三种海水经济鱼类早期发育生物学的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海水经济鱼类的养殖在我国已经形成第四次海水养殖浪潮,经济效益显著,有力地推动了我国海水养殖的产业结构调整和可持续发展。然而在海水养殖发展过程中也存在着诸多问题,尤其是早期发育阶段的高死亡率,严重制约了我国海水养殖产业的稳定和健康发展。
     海水鱼类养殖的关键为高质量,高存活率苗种的生产和培育,由于鱼类种类繁多,生物多样性丰富,对应实际的繁育技术,尤其是新品种的开发,必须要做出相应的调整。这就要求我们必须对每一种鱼类早期发育有所了解,并将形态和组织上的数据用于指导生产。
     本文通过显微观察和组织学研究,主要描述和研究了我国北方三种重要的海水经济鱼类(条斑星鲽、杂交鲆、条石鲷)的早期发育生物学,并结合实际生产进一步阐明关键期的产生原因,机理以及采用相应的对策。具体结果如下:
     1.条斑星鲽:作为冷温性鲆鲽鱼类,条斑星鲽早期发育过程的特征主要有:
     ①条斑星鲽受精卵无油球,卵子呈半浮性;不同步卵裂现象提前,发生在第三次卵裂;卵裂期裂球大小差异大。孵化过程较长,在水温8±0.3℃,盐度33的条件下,经9 d孵化。条斑星鲽胚胎发育的不同时期对温度的敏感性不同,其中原肠期对温度比较敏感。
     ②在8-10℃,盐度33的条件下,8-9 dph开口摄食。且开口时,其吻前端出现有一点状黑褐色素,构成了条斑星鲽仔鱼“开口期”的重要标志。卵黄囊于消失。在后期仔鱼末期,背鳍和臀鳍上形成特有的黑褐色条斑带。
     ③杯状细胞首先出现在咽腔后部和食道前段,胃腺和幽门盲囊出现于29 dph,变态期始于30dph。在条斑星鲽早期发育过程中,观察到其直肠粘膜层细胞质出现大量嗜伊红颗粒,为仔鱼肠道上皮吸收的蛋白质。
     ④首先淋巴化的免疫器官是头肾,然后是胸腺和脾脏,这与大部分硬骨鱼类不同。条斑星鲽除头肾和脾脏外,胸腺实质也形成MMCs。其中以脾脏形成MMCs最为丰富,形态多样。
     2.杂交鲆:为同属的牙鲆和夏鲆间的远缘杂交种,其发育过程的特点为:
     ①在温度为15.4~16.0℃,杂交鲆胚胎从受精到孵化所需的时间为76 h左右,胚孔关闭前期,胚胎先出现视囊及克氏囊,而后形成体节。孵出前胚体在卵膜内环绕不到1周。
     ②孵化后消失。杂交鲆群体变态间隔长(34-60 dph),且变态高峰期出现的冠状幼鳍不明显(与母本牙鲆相比),数量为7-8根。
     ③组织学观察发现,其消化系统中胃腺出现较晚,且胃腺发育过程缓慢(与母本牙鲆相比)。甲状腺滤泡增生不明显,颜色较浅,数量较少。杂交鲆在早期发育过程中,并没有出现鳔原基。
     3.条石鲷作为岩礁性的暖水性鱼类,早期发育过程也较为特殊,包括外形以及内部的器官结构。主要特点有:
     ①受精卵:受精卵卵黄上具有龟裂结构,为鱼卵的分类特征之一。
     ②初孵仔鱼:初孵仔鱼背鳍膜上的黑色素,从体背面向背鳍膜边缘移动,到3dph仔鱼基本消失,此为本种仔鱼发育所特有的特点。
     ③后期仔鱼和稚鱼:肠道肌肉层加厚明显,仔稚鱼胃肠排空率急剧上升,死亡率增加,通过改善常规的投饵方式部分解决了这个死亡高峰的问题。在幼鱼初期,牙齿融合为骨喙,为石鲷科鱼类的特征。
     ④胸腺上皮分泌细胞:类似的现象同样在虹鳟鱼中发现,但是虹鳟鱼胸腺上皮分泌细胞不如条石鲷的丰富,同样也不如条石鲷的排列整齐,而是零星分布在胸腺上皮与咽腔接触的表面。除了正常的造血器官—脾脏和头肾外,肝脏、胰腺和鳔等多种组织等也出现MMCs,此现象在硬骨鱼类不多见,一般发生在软骨鱼类。
Marine economical finfish aquaculture formed the fourth wave of Marine Aquaculture in China,acquired obvious economic value and social value,push Chinese marine aquaculture.However,during the development of marine aquaculture,there have some unresolved problems,especially the critical periods during the course of larval culture,still a obstacle hinder the stable and healthy development our Chinese marine aquaculture industries.
     The key element of the marine finfish aquaculture is fingerling production with good quality and high survival rate.However,due to the abundant biodiversity of fish,we must modify our protocol in order to supply relevant species with the most suitable technology. At last,the data obtained from morphological and histological observation must be used in direction of the practical works.
     The early life history of three important economical marine finfish in northern China (hybrid flounder,barfin flounder and Japanese parrotfish) were described the microscope observation and histological study,and further explained the emerged reasons,inner mechanism and relevant protocol of critical periods during larval early ontogeny.The concrete results are as below:
     1.Barfin flounder:as a cold water flatfish,the early developmental characteristics is:
     ①The eggs were devoid of oil globule,and semi-pelagic feature;the asynchronous cleavage advanced,occurred on the third cleavage stage.The size heterogeneity between blastomeres was obvious.It had a long incubation time,under the temperature of 8±0.3℃,and salinity of 33,it took 9 d to hatch a larvae from the fertilized eggs.The different embryonic stage of barfin flounder had varied resistance to temperature and gastrula stage was sensitive to temperature.
     ②It also had a long period from hatching to feeding,under the temperature of 8-10 ℃,and salinity of 33,the larvae began exogenous feeding on circa 8-9 dph.A dot melanin on the beak was the main feature when the larvae fed.The yolk-sac disappeared on 14 dph.The special black-brown striped bars were seen at the posterior period of post-larvae stage.
     ③The goblet cells occurred on the posterior region of pharynx cavity and the anterior region of esophagus,and the gastric glands differentiated on 29 dph, metamorphosis began at 30 dph.During the early life stage,abundant acidophilic granules on the rectal epithelium indicated the protein-absorbing ability of the larvae intestine.
     ④The first lymphoid organ was head kidney,then thymus and spleen,which was different to the most marine teleosts.Besides head kidney and spleen,thymus also formed the MMCs.The MMCs in spleen was most abundant.
     2.Hybrid flounder:as a hybrid of Japanese flounder and summer flounder-the same family,its early developmental characteristics is:
     ①Under the temperature of 15.4~16.0℃,the embryos of hybrid flounder took 76 h to hatch,before the blastopore closure stage,the embryo first formed the optic vesicle and kuffer's vesicle,then forming somites.Before hatching,the embryoic tail and nose never touched in egg membrane.
     ②The larvae began to feeding on 4 dph,and the yolk-sac & oil globule disappeared on 5 dph & 10 dph,respectively.The intervals of metamorphosis in hybrid flounder is longer(34-60 dph),and the emergence of the crown-like larval fins was not evident like its maternal flounder,however,the numbers of larval fins were 7-8.
     ③Through the histological observation,the gastric glands of digestive system appeared later,and the developmental duration of the gastric glands was also slower comparison with its maternal flounder.The increment of the thyroid follicles was not evident,the pale color and fewer numbers.During the early ontogeny of the hybrid flounder,no evident indicated the differentiation of anlage of swim bladder.
     3.Japanese parrotfish:as a warm water species,lithophilic teleosts,the early developmental feature is:
     ①fertilized eggs:The yolk was segmented,and acts as a feature of fish egg classification.
     ②The newly-hatched larve:The melanin on the larval dorsal finfold in the newly-hatched larvae,moved from to the edge of the larval dorsal finfold,and disappeared on 3 dph.This phenomenon indicated the special ontogenetic characteristics of this species.
     ③post-larvae:The thickness of muscular tissue in intestine increased quickly during this period,and the gut evacuation rised abruptly,at the same time,the mortality rate rise up,and we resolved this problem by the means of changing the routine feeding pattern.During the juvenile stage,the jaw teeth of Japanese parrotfish fused into two whole teeth plates,which was a normal feature of Oplegnathidae.
     ④some secreting cells were found in the thymus during the larval development, which usually were found in some lower finfish,like salmonids.Through our studies,the numbers of secreting cells in rainbow trout was fewer than Japanese parrotfish,and its arrangement was also devoid of orderliness.MMCs was also normally found in the hemopoietic organs-spleen and head kidney,also found in the parenchyma of liver, pancreas and swim bladder,which usually occurred in elasmobranch fishes and few in teleosts.
引文
[1]Blaxter J.H.S.Pattern and Variety in Development[M]//HOAR W S,RANDALL D J.Fish Physiology.New York;Academic.1988:44-47.
    [2]Falk-Petersen I.B.Comparative organ differentiation during early life stages of marine fish[J].Fish &Shellfish Immunology,2005,19:397-412.
    [3]Craik J.C.A.,Harvey S.M.Biochemical changes occurring during final maturation of eggs of some marine and freshwater teleosts[J].Journal ofFish Biology,1984,24:599-610.
    [4]Shardo J.D.Comparative embryology of teleostean fishes.I.Development and staging of the American shad,Alosa sapidissima(Wilson,1811)[J].Journal of Morphology,1995,225:125-167.
    [5]Rombough P.The functional ontogeny of the teleost gill:Which comes first,gas or ion exchange?[J].Comparative Biochemistry and Physiology-Part A:Molecular & Integrative Physiology,2007,148:732-742.
    [6]Pittman K.,Skiftesvik A.B.,Berg L.Morphological and behavioural development of halibut,Hippoglossus hippoglossus(L.) larvae[J].Journal of Fish Biology,1990,37:455-472.
    [7]O'connell C.P.Development of organ systems in the northern anchovy,Engraulis mordax,and other teleosts[J].American Zoology,1981,21:429-446.
    [8]Hubbs C.,Blaxter J.H.S.Development of sense organs and behaviour in teleost larvae with special reference to feeding and predator avoidance[J].Transactions of the American Fisheries Society,1986,115:98-114.
    [9]Applebaum S.L.,Ronnestad I.Absorption,assimilation and catabolism of individual flee amino acids by larval Atlantic halibut(Hippoglossus hippoglossus)[J].Aquaculture,2004,230:313-322.
    [10]De Assis J.M.F.,Carvalho R.F.,Barbosa L.,et al.Effects of incubation temperature on muscle morphology and growth in the pacu(Piaractus mesopotamicus)[J].Aquaculture,2004,237:251-267.
    [11]Jwm O.,Jgm.V.D.B.Fish larvae,allometric growth,and the aquatic environment[M].ICES Marine Science Symposia.1995:21-34.
    [12]Battaglene S,C.,Mcbride S.,Talbot R.B.Swim bladder inflation in larvae of cultured sand whiting,Sillago ciliata Cuvier(Sillaginidae)[J].Aquaculture,1994,128:177-192.
    [13]Zaiss M.M.,Papadakis I.E.,Maingot E.,et al.Ontogeny of the digestive tract in shi drum(Umbrina cirrosa L.) reared using the mesocosm larval rearing system[J].Aquaculture,2006,260:357-368.
    [14]Santamaria C.A.,Matin De Mateo M.,Traveset R.,et al.Larval organogenesis in common dentex Dentex dentex L.(Spatidae):histological and histochemical aspects[J].Aquaculture,2004,237:207-228.
    [15]Perez-Casanova J.C.,Murray H.M,,Gallant J.W.,et al.Development of the digestive capacity in larvae of haddock(Melanogramrnus aeglefinus) and Atlantic cod(Gadus morhua)[J].Aquaculture,2006,251:377-401.
    [16]Tanaka M.,Tanangonan J.B.,Tagawa M.,et al.Development of the pituitary,thyroid and interrenal glands and applications of endocrinology to the improved rearing of marine fish larvae[J].Aquaculture,1995,135:111-126.
    [17]Gavlik S.,Albino M.,Specker J.L.Metamorphosis in summer flounder:manipulation of thyroid status to synchronize settling behavior,growth,and development[J].Aquaculture,2002,203:359-373.
    [18]Inui Y.,Miwa S.Thyroid hormone induces metamorphosis of flounder larvae[]].General and Comparative Endocrinology,1985,60:450-454.
    [19]Miwa S.,Yamano K.,Inui Y.Thyroid hormone stimulates gastric development in flounder larvae during metamorphosis[J].Journal of Experimental Zoology,1992,261:424-430.
    [20]Miwa S.,Inui Y.Thyroid hormone stimulates the shift of erythrocyte populations during metamorphosis of the flounder[J].Journal of Experimental Zoology,1991,259:222-228.
    [21]Yamano K.,Miwa S.,Obinata T.,et al.Thyroid hormone regulates developmental changes in muscle during flounder metamorphosis[J].General and Comparative Endocrinology,1991,81:464-472.
    [22]Gisbert E.,Piedrahita R.H.,Conklin D.E.Ontogenetic development of the digestive system in California halibut(Paralichthys californicus) with notes on feeding practices[J].Aquaculture,2004,232:455-470.
    [23]Padros F.,Crespo S.Ontogeny of the lymphoid organs in the turbot Scophthalmus maxirnus:a light and electron microscope study[J].Aquaculture,1996,144:1-16.
    [24]Fournier-Betz V.,Quentel C.,Lamour F.,et al.Immunocytochemical detection of Ig-positive cells in blood,lymphoid organs and the gut associated lymphoid tissue of the turbot(Scophthalmus maximus)[J].Fish & Shellfish Immunology,2000,10:187-202.
    [25]Devlin R.H.,Nagahama Y.Sex determination and sex differentiation in fish:an overview of genetic,physiological,and environmental influences[J].Aquaculture,2002,208:191-364.
    [26]Watanabe T.,Kiron V.Prospects in larval fish dietetics[J].Aquaculture,1994,124:223-251.
    [27]Yufera M.,Pascual E.,Fernadez-Diaz C.A highly efficient microencapsulated food for rearing early larvae of marine fish[J].Aquaculture,1999,177:249-256.
    [28]Ronnestad I.,Thorsen A.,Finn R.N.Fish larval nutrition:a review of recent advances in the roles of amino acids[J].Aquaculture,1999,177:201-216.
    [29]Kolkovski S.Digestive enzymes in fish larvae and juveniles—implications and applications to formulated diets[J].Aquaculture,2001,200:181-201.
    [30]Koven W.,Kolkovski S.,Hadas E.,et al.Advances in the development of microdiets for gilthead seabream,Sparus aurata:a review[J].Aquaculture,2001,194:107-121.
    [31]苏锦祥.鱼类学与海水鱼类养殖[M].北京:中国农业出版社,2000.
    [32]林学颜,张玲.现代细胞与分子免疫学[M].北京:科学出版社,2000.
    [33]Zapata A.,Diez B.,Cejalvo T.,et al.Ontogeny of the immune system of fish[J].Fish & Shellfish Immunology,2006,20:126-136.
    [34]Fearon D.T.,Locksley R.M.The Instructive Role of Innate Immunity in the Acquired Immune Response[J].Science,1996,272:50-54.
    [35]Turner.90 Years On:A Therapy to 'Stimulate the Phagocytes'?[J].Scandinavian Journal of Immunology,1998,48:124-126.
    [36]赵建民.扇贝大防御素和G型溶菌酶克隆与重组表达[D].青岛;中国科学院海洋研究所,2006.
    [37]Li J.,Barreda D.R.,Zhang Y.-A.,et al.Blymphocytes from early vertebrates have potent phagocytic and microbicidal abilities[J].Nat Immunol,2006,7:1116-1124.
    [38]Chantanachookhin C.,Seikai T.,Tanaka M.Comparative study of the ontogeny of the lymphoid organs in three species of marine fish[J].Aquaculture,1991,99:143-150.
    [39]Mulero I.,Garcia-Ayala A.,Meseguer J.,et al.Maternal transfer of immunity and ontogeny of autologous immunocompetence of fish:A minireview[J].Aquaculture,2007,268:244-250.
    [40]Kudo S.,Yazawa S.Binding of bacterial toxins to glycoproteins in the envelopes of rainbow trout eggs [J].The Histochemical Journal,1995,27:300-308.
    [41]张士璀,李欣,汲广东.鱼类免疫系统的早期发生[J].中国海洋大学学报,2007,37:557-562.
    [42]吴金英,林浩然.斜带石斑鱼淋巴器官个体发育的组织学[J].动物学报,2003,9:819-828.
    [43]Agius C.,Roberts R.J.Effects of starvation on the melano-macrophage centres of fish[J].Journal of Fish Biology,1981,19:161-169.
    [44]Agius C.The role of melano-macrophage centres in iron storage in normal and diseased fish[J].Journal ofFish Dieases,1979,2:337-343.
    [45]Herraez M.P.,Zapata A.G.Structure and function of the melano-macrophage centres of the goldfish Carassius auratus[J].Veterinary Immunology and Immunopathology,1986,12:117-126.
    [46]Agius C.Phylognetic development of melano-macrophage centres in fish[J].journal of zoology,1980,191:11-31.
    [47]殷名称.鱼类早期生活史阶段的自然死亡[J].水生生物学报,1996,20:363-372.
    [48]Carrillo M.,Bromage N.,Zanuy S.,et al.The effect of modifications in photoperiod on spawning time,ovarian development and egg quality in the sea bass(Dicentrarchus labrax L.)[J].Aquaculture,1989,81:351-365.
    [49]Brooks S.,Tyler C.R.,Sumpter J.P.Egg quality in fish:what makes a good egg?[J].Review in Fish Biology and Fisheries,1997,7:387-416.
    [50]Mollah M.F.A.,Tan E.S.P.Viability of catfish(Clarias macrocephalus,Gunther) eggs fertilized at varying post-ovulation times[J].Journal ofFish Biology,1983,22:563-566.
    [51]Springate J.R.C.,Bromage N.R.,Elliott J.A.K.,et al.The timing of ovulation and stripping and their effects on the rates of fertilization and survival to eying,hatch and swim-up in the rainbow trout (Salmo gairdneri R.)[J].Aquaculture,1984,43:313-322.
    [52]Bromage N.,Jones J.,Randall C.,et al.Broodstock management,fecundity,egg quality and the timing of egg production in the rainbow trout(Oncorhynchus mykiss)[J].Aquaculture,1992,100:141-166.
    [53]Kjorsvik E.Egg quality in wild and broodstock cod Gadus morhua L[J].Journal of the World Aquaculture Society,1994,25:22-31.
    [54]Bromage N.,Bruce M.,Basavaraja N.,et al.Egg Quality Determinants in Finfish The Role of Overripening with Special Reference to the Timing of Stripping in the Atlantic Halibut Hippoglossus hippoglossus[J].Journal of the World Aquaculture Society,1994,25:13-21.
    [55]Kjorsvik E.,Mangorjensen A.,Holmefjord I.Egg quality in fishes.[J].Advances In Marine Biology,1990,26:71-113.
    [56]温海深,宋海霞.养殖比目鱼生殖及其调控机理研究进展[J].中国海洋大学学报,2004,34:182-188.
    [57]Brooks S.,Tyler C.R.,Sumpter J.P.Egg quality in fish:what makes a good egg?[J].Reviews in Fish Biology and Fisheries,1997,7:387-416.
    [58]Bermudes M.,Ritar A.J.Effects of temperature on the embryonic development of the striped trumpeter(Latris lineata Bloch and Schneider,1801)[J].Aquaculture,1999,176:245-255.
    [59]Kinne O.,Kinne E.M.Rates of development in embryos of a cyprinodont fish exposed to different temperature-salinity-oxygen combinations[J].Canada Journal of Zoology,1961,40:231-253.
    [60]Moreau N.,Lautredou N.,N'da E.,et al.Cold-stress response in the amphibian oocyte:changes in synthesis and nucleocytoplasmic distribution of some proteins[J].Biology of the Cell,1991,71:97-103.
    [61]殷名称.鱼类仔鱼期的摄食和生长[J].水产学报,1995,19:335-342.
    [62]Fernandez-Diaz C.,Yufera M.Detecting growth in gilthead seabream,Sparus aurata L.,larvae fed microcapsules[J].Aquaculture,1997,153:93-102.
    [63]Cahu C.,Zambonino Infante J.,Escaffre A.M.,et al.Preliminary results on sea bass(Dicentrarchus labrax) larvae rearing with compound diet from first feeding.Comparison with carp(Cyprinus carpio)larvae[J].Aquaculture,1998,169:1-7.
    [64]Hamlin H.J.,Kling L.J.The culture and early weaning of larval haddock(Melanogrammus aeglefinus) using a microparticulate diet[J].Aquaculture,2001,201:61-72.
    [65]Robin J.H.,Vincent B.Microparticulate diets as first food for gilthead sea bream larva(Sparus aurata):study of fatty acid incorporation[J].Aquaculture,2003,225:463-474.
    [66]Papandroulakis N.,Mylonas C.C.,Maingot E.,et al.First results of greater amberjack(Seriola dumerili) larval rearing in mesocosm[J].Aquaculture,2005,250:155-161.
    [67]Yufera M.,Fernandez-Diaz C.,Pascual E.Food microparticles for larval fish prepared by internal gelation[J].Aquaculture,2005,248:253-262.
    [68]Blaxter J.H.S.,Hempel G.The influence of egg size on herring larvae(Clupea harengus L.)[J].J Cons Int Explor Mer,1963,28:211-240.
    [69]Gisbert E.,Conklin D.B.,Piedrahita R.H.Effects of delayed first feeding on the nutritional condition and mortality of California halibut larvae[J].Journal of Fish Biology,2004,64:116-132.
    [70]Yin M.C.,Blaxter J.H.S.Feeding ability and survival during starvation of marine fish larvae reared in the laboratory[J].Journal of Experimental Marine Biology and Ecology,1987,105:73-83.
    [71]Dou S.,Masuda R.,Tanaka M.,et al.Feeding resumption,morphological changes and mortality during starvation in Japanese flounder larvae[J].Journal ofFish Biology,2002,60:1363-1380.
    [72]Gwak W.S.,Tanaka M.Developmental change in RNA:DNA ratios of fed and starved laboratory-reared Japanese flounder larvae and juveniles,and its application to assessment of nutritional condition for wild fish[J].Journal of Fish Biology,2001,59:902-915.
    [73]Izquierdo M.S.Essential fatty acid requirements of cultured marine fish larvae[J].Aquaculture Nutrition,1996,2:183-191.
    [74]Jones A.C.Chlorella for rearing of marine fish larvae[J].FAO Fish Culture Bulletin,1970,2:3.
    [75]Naviner M.,Berge J.P.,Durand P.,et al.Antibacterial activity of the marine diatom Skeletonema costatum against aquacultural pathogens[J].Aquaculture,1999,174:15-24.
    [76]Pernet F.,Tremblay R.,Demers E.,et al.Variation of lipid class and fatty acid composition of Chaetoceros muelleri and Isochrysis sp.grown in a semicontinuous system[J].Aquaculture,2003,221:393-406.
    [77]Reitan K.I.,Rainuzzo J.R.,Oie G.,et al.Nutritional effects of algal addition in first-feeding of turbot (Seophthalmus maximus L.) larvae[J].Aquaculture,1993,118:257-275.
    [78]Bell J.G.,Mcevoy L.A.,Estevez A.,et al.Optimising lipid nutrition in first-feeding flatfish larvae[J].Aquaculture,2003,227:211-220.
    [79]Cahu C.L.,Zambonino Infante J.L.,Peres A.,et al.Algal addition in sea bass(Dicentrarchus labrax)larvae rearing:effect on digestive enzymes[J].Aquaculture,1998,161:479-489.
    [80]Kjorsvik E.,Meeren T.,Kryvi H.,et al.Early development of the digestive tract of cod larvae,Gadus morhua L.,during start-feeding and starvation[J].Journal ofFish Biology,1991,38:1-15.
    [81]Tytler P.,Ireland J.,Murray L.A study of the assimilation of fluorescent pigments of microalgae Isochrysis galbana by the early larval stages of turbot and herring[J].Journal of Fish Biology,1997,50:999-1009.
    [82]门强,雷霁霖.大菱鲆鳔器官发育的形态学与组织学特征[J].中国水产科学,2003,10:111-116.
    [83]Chatain B.The swim bladder in Dicentrarchus labrax and Sparus auratus.Ⅰ.Morphological aspects of development[J].Aquaculture,1986,53:303-311.
    [84]Battaglene S.C.,Talbot R.B.Initial swim bladder inflation in intensively reared Australian bass larvae,Macquaria novemaculeata(Steindachner)(Perciformes:Percichthyidae)[J].Aquaculture,1990,86:431-442.
    [85]门强,雷霁霖,武云飞.鳔器官的发育对人工培育鱼苗的影响[J].海洋水产研究,2003,24:
    [86]Yamashita K.Differentiation of the swimbladder structure in larvae of the red seabream Pagrus major [J].Japanese Journal of Ichthyology,1982,29:193-202.
    [87]Makino N.,Uchiyama M.,Iwanami S.,et al.Differentiation and development of the swimbladder in larvae of the Japanese sea bass Lateolabrax japonicus[J].Nippon Suisan Gakkaishi,1995,61:143-150.
    [88]Egloff M.Failure of swim bladder inflation of perch,Perca fluviatilis L.found in natural populations [J].Aquatic Sciences,1996,58:15-23.
    [89]Kitajima C.,Watanabe T.,Tsukashima Y.,et al.Lordotic Deformation and Abnormal Development of Swim Bladders in Some Hatchery-Bred Marine Physoclistous Fish in Japan[J].journal of the World Aquaculture Society,1994,25:64-77.
    [90]Rieger P.W.,Summerfelt R.C.Microvideography of gas bladder inflation in larval walleye[J].journal of Fish Biology,1998,53:93-99.
    [91]Tait J.S.The first filling of the swim bladder in salmonids[J].Canada Journal of Zoology,1960,38:179-187.
    [92]Chatain B.The swimbladder in Dicentrarchus labrax and Sparus auratus.Ⅱ.Influence of development anomalies on larval growth[J].Aquaculture,1987,65:175-181.
    [93]Chatain B.Abnormal swimbladder development and lordosis in sea bass(Dicentrarchus labrax) and sea bream(Sparus auratus)[J].Aquaculture,1994,119:371-379.
    [94]Katavic I.Diet involvement in mass mortality of sea bass(Dicentrarchus labrax) larvae[J].Aquaculture,1986,58:45-54.
    [95]Bein R.,Ribi G.Effects of larval density and salinity on the development of perch larvae(Perca fluviatilis L.)[J].Aquatic Sciences,1994,56:97-105.
    [96]Jacquemond F.Sorting Eurasian perch fingerlings(Perca fluviatilis L.) with and without functional swim bladder using tricaine methane sulfonate[J].Aquaculture,2004,231:249-262.
    [97]Chapman D.C.,Hubert W.A.,Jackson U.T.Influence of access to air and of salinity on gas bladder inflation in striped bass[J].the Progressive Fish-culturist,1988,50:23-27.
    [98]Chatain B.,Ounais-Guschemann N.Improved rate of initial swim bladder inflation in intensively reared Sparus auratus[J].Aquaculture,1990,84:345-353.
    [99]Bailey H.C.,Doroshov S.I.The duration of the interval associated with successful inflation of the swimbladder in larval striped bass(Morone saxatilis)[J].Aquaculture,1995,131:135-143.
    [100]Koven W.M.,Tandler A.,Kissil G.W.,et al.The effect of dietary(n-3) polyunsaturated fatty acids on growth,survival and swim bladder development in Sparus aurata larvae[J].Aquaculture,1990,91:131-141.
    [101]Kanazawa A.,Teshima S.,Imatanaka N.Tissue uptake of radioactive eicosapentaenoic acid in the red seabream[J].Bullet in of the Japanese Society of Scientific Fishery,1982,48:1441-1444.
    [102]Youson J.H.First metamorphosis[M]//HOAR W S,RANDALL D J.Fish Physiology Ⅸ.San Diego;Academic Press.1988:135-196.
    [103]Solbakken J.S.,Pittman K.Photoperiodic modulation of metamorphosis in Atlantic halibut (Hippoglossus hippoglossus L.)[J].Aquaculture,2004,232:613-625.
    [104]Miller J.M.,Burke J.S.,Fitzhugh G.R.Early life history patterns of Atlantic North American flatfish:likely(and unlikely) factors controlling recruitment[J].Netherlands Journal of Sea Research,1991,27:261-275.
    [105]Naess T.,Germain-Henry M.,Naas K.E.First feeding of Atlantic halibut(Hippoglossus hippoglossus) using different combinations of Artemia and wild zooplankton[J],Aquaculture,1995,130: 235-250.
    
    [106] Naess T., Lie. A sensitive period during first feeding for the determination of pigmentation pattern in Atlantic halibut, Hippoglossus hihppoglossus L., juveniles: the role of diet [J]. Aquaculture Research, 1998, 29: 925-934.
    
    [107] Venizelos A., Benetti D. D. Pigment abnormalities in flatfish [J]. Aquaculture, 1999, 176:181-188.
    
    [108] Pittman K., Jelmert A., Naess T., et al. Plasticity of viable postmetamorphic forms of farmed Atlantic halibut, Hippoglossus hippoglossus L [J]. Aquaculture Research, 1998, 29: 949-954.
    
    [109] Dingerkus G., Uhler L. D. Enzyme clearing of Alcian blue stained whole small vertebrates for demonstration of cartilage [J]. Stain Technology, 1977, 52: 229-332.
    
    [110] Brewster B. Eye migration and cranial development during flatfish metamorphosis: a reappraisal (Teleostei: Pleuronectiformes) [J]. Journal of Fish Biology, 1987, 31: 805-833.
    
    [111]Okada N., Takagi Y., Seikai T., et al. Asymmetrical development of bones and soft tissues during eye migration of metamorphosing Japanese flounder, Paralichthys olivaceus [J]. Cell and Tissue Research,2001,304:59-66.
    
    [112] Yamano K., Takano-Ohmuro H., Obinata T., et al. Effect of thyroid hormone on developmental transition of myosin light chains during flounder metamorphosis [J]. General and Comparative Endocrinology, 1994,93: 321-326.
    
    [113] Boulhic M., Gabaudan J. Histological study of the organogenesis of the digestive system and swim bladder of the Dover sole, Solea solea (Linnaeus 1758) [J]. Aquaculture, 1992, 102: 373-396.
    
    [114] Sorgeloos P., Dhert P., Candreva P. Use of the brine shrimp, Artemia spp., in marine fish larviculture [J]. Aquaculture, 2001, 200: 147-159.
    
    [115] Ronnestad I., Helland S., Lie O. Feeding Artemia to larvae of Atlantic halibut (Hippoglossus hippoglossus L.) results in lower larval vitamin A content compared with feeding copepods [J]. Aquaculture,1998,165: 159-164.
    
    [116] Solbakken J. S., Berntessen M. H. G., Norberg B., et al. Different iodine and thyroid hormone levels between Atlantic halibut larvae fed wild zooplankton or Artemia from first exogenous feeding until post metamorphosis [J]. Journal of Fish Biology, 2002, 61: 1345-1362.
    
    [117] Dhert P., Lavens P., Duray M., et al. Improved larval survival at metamorphosis of Asian seabass (Lates calcarifer) using [omega]3-HUFA-enriched live food [J]. Aquaculture, 1990, 90: 63-74.
    
    [118] Saele O., Solbakken J. S., Watanabe K., et al. The effect of diet on ossification and eye migration in Atlantic halibut larvae (Hippoglossus hippoglossus L.) [J]. Aquaculture, 2003, 220: 683-696.
    
    [119] Wright M. L., Jorey S. T., Myers Y. M., et al. Influence of Photoperiod, Daylength, and Feeding Schedule on Tadpole Growth and Development. [J]. Development Growth & Differentiation, 1988, 30:315-323.
    
    [120] Saunders R. L., Henderson E. B., Harmon P. R. Effects of photoperiod on juvenile growth and smolting of Atlantic salmon and subsequent survival and growth in sea cages [J]. Aquaculture, 1985, 45:55-66.
    
    [121] Thrush M. A., Duncan N. J., Bromage N. R. The use of photoperiod in the production of out-of-season Atlantic salmon (Salmo salar) smolts [J]. Aquaculture, 1994,121: 29-44.
    
    [122] Porter M. J. R., Randall C. F., Bromage N. R., et al. The role of melatonin and the pineal gland on development and smoltification of Atlantic salmon (Salmo salar) parr [J]. Aquaculture, 1998, 168: 139-155.
    
    [123] Ebbesson L. O. E. Temporal dynamics of brain and hormone changes during parr - smolt transformation in salmon [D]; Lund University, 2000.
    [124]Francis A.W.,Bengtson D.A.Partitioning of Fish and Diet Selection as Methods for the Reduction of Cannibalism in Paralichthys dentatus Larviculture[J].Journal of the World Aquaculture Society,1999,30:302-310.
    [125]Burke J.S.,Seikai T.,Tanaka Y.,et al.Experimental intensive culture of summer flounder,Paralichthys dentatus[J].Aquaculture,1999,176:135-144.
    [126]Folkvord A.Growth,survival and cannibalism of cod juveniles(Gadus morhua):effects of feed type,starvation and fish size[J].Aquaculture,1991,97:41-59.
    [127]Folkvord A.,Ottera H.Effects of initial size distribution,day length,and feeding frequency on growth,survival,and cannibalism in juvenile Atlantic cod(Gadus morhua L.)[J].Aquaculture,1993,114:243-260.
    [128]Katavic I.,Jug-Dujakovic J.,Glamuzina B.Cannibalism as a factor affecting the survival of intensively cultured sea bass(Dicentrarchus labrax) fingerlings[J].Aquaculture,1989,77:135-143.
    [129]Baras E.,Maxi M.Y.J.,Ndao M.,et al.Sibling cannibalism in dorada under experimental conditions..Ⅱ.Effect of initial size heterogeneity,diet and light regime on early cannibalism[J].Journal of Fish Biology,2000,57:1021-1036.
    [130]Hecht T.,Pienaar A.G.A review of cannibalism and its implications in fish larviculture[J].journal of the World Aquaculture Society,1993,24:246-261.
    [131]Pienaar A.G.A study of coeval sibling cannibalism in larval and juvenile fishes and its control under culture conditions.[D].Grahamstown;Rhodes University,1990.
    [132]Paller M.H.,Lewis W.M.Effects of diet on growth depensation and cannibalism among intensively cultured larval striped bass[J].The Progressive Fish-Culturist,1987,49:270-275.
    [133]Braid M.R.,Shell E.W.Incidence of cannibalism among striped bass fry in an intensive culture system[J].The Progressive Fish-Culturist,1981,43:210-212.
    [134]李思忠,王惠民.硬骨鱼纲—鲽形目[M].中国动物志.北京;科学出版社.1995:223-227.
    [135]Yamanome T.,Amano M.,Takahashi A.White background reduces the occurrence of staining,activates melanin-concentrating hormone and promotes somatic growth in barfin flounder[J].Aquaculture,2005,244:323-329.
    [136]Amiya N.,Amano M.,Takahashi A.,et al.Effects of tank color on melanin-concentrating hormone levels in the brain,pituitary gland,and plasma of the barfin flounder as revealed by a newly developed time-resolved fluoroimmunoassay[J].General and Comparative Endocrinology,2005,143:251-256.
    [137]Kobayashi Y.,Tsuchiya K.,Yamanome T.,et al.Food deprivation increases the expression of melanocortin-4 receptor in the liver of barfin flounder,Verasper rnoseri[J].General and Comparative Endocrinology,2008,155:280-287.
    [138]Yamanome T.,Chiba H.,Takahashi A.Melanocyte-stimulating hormone facilitates hypermelanosis on the non-eyed side of the barfin flounder,a pleuronectiform fish[J].Aquaculture,2007,270:505-511.
    [139]Amiya N.,Arnano M.,Yamanome T.,et al.Effects of background color on GnRH and MCH levels in the barfin flounder brain[J].General and Comparative Endocrinology,2008,155:88-93.
    [140]Takahashi A.,Tsuchiya K.,Yamanome T.,et al.Possible involvement of melanin-concentrating hormone in food intake in a teleost fish,barfin flounder[J].Peptides,2004,25:1613-1622.
    [141]Lahrech Z.,Kishioka C.,Morishima K.,et al.Genetic verification of induced gynogenesis and microsatellite-centromere mapping in the barfin flounder,Verasper moseri[J].Aquaculture,2007,272:S115-S124.
    [142]Goto R.,Moil T.,Kawamata K.,et al.Effects of temperature on gonadal sex determination in barfin flounder Verasper moseri[J].Fisheries Science,1999,65:884-887.
    [143]Andoh T.Amino acids are more important insulinotropins than glucose in a teleost fish,barfin flounder(Verasper moseri)[J].General and Comparative Endocrinology,2007,151:308-317.[
    144]徐恭昭,郑澄伟.海洋鱼类的养殖和增值[M].济南:山东科学技术出版社,1987.
    [145]吴光宗,张英.牙鲆早期阶段存活率的研究[J].海洋科学,1993,17:
    [146]张孝威,何桂芬,沙学绅.牙鲆和条鳎卵子及仔、稚鱼的形态观察[J].海洋与湖沼,1965,7:158-174.
    [147]Bisbal G.A.,Bengtson D.A.Development of the digestive tract in larval sunnner flounder[J].Journal of Fish Biology,1995,47:277-291.
    [148]陈慕雁,张秀梅.大菱鲆仔稚幼鱼消化系统发育的组织学研究[J].水生生物学报,2006,30:236-240.
    [149]王思锋,张志峰,张全启.圆斑星鲽仔鱼变态前消化系统发生的形态学和组织学观察[J].中国水产科学,2006,13:1-7.
    [150]Baglole C.J.,Murray H.M.,Goff G.P.,et al.Ontogeny of the digestive tract during larval development of yellowtail flounder:a light microscopic and mucous histochemical study[J].Journal of Fish Biology,1997,51:120-134.
    [151]李亚南,陈全震,邵健忠.鱼类免疫学研究进展[J].动物学研究,1995,16:83-94.
    [152]Grace M.F.,Manning M.J.Histogenesis of the lymphoid organs in rainbow trout,Salmo gairdneri rich.1836[J].Developmental & Comparative Immunology,1980,4:255-264.
    [153]Botham J.W.,Manning M.J.The histogenesis of the lymphoid organs in the carp Cyprinus carpio L.and the ontogenetic development of allograft reactivity[J].Journal of Fish Biology,1981,19:403-414.
    [154]Razquin B.E.,Castillo A.,Lopez-Fierro P.,et al.Ontogeny of IgM-producing cells in the lymphoid organs of rainbow trout,Salmo gairdneri Richardson:an immuno-and enzyme-histochemical study[J].Journal ofFish Biology,1990,36:159-173.
    [155]Fishelson L.Cytological and morphological ontogenesis and involution of the thymus in cichlid fishes(Cichlidae,Teleostei)[J].Journal of Morphology,1995,223:175-190.
    [156]Bly J.E.The ontogeny of the immune system in viviparous teleost Zoarces viviparous L.[M]//MANNING MJ,TATNER M F.Fish Immunology.London;Academic Press Inc.Ltd.1985:327-341.
    [157]Nakanishi T.Ontogeny of the immune system in Sebasticus marmortus:histogenesis of the lymphoid organs and effect of theymectomy[J].Environmental Biology of Fishes,1991,30:135-145.
    [158]Watts M.,Kato K.,Munday B.L.,et al.Ontogeny of immune system organs in northern bluefin tuna(Thunnus orientalis,Temminck and Schlegel 1844)[J].Aquaculture Research,2003,34:13-21.
    [159]钟明超,黄浙.鲇鱼淋巴样器官的发育[J].水产学报,1995,3:258-262.
    [160]徐晓漳,翁朝红,王军.大黄鱼早期发育过程中免疫器官的发生[J].海洋学报,2007,29:105-113.
    [161]Liu Y.,Zhang S.,Jiang G.,et al.The development of the lymphoid organs of flounder,Paralichthys olivaceus,from hatching to 13 months[J].Fish & Shellfish Immunology,2004,16:621-632.
    [162]王开顺,张志峰,康庆浩.圆斑星鲽胚胎及仔鱼发育的观察[J].中国水产科学,2003,10:451-456.
    [163]雷霁霖,马爱军,刘新富.大菱鲆(Scophthalmas maximus L.)胚胎及仔稚幼鱼的发育研究[J].海洋与湖沼,2003,34:9-18.
    [164]Smigielski A.S.Hormone-induced spawnings of the summer flounder and rearing of the larvae in the laboratory[J].The Progressive Fish-Culturist,1975,37:3-8.
    [165]Powell A.B.,Henley T.Egg and larval development of laboratory-reared gulf flounder,Paralichthys albigutta,and southern flounder,Paralichthys lethostigma[J].Fishery Bulletin,1993,93:504-515.
    [166]唐国盘,刘鉴毅,危起伟.中华鲟胚胎的耗氧率[J].动物学杂志,2004,39:30-34.
    [167]Gabriela M.Martinez J.A.B.Embryonic and larval staging of summer flounder(paralichthys dentatus)[J].Journal of Morphology,2003,255:162-176.
    [168]朱杰,张秀梅,高天翔.大菱鲆早期变态发育和体表黑色素细胞形态学观察[J].水产学报,2002,26:193-200.
    [169]Sibbing F.A.,Uribe R.Regional Specializations in the Oro-Pharyngeal Wall and Food Processing in the Carp(Cyprinus Carpio L.)[J].Netherlands Journal of Zoology,1984,35:377-422.
    [170]Kato K.,Ishimaru K.,Sawada Y.,et al.Ontogeny of digestive and immune system organs of larval and juvenile kelp grouper Epinephelus bruneus reared in the laboratory[J].Fisheries sciences,2004,70:1061-1069.
    [171]Cousin J.C.B.,Baudin Laurencin F.Morphogenese de l'appareil digestif et de la vessie gazeuse du turbot,Scophthalmus maximus L.Morphogenesis of the digestive system and swim bladder of the turbot,Scophthalmus maximus L[J].Aquaculture,1985,47:305-319.
    [172]Murray H.M.,Wright,G.M.,Goff,G.P.A study of the posterior esophagus in the winter flounder,Pleuronectes americanus,and the yellowtail flounder,Pleuronectes ferruginea:amorphological evidence of pregastric digestion?[J].Canadian Journal of Zoology,1994,72:1191-1198.
    [173]Stroband H.W.J.,Debts F.M.H.The ultrastructure and renewal of the intestinal epithelium of the juvenile grasscarp,Ctenopharyngodon idella.[J].Cell & Tissue Research,1978,187:181-200.
    [174]常青,陈四清,张秀梅.半滑舌鳎消化系统器官发生的组织学研究[J].水产学报,2005,29:447-453.
    [175]Watanabe Y.Morphological and functional changes in rectal epithelium cells of pond smelt during postembryonic development[J].Bulletin of the Japanese Society of Scientific Fishery,1984,50:805-814.
    [176]Jany K.D.Studies on the digestive enzymes of the stomachless bonefish Carassius auratus gibelio(bloch):Endopeptidases[J].Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,1976,53:31-38.
    [177]O'neill J.G.Ontogeny of the lymphoid organs in an antarctic teleost,Harpagifer antarcticus (Notothenioidei:Perciformes)[J].Developmental & Comparative Immunology,1989,13:25-33.
    [178]Schroder M.B.,Villena A.J.,Jorgensen T.O.Ontogeny of lymphoid organs and immunoglobulin producing cells in atlantic cod(Gadus morhua L.)[J].Developmental & Comparative Immunology,1998,22:507-517.
    [179]Josefsson S.,Tatner M.F.Histogenesis of the lymphoid organs in sea bream(Sparus aurata L.)[J].Fish & Shellfish Immunology,1993,3:35-49.
    [180]Bowden T.J.,Cook P.,Rombout J.H.W.M.Development and function of the thymus in teleosts [J].Fish & Shellfish Immunology,2005,19:413-427.
    [181]Dorson M.,Chevassus B.,Torhy C.Comparative susceptibility of three species of char and rainbow trout ×char triploid hybrids to several pathogenic salmonid viruses[J].Diseases of Aquatic Organisms,1991,11:217-224.
    [182]Snucins E.J.Relative survival of hatchery-reared lake trout,brook trout,and F1 splake stocked in low-pH lakes[J].North American Journal of Fisheries Management,1992,12:460-464.
    [183]Lim C.,Leamaster B.,Brock J.A.Riboflavin requirement of fingerling red hybrid tilapia grown in seawater[J].journal of the World Aquaculture Society,1993,24:451-458.
    [184]Wohlfarth G.W.The unexploited potential of tilapia hybrids in aquaculture.[J].Aquaculture and Fisheries Management,1994 25:781-788.
    [185]Smith T.I.J.Aquaculture of striped bass and its hybrids in North America[J].Aquaculture Magazine,1988,14:40-49.
    [186]Hallerman E.M.,Kapuscinski A.R.Incorporating risk assessment and risk management into public policies on genetically modified finfish and shellfish[J].Aquaculture,1995,137:9-17.
    [187]楼允东,孙景春.江西三种红鲤起源与遗传多样性研究的进展[J].水产学报,2001,25:570-575.
    [188]Purdom C.E.,Lincoln R.F.Gynogenesis in hybrids within the Pleuronectidae[M]//BLAXTER J H S.the Early Life History offish.Berlin;Spinger-Verlag.1974:537-544.
    [189]王新成,尤锋,倪高田.石鲽与牙鲆人工杂交的研究[J].海洋科学,2003,27:1-4.
    [190]Morrow J.E.The freshwater fishes of Alaska.[M]//C U O B.Animal Resources Ecology Library.Alaska;Alaska Northwest Publishin.1980:248.
    [191]Lamb A.,Edgell P.Coastal fishes of the Pacific northwest.[M].Canada:Harbour Publishing Co.Ltd,1986.
    [192]Reitan K.I.,Rainuzzo J.R.,Oie G.,et al.A review of the nutritional effects of algae in marine fish larvae[J].Aquaculture,1997,155:207-221.
    [193]王佳喜,胡少华,管敏.美国大口胭脂鱼胚胎发育研究[J].江西农业大学学报,2004,26:298-303.
    [194]Johns D.M.,Howell W.H.,Klein-Macphee G.Yolk utilization and growth to yolk-sac absorption in summer flounder(Paralichthys dentatus) larvae at constant and cyclic temperatures[J].Marine Biology,1981,63:301-308.
    [195]夏仕玲.鱼类卵细胞质对胚胎发育速度的调控[J].珠江水产,1992,18:65-68.
    [196]马梁,王军,陈武各.鮸状黄姑鱼与大黄鱼人工杂交子代的胚胎发育[J].厦门大学学报(自然科学版),2002,41:378-382.
    [197]Segner H.,Storch V.,Reinecke M.,et al.The development of functional digestive and metabolic organs in turbot,Scophthalmus maximus[J].Marine Biology,1994,119:471-486.
    [198]Blaxter J.H.S.,Danielssen D.,Moksness E.,et al.Description of the early development of the halibut Hippoglossus hippoglossus and attempts to rear the larvae past first feeding[J].Marine Biology,1983,73:99-107.
    [199]Kjorsvik E.,Reiersen A.L.Histomorphology of the early yolk-sac larvae of the Atlantic halibut (Hippoglossus hippoglossus L.) -an indication of the timing of functionality[J].Journal of Fish Biology,1992,41:1-19.
    [200]Murray H.M.,Wright G.M.,Goff G.P.Ciliated epithelium in the gut of larval Atlantic halibut,Hippoglossus hippoglossus[J].Journal of Fish Biology,1993,42:314-316.
    [201]Sarasquete C.,Gisbert,E.,Ribeiro,L.,Vieira,L.& Dinis,M.T.Glycoconjugates in epidermal,branchial and digestive mucous cells and gastric glands of gilthead sea bream,Sparus aurata,Senegal sole,Solea senegalensis and Siberian sturgeon,Acipenser baeri development[J].European Journal of Histochemistry,2001,45:267-278.
    [202]Ribeiro L.,Zambonino-Infante J.L.,Cahu C.,et al.Development of digestive enzymes in larvae of Solea senegalensis,Kaup 1858[J].Aquaculture,1999,179:465-473.
    [203]Zambonino Infante J.L.,Cahu C.L.Ontogeny of the gastrointestinal tract of marine fish larvae [J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2001,130: 477-487.
    
    [204] Walford J., Lam T. J. Development of digestive tract and proteolytic enzyme activity in seabass (Lates calcarifer) larvae and juveniles [J]. Aquaculture, 1993, 109: 187-205.
    
    [205] Baragi V., Lovell R. T. Digestive Enzyme Activities in Striped Bass from First Feeding through Larva Development [J]. Transactions of the American Fisheries Society, 1986, 115: 478-484.
    
    [206] Mai K., Yu H., Ma H., et al. A histological study on the development of the digestive system of Pseudosciaena crocea larvae and juveniles [J]. Journal of Fish Biology, 2005, 67: 1094-1106.
    
    [207] Segner H., Rosch R., Verreth J., et al. Larval Nutritional Physiology: Studies with Clarias gariepinus, Coregonus lavaretus and Scophthalmus maximus [M]. 1993: 121-134.
    
    [208] Tanaka M. Studies on the structure and function of the digestive system in teleosts larvae. III.Development of the digestive system during postlarval stage [J]. Japanese Journal of Ichthyology, 1971, 18:164-174.
    
    [209] Stroband H. W. J., Dabrowski K. R. Morphological and physiological aspects of the digestive system and feeding in fresh-water fish larvae [M]//FONTAINE M. Nutrition Des Poissons. Paris. 1981:355-374.
    
    [210] Govoni J. J., Boehlert, G. W. & Watanabe, Y. The physiology of digestion in fish larvae [J].Environmental Biology of Fishes, 1986, 16: 59-77.
    
    [211] Dabrowski K. The feeding of fish larvae: present state of art and perspectives [J]. Reproduction Nutrition Development, 1984, 24: 807-833.
    
    [212] Gatesoupe F.-J. Weaning of sole, Solea solea, before metamorphosis, achieved with high growth and survival rates [J]. Aquaculture, 1983, 32: 401-404.
    
    [213] Cahu C. L., Infante J. L. Z., Barbosa V. R. Effect of dietary phospholipid level and phospholipid:neutral lipid value on the development of sea bass (Dicentrarchus labrax) larvae fed a compound diet [J]. British Journal of Nutrition, 2003, 90: 21-28.
    
    [214] Sarasquete M., Polo A., Gonzalez De Canales M. A histochemical and immunohistochemical study of digestive enzymes and hormones during the larval development of the sea bream, Sparus aurata L [J]. The Histochemical Journal, 1993,25: 430-437.
    
    [215] Iwai T. Fine structure of gut epithelium cells of larval and juvenile carp during absorption of fat and protein [J]. Archives of Histology and Cytology, 1969, 30: 183-199.
    
    [216] Murray H. M., Wright, G.M., Goff, G.P. A study of the posterior esophagus in the winter flounder,Pleuronectes americanus, and the yellowtail flounder, Pleuronectes ferruginea: amorphological evidence of pregastric digestion? [J]. Canadian Journal of Zoology 1994, 72: 1191-1198.
    
    [217] Infante J. L. Z., Cahu C. L. Influence of diet on pepsin and some pancreatic enzymes in sea bass (Dicentrarchus labrax) larvae [J]. Comparative Biochemistry and Physiology Part A: Physiology, 1994, 109:209-212.
    
    [218] Gisbert E., Sarasquete M. C, Williot P., et al. Histochemistry of the development of the digestive system of Siberian sturgeon during early ontogeny [J]. 1999, 55: 596-616.
    
    [219] Makino H., Masuda R., Tanaka M. Ontogenetic changes of learning capability under reward conditioning in striped knifejaw Oplegnathus fasciatus juveniles [J]. Fisheries Science, 2006, 72:1177-1182.
    
    [220] Oh D.-J., Kim J.-Y., Lee J.-A., et al. Complete mitochondrial genome of the rock bream Oplegnathus fasciatus (Perciformes, Oplegnathidae) with phylogenetic considerations [J]. Gene, 2007, 392:174-180.
    
    [221] Kim I. S., Choi Y, Lee C. L., et al. Illustrated Book of Korean Fishes [M]. Seoul: Kyo-Hak Publishing Co,2005.
    [222]An H.S.,Kim J.W.,Park J.Y.Microsatellite DNA loci in the rock bream Oplegnathus fasciatus [J].Molecular Ecology Notes,2006,6:44-46.
    [223]Yoshikoshi K.,Inoue K.Viral nervous necrosis in hatchery-reared larvae and juveniles of Japanese parrotfish,Oplegnathus fasciatus(Temminck &Schlegel)[J].Journal of Fish Dieases,1990,13:69-77.
    [224]Kyung Choi S.,Ryun Kwon S.,Kwon Nam Y.,et al.Organ distribution of red sea bream iridovirus(RSIV) DNA in asymptomatic yearling and fingerling rock bream(Oplegnathus fasciatus) and effects of water temperature on transition of RSIV into acute phase[J].Aquaculture,2006,256:23-26.
    [225]Do J.W.,Moon C.H.,Kim H.J.,et al.Complete genomic DNA sequence of rock bream iridovirus[J].Virology,2004,325:351-363.
    [226]Kim H.J.,Kwon S.R.,Lee E.H.,et al.Pathogenicity of marine birnavirus(MABV) on fingerlings of rock bream(Oplegnathus fasciatus)[J].Aquaculture,2007,272:762-766.
    [227]Cho Y.S.,Choi B.N.,Kim K.H.,et al.Differential expression of Cu/Zn superoxide dismutase mRNA during exposures to heavy metals in rockbream(Oplegnathus fasciatus)[J].Aquaculture,2006,253:667-679.
    [228]Wang X.,Kim K.-W.,Bai S.C.,et al.Effects of the different levels of dietary vitamin C on growth and tissue ascorbic acid changes in parrot fish(Oplegnathus fasciatus)[J].Aquaculture,2003,215:203-211.
    [229]Murata O.Studies on the Breeding of Cultivated Marine Fishes[J].Bulletin of the Fisheries Laboratory of Kinki University,1998,6:1-101.
    [230]Shah X.,Quan H.,Dou S.Effects of delayed first feeding on growth and survival of rock bream Oplegnathus fasciatus larvae[J].Aquaculture,2008,277:14-23.
    [231]Biswas A.K.,Seoka M.,Ueno K.,et al.Growth performance and physiological responses in striped knifejaw,Oplegnathus fasciatus,held under different photoperiods[J].Aquaculture,2008,In Press,Accepted Manuscript:
    [232]辛俭,薛利建,毛国民.条石鲷的胚胎发育观察[J].浙江海洋学院学报(自然科学版),2005,24:31-36.
    [233]常抗美,毛建平,吴剑锋.条石鲷胚胎及仔稚鱼的发育[J].上海水产大学学报,2005,14:401-405.
    [234]朱元鼎,张春霖,成庆泰.东海鱼类志[M].北京:科学出版社,1963.
    [235]孟庆闻,苏锦祥,缪学祖.鱼类分类学[M].北京:中国农业出版社,1995.
    [236]Calzada A.,Medina A.,Canales M.L.G.Fine structure of the intestine development in cultured sea bream larvae[J].Journal ofFish Biology,1998,53:340-365.
    [237]Dhert P.,Divanach P.,Kentouri M.,et al.Rearing techniques of difficult marine fish larvae[J].World Aquaculture 1998,29:48-55.
    [238]Cataldi E.,Albano C.,Boglione C.,et al.Acipenser naccarii:fine structure of the alimentary canal with references to its onto genesis[J].Journal of Applied Ichthyology,2002,18:329-337.
    [239]Hamlin H.J.,Herbing I.H.,Kling L.J.Histological and morphological evaluations of the digestive tract and associated organs of haddock throughout post-hatching ontogeny[J].Journal of Fish Biology,2000,57:716-732.
    [240]Van Muiswinkel W.B.,Lamers C.H.J.,Rombout J.H.W.M.Structural and functional aspects of the spleen in bony fish[J].Research in Immunology,1991,142:362-366.
    [241]Fange R.Blood cells,haemopoiesis and lymphomyeloid tissues in fish[J].Fish & Shellfish Immunology, 1994,4: 405-411.
    
    [242] Manley N. R. Thymus organogenesis and molecular mechanisms of thymic epithelial cell differentiation [J]. Seminars in Immunology, 2000,12: 421-428.
    
    [243] Mulero I. Ontogeny of the immune system of gilthead seabream(Sparus aurata L.) [D];University of Murcia, 2005.
    
    [244] Dos Santos N. M. S., Romano N., De Sousa M., et al. Ontogeny of B and T cells in sea bass (Dicentrarchus labrax, L.) [J]. Fish & Shellfish Immunology, 2000, 10: 583-596.
    
    [245] Sarasquete M. C, Polo A., Yufera M. Histology and histochemistry of the development of the digestive system of larval gilthead seabream, Sparus aurata L [J]. Aquaculture, 1995, 130: 79-92.
    
    [246] Elbal M. T., Garcia Hernandez M. P., Lozano M. T., et al. Development of the digestive tract of gilthead sea bream (Sparus aurata L.). Light and electron microscopic studies [J]. Aquaculture, 2004, 234:215-238.
    
    [247] Ortiz-Delgado J. B., Darias M. J., Canavate J. P., et al. Organogenesis of the digestive tract in the white seabream, Diplodus sargus. Histological and histochemical approaches [J]. Histology and Histophathology, 2003,18: 1141-1154.
    
    [248] Sanchez-Amaya M. I., Ortiz-Delgado J. B., Garcia-Lopez A., et al. Larval ontogeny of redbanded seabream Pagrus auriga Valenciennes, 1843 with special reference to the digestive system. A histological and histochemical approach [J]. Aquaculture, 2007, 263: 259-279.
    
    [249] Micale V., Garaffo M., Genovese L., et al. The ontogeny of the alimentary tract during larval development in common pandora Pagellus erythrinus L [J]. Aquaculture, 2006, 251: 354-365.
    
    [250] Zambonino Infante J. L., Cahu C. L. Influence of diet on pepsin and some pancreatic enzymes in sea bass (Dicentrarchus labrax) larvae [J]. Comparative Biochemistry and Physiology Part A: Physiology,1994,109: 209-212.
    
    [251] Clark J., Murray K. R., Stark J. R. Protease development in Dover sole [Solea solea (L.)] [J].Aquaculture, 1986, 53: 253-262.
    
    [252] Buddington R. K., Diamond J. M. Pyloric ceca of fish: a "new" absorptive organ [J]. American Journal of Physiology, 1987, 252: G65-76.
    
    [253] Philip A. Veillette R. J. W. J. L. S. G. Y. Osmoregulatory physiology of pyloric ceca: regulated and adaptive changes in chinook salmon [J]. Journal of Experimental Zoology, 2005, 303A: 608-613.
    
    [254] Garcia Hernandez M. P., Lozano M. T., Elbal M. T., et al. Development of the digestive tract of sea bass (Dicentrarchus labrax L). Light and electron microscopic studies [J]. Anatomy and Embryology,2001,204:39-57.
    
    [255] Chatain B. La vessie natatoire chez Dicentrarchus labrax et Sparus auratus The swimbladder in Dicentrarchus labrax and Sparus auratus. II. Influence of development anomalies on larval growth : II.Influence des anomalies de developpement sur la croissance de la larve [J]. Aquaculture, 1987, 65: 175-181.
    
    [256] Chatain B., Dewavrin G. Influence des anomalies de developpement de la vessie natatoire sur la mortalite de Dicentrarchus labrax au cours du sevrageThe effects of abnormalities in the development of the swim bladder on the mortality of Dicentrarchus labrax during weaning [J]. Aquaculture, 1989, 78:55-61.
    
    [257] J. Quesada, M. I. Villena, Navarro V. Ontogeny of the sea bass spleen (Dicentrarchus labrax): A light and electron microscopic study [J]. Journal of Morphology, 1994, 221: 161-176.
    
    [258] Abelli L., Picchietti S., Romano N., et al. Immunocytochemical detection of thymocyte antigenic determinants in developing lymphoid organs of sea bass Dicentrarchus labrax{L.) [J]. Fish & Shellfish Immunology, 1996, 6: 493-505.
    [259]肖志忠,于道德,徐世宏,等.条斑星鲽免疫器官个体发生的组织学观察[J].海洋科学,2008,32:待刊.
    [260]Ellis A.E.Ontogeny of the immune response in Salmo salar.Histogenesis of the lymphoid organs and appearance of membrane immunoglobulin and mixed leucocyte reactivity[M]//SOLOMON J B,HORTON J D.Developmental Immunology.Amsterdam;Elsevier.1977:225-231.
    [261]Zapata A.G.,Chiba A.,Varas A.Cells and tissues of the immune system of fish[M]//IWAMA G,NAKANISHI T.The fish immune system:organism,pathogen,and environment San Diego;Academic Press.1996:1-66.
    [262]Tatner M.F.,Manning M.J.The morphology of the trout,Salmo gairdneri Richardson,thymus:some practical and theoretical considerations[J].Journal of Fish Biology,1982,21:27-32.
    [263]Bly J.E.,Grimm A.S.,Morris I.G.Transfer of passive immunity from mother to young in a teleost fish:Haemagglutinating activity in the serum and eggs of plaice,Pleuronectes platessa L[J].Comparative Biochemistry and Physiology Part A:Physiology,1986,84:309-313.
    [264]Nakanishi T.Ontogeny of the immune system in Sebastiscus marmoratus:Histogenesis of the lymphoid organs and effects of thymectomy[J].Environmental Biology of Fishes,1991,30:135-146.
    [265]张波,郭学武,孙耀,等.温度对真鲷排空率的影响[J].海洋科学,2001,25:14-15.
    [266]Johnston T.A.,Mathias J.A.Gut evacuation and absorption efficiency of walleye larvae[J].Journal offish Biology,1996,49:375-389.
    [267]Matsunaga T.,Rahrnan A.In Search of the Origin of the Thymus:the Thymus and GALT May Be Evolutionarily Related[J].Scandinavian Journal of Immunology,2001,53:1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700