105:1072~1080
    251 N. Ito, O. Kajimoto, K. Hara. High-Pressure Studies of Rotational Dynamics for Coumarin 153 in Alcohols and Alkanes. J. Phys. Chem. A 2002, 106:6024~6029
    252 J. P. Zhang, C. H. Chen, Y. Koyama, H. Nagae. Vibrational Relaxation and Redistribution in the 2ag- State of All-Trans-Lycopene as Revealed by Picosecond Time-Resolved Absorption Spectroscopy. J. Phys. Chem. B 1998, 102:1632~1640
    253 R. Englman, J. Jortner. The Energy Gap Law for Radiationless Transitions in Large Molecules. Mol. Phys. 1970, 18:145~164
    254 V. Chynwat, H. A. Frank. The Application of the Energy Gap Law to the S1 Energies and Dynamics of Carotenoids. Chem. Phys. 1995, 194:237~244
    255 B. Bagchi, G. R. Fleming. Dynamics of Activationless Reactions in Solution. J. Phys. Chem. 1990, 94:9~20
    256 M. Vogel, W. Rettig. Excited State Dynamics of Triphenylmethane-Dye used for Investigation of Microviscosity Effects. Ber. Bunsen. Phys. Chem. 1987, 91:1241~1247
    257 P. F. Aramendia, R. M. Negri, E. S. Roman. Temperature Dependence of Fluorescence and Photoisomerization in Symmetric Carbocyanines. Influence of Medium Viscosity and Molecular Structure. J. Phys. Chem. 1994, 98:3165~3173
    258 D. M. Niedzwiedzki, D. J. Sandberg, H. Cong, M. N. Sandberg, G. N. Gibson, R. R. Birge, H. A. Frank. Ultrafast Time-Resolved Absorption Spectroscopy of Geometric Isomers of Carotenoids. Chem. Phys. 2009, 357:4~16
    259 D. Zigmantas, R. G. Hiller, A. Yartsev, V. Sundstr?m, T. Polívka. Dynamics of Excited States of the Carotenoid Peridinin in Polar Solvents: Dependence onExcitation Wavelength, Viscosity, and Temperature. J. Phys. Chem. B 2003, 107:5339~5348
    260 M. P. O. Neil, M. R. Wasielewski, M. M. Khaled, L. D. Kispert. Solvent and Temperature Dependence of the Lowest Excited Singlet State Lifetime of All-Trans-7’,7’-dicyano-7’-apo-β-Carotene. J. Chem. Phys. 1991, 95:7212~7216
    261 E. Kiran, Y. L. Sen. High-Pressure Viscosity and Density of N-Alkanes. Int. J. Thermophys. 1992, 13:411~442
    262 S. Sharafy, K. A. Muszkat. Viscosity Dependence of Fluorescence Quantum Yields. J. Am. Chem. Soc. 1971, 93:4119~4125
    263 M. Anni, F. Della Sala, M. F. Raganato, E. Fabiano, S. Lattante, R. Cingolani, G. Gigli, G. Barbarella, L. Favaretto, A. G?rling. Nonradiative Relaxation in Thiophene-S,S-Dioxide Derivatives: The Role of the Environment. J. Phys. Chem. B 2005, 109:6004~6011
    264 K. Hara, N. Ito, O. Kajimoto. High-Pressure Studies of Dynamic Solvent Effects on Large Amplitude Isomerization: 2-(2-Propenyl)Anthracene. J. Phys. Chem. A 1997, 101:2240~2244
    265 P. W. Bridgman. Proc. The Effect of Pressure on the Viscosity of Forty-Three Pure Liquids. Amer. Acad. Arts. Sci. 1926, 61:57~99
    266 J. R. Mannekutla, P. Ramamurthy, B. G. Mulimani, S. R. Inamdar. Rotational Dynamics of UVITEX-OB in Alkanes, Alcohols and Binary Mixtures. Chem. Phys. 2007, 340:149~157
    267 B. G. Liu, M. X. Jin, H. Liu, C. Y. He, D. W. Jiang, D. J. Ding. Femtosecond Time-Resolved Measurement of LDS698 Molecular Processes under High Pressure. Appl. Phys. Lett. 2008, 92:241916-1~3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700