仿刺参(Apostichopus Japonicus, Selenka)体腔液中调理素样分子的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
仿刺参是我国辽宁、山东、河北等北方沿海省份重要的养殖经济种类。仿刺参体腔液中的吞噬细胞在吞噬过程中起重要作用,而吞噬作用在无脊椎动物免疫防御中居于核心地位。调理素是一些血浆蛋白质,它们可以结合到病原体表面,使其成为靶细胞,为吞噬作用提供标记,从而增强吞噬细胞对病原体的吞噬作用。目前已在少数无脊椎动物中发现了调理素样分子。为了探究仿刺参体腔液中是否存在调理素样分子,且分析其调理素样分子的的性质,采用热致死酵母细胞作为吞噬实验靶细胞。通过SDS-PAGE,凝胶过滤层析,质谱分析,氨基酸序列分析等方法进行蛋白质的纯化和分析;吞噬细胞对酵母细胞的吞噬作用研究采用荧光显微镜观察。结果表明,仿刺参的吞噬细胞在等渗缓冲液、无细胞体腔液和酵母细胞作用的无细胞体腔液中均具有吞噬能力。在不同的反应基质条件下,吞噬细胞对酵母细胞的吞噬率有所不同。当反应基质为无细胞体腔液时,吞噬细胞对酵母细胞的吞噬率最高。SDS-PAGE分析结果表明,一种分子量约为18 kDa的分子可以结合到热致死酵母细胞上,增强吞噬作用。通过凝胶过滤层析纯化出这种调理素样分子。调理素样分子功能检测实验表明,这种约18 kDa的调理素样分子可增强吞噬细胞的吞噬作用,但其并不能单独提高吞噬作用,还需要和体腔液中某种物质共同作用才可使吞噬作用得以增强。调理素样分子N端前15个氨基酸序列及质谱分析结果表明,此调理素样分子是无脊椎动物调理素样分子中的新成员。
     Western blots与ELISA分析结果均表明,脂多糖(LPS)免疫刺激和受伤均可使体腔内调理素样分子水平增加。注射LPS的仿刺参体腔液中调理素样分子含量在注射后1 h显著增加(P<0.05)。注射后1 h到2 d内显著高于注射前15 min水平(P<0.05)。最大量出现在注射后3 d到6 d,且显著高于注射后1 h到2 d水平(P<0.05)。6 d后,调理素样分子水平开始下降,并恢复到在注射后1 h到2 d水平(P>0.05)。注无菌海水(SSW)的海参体内调理素样分子水平较低。注射前15 min到注射后12 h体腔液中调理素样分子含量均无显著变化(P>0.05)。注射后第2 d到8 d,调理素样分子含量升高并显著高于注射前15 min到注射后12 h水平(P<0.05)。这是因为采取注射的方式,仿刺参会受伤,而受伤所产生的应激也可刺激机体产生免疫应答。
     注射LPS的仿刺参体腔液中调理素样分子水平除注射前15 min,注射后第2 d和8 d无显著差异外(P>0.05),其它时间均显著高于注射SSW组(P<0.05)。这表明了LPS免疫刺激及受伤刺激均可使仿刺参体内调理素样分子含量增加。而受伤和LPS共同刺激可使机体分泌更多的调理素样分子。
     该调理素样分子具凝集素性质,推测它是一种凝集素。该调理素样分子可以凝集兔、鸡、鼠、鲫和人的A、B、O、AB型红细胞。其凝集结果为:鸡>兔>人(A= B = O = AB) >鼠>鲫。凝菌结果表明,纯化的调理素样分子可凝集革兰氏阳性细菌和革兰氏阴性细菌。细菌中以鳗弧菌对调理素样分子最敏感。在25-60℃保温30 min ,凝集活性均未见改变。在70℃30 min热处理后仍然对鸡红细胞显示出凝集活性,活性开始下降。在80℃热处理30 min后失去凝集活力。当5.0≤pH≤9.0时,仿刺参调理素样分子具有活性,当pH为6.0-8.0时,活性最高,当pH为5.0或9.0时,活性下降,当pH≥10.0或≤4.0时,失去凝集活力。调理素样分子不被所测试的D-葡萄糖(D-Glueose)、D-半乳糖(D-Galaetose)、L-Arabinose (L-岩藻糖)、D-木糖(D-Xylose)、D-甘露糖(D-Mannose)、L-鼠李糖(L-Rhamnose)、D-果糖(D-Frutose)和LPS所抑制。可被N-乙酰葡萄糖胺(GlcNAc)、N-乙酰半乳糖胺(GalNAc)、N-乙酰神经氨酸(NeuAc)、牛下颚粘液素(Bovine submaxillary mucin, BSM)、胎球蛋白(Fetuin)、脱唾液酸牛下颚粘液素(Asialo-BSM)、脱唾液酸胎球蛋白(Asialo- Fetuin)所抑制。N-乙酰葡萄糖胺(GlcNAc)、N-乙酰半乳糖胺(GalNAc)和N-乙酰神经氨酸(NeuAc)的最小抑制浓度分别为20.15 mmol/L、12.50 mmol/L和0.25 mmol/L。牛下颚粘液素(Bovine submaxillary mucin, BSM)、胎球蛋白(Fetuin)、脱唾液酸牛下颚粘液素(Asialo-BSM)、脱唾液酸胎球蛋白(Asialo-Fetuin)的最小抑制浓度分别为0.39 mg/mL、1.56 mg/mL、3.12 mg/mL和6.26 mg/mL。EDTA,Mn~(2+)、Ca~(2+)、Mg~(2+)、K+等金属离子作用的调理素样分子对鸡红细胞的凝集活性保持不变,即它们的存在不影响该调理素样分子的凝集活性。
Apostichopus japonicus, an important sea cucumber in some province of China, such as Liaoning, Shandong and Hebei province. Phagocytosis is known to play an important role in echinoderm innate immune system. Opsonins are collective term of phagocytosis-enhancing serum proteins. They can bind to the surface of many kinds of pathogens and tag them as targets for phagocytosis in vertebrates. Opsonization to augment phagocytosis (or encapsulation) is the general molecular response of echinoderms to foreign pathogens. In order to determine if opsonin-like protein exists in the coelomic fluid of sea cucumber Apostichopus japonicus and identify the properties of this opsonin-like protein, immunochemical methods were performed including phagocytosis assay, SDS-PAGE, gel filtration and mass spectrometric analysis. The phagocytosis of phagocytes from the sea cucumber Apostichopus japonicus was analyzed in a quantitative in vitro assay using heat-killed yeast cells as target cells. Phagocytes of the sea cucumber were capable of phagocytosis in isotonic buffer, cell-free coelomic fluid and yeast cell-adsorbed cell-free coelomic fluid, but the phagocytosis level was enhanced when the incubation medium was cell-free coelomic fluid. SDS-PAGE analysis indicated that the about 18 kDa molecule can bind to the yeast cells. By using gel filtration we isolated the opsonin-like molecule of 18 kDa from coelomic fluid of the sea cucumber Apostichopus japonicus. Functional test of the opsonin-like molecule suggested that the about 18 kDa molecule is a phagocytosis-enhancing opsonin-like molecule. But the phagocytosis-enhancing function of the opsonin-like molecule is dependent on some other factors in the cell-free coelomic fluid. The properties of this opsonin-like molecule were analyzed by mass spectrometric analysis and peptide sequencing. We suggest that this is a new member of opsonin-like molecule found in invertebtrates.
     Changes in the amounts of opsonin-like molecule in coelomic fluid are followed over time by Western blots and ELISA. In the animals receiving lipopolysaccharids (LPS), initial increases in opsonin-like molecule are observed within 1 h post-injection (P<0.05). From 1 h to day 2, the level of opsonin-like molecule is significantly higher than 15 min prior to the first injection (P<0.05). Overall, these 9 animals shows a maximum amount of opsonin-like molecule in coelomic fluid between days 3 and 6, and the level is significantly higher than day 2 (P<0.05). After day 6, opsonin-like molecule levels are decreased.While the earliest response in the animals receiving sterile sea water (SSW) was day 2. From day 2 until day 8, the level of opsonin-like molecule is significantly higher than day 15 prior to the first injection (P<0.05).
     Although all animals responded to injury with increased levels of opsonin-like molecule in the coelomic fluid, those challenged with LPS had greater amounts of opsonin-like molecule in coelomic fluid than those receving SSW. This indicates that whether challenge with LPS or in response to injury, animals shows increases amounts of opsonin-like molecule in coelomic fluid. But those responses to a combination of LPS plus injury resulted in greater increases.
     The opsonin-like molecule probably is a type of lectin. It is nonspecific in agglutination for any type of human erythrocytes. The agglutination for chicken erythrocytes is the highest, and then the rabbits, humans (A, B, O, and AB), mouse and golden carp. The opsonin-like molecule shows strong broad spectrum antibacterial activity against both grampositiveand gram-negative bacteria. The agglutination for Vibrio anguillarum is the highest. The lectin still shows aggllutinating activity after being treated with 70℃for 30 minutes. There are no aggllutinating activities after being treated with 80℃for 30 minutes, indicating that it had a middle heat resistance. This lectin has the maximum hemagglutinating activity at pH 6.0-8.0, with activity at pH 5.0-9.0. The hemagglutinating activity for rabbit could not be inhibited by D-Glueose、 D-Galaetose、L-Arabinose、D-Xylose、D-Mannose、L-Rhamnose、D-Frutose and LPS, but inhibited by GlcNAc、GalNAc、NeuAc、BSM、Fetuin、Asialo-BSM、Asialo- Fetuin. The minimum inhibitory concentration are 20.15 mmol/L、12.50 mmol/L、0.25 mmol/L、0.39 mg/mL、1.56 mg/mL、3.12 mg/mL and 6.26 mg/mL. The hemagglutinating activity is not inhibited by treatment with EDTA and Ca~(2+)、Mg~(2+)、Mn~(2+)、K~+.
引文
[1] McElroy S. Beche-de-mer species of commercial value-an update. SPC Beche-de-mer Inf Bull, 1990, 2: 2~7
    [2]廖玉麟.中国动物志,棘皮动物门,海参纲.北京:科学出版社, 1997. 1~334
    [3] Conand C, Byrne M. A review of recent developments in the world sea cucumber fisheries. Mar Fish Rev, 1993, 55(4): 1~13
    [4] Vannuccini S. Sea cucumbers: a compendium of fishery statistics. Workshop on advances in sea cucumber aquaculture and management (ASCAM). Dalian, 2003
    [5] Hamel J-F, Hidalgo R Y, Mercier A. Larval development and juvenile growth of the Galapagos sea cucumber Isostichopus fuscus. SPC Beche-demer Inf Bull, 2003, 18: 3~8
    [6] Martinez P C. The Galapagos sea cucumber fishery: A risk or an opportunity for conservation. SPC Beche-de-mer Inf Bull. 2001, 14: 22~23
    [7] Sonnenholzner J. A brief survey of the eommercial sea cueumber Isostichopus fuscus (Ludwig, 1875) in the Galapagos Island. SPC Beehe-de-mer Inf Bull, 1997, 9: 11~15
    [8]张春云,王印庚,荣小军等.国内外海参自然资源、养殖状况及存在问题.海洋水产研究, 2004, 25(3): 89~97
    [9] Purcell S, Gardner D, Bell J. Developing optimal strategies for restocking sandfish: A collaborative project in New Caledonia. SPC Beche-de-mer Inf Bull, 2002, 16: 2~4
    [10] Reichenbath N. Ecology and fishery biology of Holothurian fuscogilva (Echinodernata: Holothuroidea) in the Maldives. Bulletin marine Science, 1999, 64: 103~113
    [11] Mercier A, Hamel J-F. International collaboration for the study and restoration of Holothuria scabra populations in the Solomon Islands. SPC Beche-de-mer Inf Bull, 1999, 12: 27~28
    [12] Shelley C. Aspects of the distribution, reproduction, growth and“fishery”potential of holothurians (beche-de-mer) in the Papuan Coastal Lagoon: [M.Sc thesis]. University of Papua New Guinea,1981
    [13] Kinch J. Overview of the beche-de-mer fishery in Milne Bay Province, Papua New Guinea. SPC Beche-de-mer Inf Bull, 2002, 17: 2~16
    [14]袁文鹏.仿刺参(Apostichopus japonicus)水溶性海参皂苷的分离纯化及其药理活性研究: [博士学位论文].青岛:中国海洋大学, 2007
    [15]薛素燕.养殖刺参(Apostichopus japonicus)的生态习性及代谢生理的初步研究: [硕士学位论文].青岛:中国海洋大学, 2007
    [16]姚可成(明).食物本草(点校本).北京:人民卫生出版社, 1994. 695
    [17]赵学敏(清).本草纲目拾遗.北京:商务印书馆, 1955. 495
    [18] Battaglene S C, Seymour J E, Ramofafia C. Survival and growth of cultured juvenile sea cucumbers, Holothuria scabra. Aquaculture, 1999, 17: 293~322
    [19]樊绘曾.海参:海中人参关于海参及其成分保健医疗功能的研究与开发.中国海洋药物, 2001, 4(82): 37~44
    [20]苏秀榕,娄永江,常亚青,等.海参的营养成分及海参多糖的抗肿瘤活性的研究.营养学报, 2003, 25(2): 181~182
    [21]常亚青,隋锡林,李俊.刺参增养殖业现状、存在问题与展望.水产科学, 2006, 25(4): 198~201
    [22]李丹彤,宋亮,钟莉,等.刺参凝集素的分离纯化及其性质.水产学报, 2005, 29(5): 654~658
    [23]李丹彤,常亚青,陈炜,等.獐子岛野生刺参体壁营养成分的分析.大连水产学院学报, 2006, 21(3): 278~282
    [24]张群乐,刘永宏.海参海胆增养殖技术.青岛海洋大学, 1998, 1~7, 53~57, 65~66
    [25] Hatakeyama T, Sato T, Thlra E. Characterization of the interaction of hemolytie lectin CEL-Ⅲfrom the marine invertebrate, cucumaria echinata, with artificial lipid membranes: involvementof neutral sphingoglycolipids in the pore-forming process, J Biochem (Tokyo), 1999, 125(2): 277~284
    [26]燕敬平,孙慧玲,名优贝类海产动物增养殖问答.中国盲文出版社, 2000. 89
    [27]李颖.仿刺参和野生刺参遗传多样性的研究: [硕士学位论文],青岛:中国海洋大学, 2005
    [28]廖玉麟.中国楯手目海参的研究.海洋科学集刊, 1984, 23: 221~244
    [29]郑作新等.中国动物志·棘皮动物门·海参纲.科技出版社, 1995. 56-59, 65~68
    [30]朱淑琴.利用塑料大棚进行刺参人工育苗技术研究.中国水产, 2000, 3: 36~37.
    [31]常亚青.虾夷扇贝Patinopecten yessoensis (Jay)和仿刺参Apostichopus japonicus (Selenka)多倍体诱导研究: [博士学位论文],青岛:中国科学院海洋研究所, 2000
    [32] Kanno M, Kijima A. Quantitative and qualitative evaluation on the color variation of the Japanese sea cucumber Stichopus japonicus. Suisan Zoshoku, 2002, 50: 63~69
    [33] Yamaguchi T. Cirripedia, In: Nishimura S, eds. Guide to seashore animals of Japan with color pictures and keys. Osaka, Japan: Hoikusya, 1995. 2: 116-133
    [34] Choe S, Oshima Y. On the morphological and ecological differences between two commercial forms,“green”and“red”, of the Japanese common sea cucumber, Stichopus Japoniucs SELENKA. Nippon Suisan Gakkaishi, 1961, 27: 97~105
    [35]常亚青,丁君,宋坚,等.海参、海胆生物学研究与养殖.海洋出版社, 2004
    [36]崔凤霞.海参胶原蛋白生化性质及胶原肽活性研究: [硕士学位论文].青岛,中国海洋大学, 2007
    [37]赵永军.刺参的生物清除作用及贝参混养模式的建立: [硕士学位论文].长春,吉林农业大学, 2002
    [38] Feder H, Christensen A M. Aspects of asteroid biology. In: Boolootain R A eds. Physiology of Echinoderninta. New York: Interscience, 1966. 87~127
    [39] Jangoux M, Laurence J. Echinoderm nutrition. Rotterdam, Balkema, 1982, 654
    [40]李向民.东、西、南、北、中沙群岛的海参渔业.海南省琼海县水产局, 1992, 110~111
    [41] Yuan X T, Yang H S, Zhou Y, et al. The influence of diets containing dried bivalve feces and/or powdered algae on growth and energy distribution in sea cucumber Apostichopus japonicus (Selenka) (Echinodermata: Holothuroidea). Aquaculture, 2006, 256: 457~467
    [42]寥承仪.刺参幼虫的变态和习性.山东海洋学院学报, 1987, 17(1): 85~95
    [43]寥玉麟.中国楯手目海参研究.海洋科学集刊, 1984, 23: 221~224.
    [44]王国利.生态因子对刺参(Apostichopus japonicus)生长与行为的影响: [硕士学位论文].济南:山东师范大学, 2007
    [45]隋锡林等.刺参生殖周期的研究.水产学报,1985, 9(4): 303~310
    [46]隋锡林.海参增养殖.北京:农业出版社, 1990
    [47] Mitsukuri K. Notes on the habits and life history of Stichopus japonicus Selenka, Annot Zool Japan, 1903, 5: 1~21
    [48]隋锡林.海参增养殖.北京:农业出版社, 1988
    [49] Michio K, Kengo K, Yasunori K, et al. Effects of deposit feeder Stichopus japonicus on algal bloom and organic matter contents of bottom sediments of the enclosed sea. Mar Pollut Bull, 2003, 47: 118~125
    [50]刘永宏,李馥馨,宋本祥,等.刺参(Apostichopus japonicus Selenka)夏眠习性研究: I夏眠生态特点的研究.中国水产科学, 1996, 3(2): 41~48
    [51] Yang H, Yuan X, Zhou Y, et al. Effects of body size and water temperature on food consumption and growth in the sea cucumber Apostichopus japonicas (Selenka) with special reference to aestivation. Aquac Res, 2005, 36: 1085~1092
    [52] Sloan N A. Echinoderm fisheries of the world: A review. In: Galway, Ireland B F, Keegan, Balkema A A, eds. Proceedings of the Fifth International Echinoderm Conference. Rotterdam: 1984. 109~124
    [53]李馥馨,刘永宏,宋本祥,等.海参(Apostichopus japonicus Selenka)夏眠习性研究II—夏眠致因的探讨.中国水产科学, 1996, 3(2): 49~57
    [54] Reyes-Bonilla H, Herrero-Pérezrul M D. Population parameters of an exploited population of Isostichopus fuscus (Holothuroidea) in the southern Gulf of California. México Fish Res, 2003, 59(3): 423~430
    [55]黄华伟,王印庚.海参养殖的现状、存在问题与前景发展.中国水产, 2007, 10: 50~53
    [56]高菲.刺参Apostichopus japonicus营养成分、食物来源及消化生理的季节变化: [硕士学位论文].青岛:中国科学院海洋研究所, 2008
    [57]姜健,杨宝灵,部阳.海参资源及其生物活性物质的研究.生物技术通讯, 2004, 15(5): 537~540
    [58]袁成玉.海参饲料研究的现状与发展方向.水产科学, 2005, 24(12): 54~56
    [59] Wang Y, Zhang C, Rong X, et al. Diseases of cultured sea cucumber Apostichopus japonicus in China.Proceedings of Workshop on Advances in Sea Cucumber Aquaculture and Management, FAO, October 14~18, 2003, Dalian, China
    [60]张春云,王印庚,荣小军,等.国内外海参自然资源、养殖状况及存在问题.海洋水产研究. 2004, 25(3): 89~97
    [61] Zhang C Y, Wang Y G, Rong X J, et al. Natural resources, culture and problems of sea cucumber worldwide. Mar Fish Res, 2004, 25: 89~93
    [62] Deng H, Zhou Z C, Wang N B, The syndrome of sea cucumber (Apostichopus japonicus) infected by virus and bacteria. Virol Sinica, 2008, 23: 63~67
    [63]谢忠明,隋锡林,高绪生.海参海胆增养殖技术.北京:金盾出版社, 2004. 67~68, 79
    [64]廖玉麟.我国的海参.生物学通报, 2001, 35(9): 1~3
    [65] Rahman M A, Uehara T, Aslan L M. Comparative viability and growth of hybrids between two sympatric species of sea urchins (Genus Echinometra) in Okinawa. Aquaculture, 2000, 183:45~56
    [66] Chia F S, Harrison F W. Introduction to the echinodermata. In: Harrison F W, Chia F S, eds. Microscopic Anatomy of Invertebrates, Echinodermata. New York: Wiley-Liss, 1994. 1~8
    [67] China F S, Xing J, Echinoderm coelomocytes. J Zool Stud, 1996, 35: 231~254
    [68] Eliseikina M G, Magarlamov T, Yu., Coelomocyte morphology in the holothurians Apostichopus japonicus (Aspidochirota: Stichopodidae) and Cucumaria japonica (Dendrochirota: Cucumariidae). Russian Journal of Marine Biology, 2002, 28(3): 197~202
    [69] Gross P S, Al-Sharif W Z, Clow L A, et al. Echinoderm immunity and the evolution of the complement system. Dev Comp Immunol, 1999, 23(4-5): 429~442
    [70] Smith L C. The sea urchin immune system. J Immunol, 2006, 3: 25~39
    [71] Coteur G, Mellroth P, Lefortery C D, et al. Peptidoglycan recognition proteins with amidase activity in early deuterostomes (Echinodermata). Dev Comp Immunol, 2007, 31(8): 790~804
    [72] Pancer Z, Cooper M D. The evolution of adaptive immunity. Annu Rev Immunol, 2006, 24: 497~518
    [73] Terwilliger D P, Buckley K M, Mehta D, et al. Unexpected diversity displayed in cDNAs expressed by the immune cells of the purple sea urchin, Strongylocentrotus purpuratus. Physiol Genomics, 2006, 26(2): 134~144
    [74] Dornbos S Q. Evolutionary palaeoecology of early epifaunal echinoderms: Response to increasing bioturbation levels during the Cambrian radiation. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 237(2-4): 225~239
    [75] Smith V J. The echinoderms. In: Ratcliffe N A, Rowley A F, eds. Invertebrate blood cells. New York: Academic Press, 1981. 513~562
    [76] Fontaine A R, Lambert P. The fine structure of the haemocyte of the holothurian, Cucumaria miniata (Brandt). Can J Zool, 1973, 51: 323~332
    [77] Fontaine, A R, Lambert P. The fine structure of the leucocytes of the holothurian, Cucumaria miniata. Can J Zool, 1977, 55: 1530~1544
    [78] Fontaine A R, Hall B D. The haemocyte of the holothurian Eupentacta quinquesemita: ultrastructure and maturation. Can J Zool, 1981, 59: 1884~1891
    [79] Edds K T. Dynamic aspects of filopodial formation by reorganization of microfilaments. J Cell Biol, 1977, 73: 479~491
    [80] Edds K T. Cell biology of echinoid coelomocytes. I. Diversity and characterization of cell types. J Invert Biol, 1993, 61: 173~178
    [81] Byrne M. The ultrastructure of the morula cells of Eupentacta quinquesemita (Echinodermata: Holothuroidea) and their role in the maintenance of the extracellular matrix. J Morphol 1986, 188: 179~189
    [82] Canicatti C, D’Ancona G, Farina-Lipari E. The coelomocytes of Holothuria polii (Echinodermata). I. Light and electron microscopy. Boll Zool, 1989, 56: 29~36
    [83]李霞,王斌,刘静,等.虾夷马粪海胆体腔细胞的类型及功能.中国水产科学, 2003, 10, 381~385
    [84]刘晓云,谭金山,包振民,等.刺参体腔细胞的超微结构观察.电子显微学报, 2005, 24: 613~615
    [85] Plytycz B, Seljelid R. Bacterial clearance by the sea urchin, Strongylocentrotus droebachiensis. Dev Comp Immunol, 1993, 17(3): 283~289
    [86] Ratcliffe N S, Millar D A. Comparative aspects and possible phylogenetic affinities of vertebrate and invertebrate blood cells. In: Rowley A F, Ratcliffe N A, eds. Vertebrate blood cells. New York: Cambridge University Press, 1988, 1~17
    [87] Henson J H, Nesbitt D, Wright B D, et al. Immunolocalization of kinesin in sea urchin coelomocytes: association of kinesin with intracellular organelles. J Cell Sci, 1992, 103(2): 309~320
    [88] Henson J H, Svitkina T M, Burns A R, et al. Two components of actin-based retrograde flow in sea urchin coelomocytes. Mol Biol Cell, 1999, 10(12): 4075~4090
    [89] Gross P S, Clow L A, Smith L C. SpC3, the complement homologue from the purple sea urchin, Strongylocentrotus purpuratus, is expressed in two subpopulations of the phagocytic coelomocytes. Immunogenetics, 2000, 51(12): 1034~1044
    [90] Matranga V, Pinsino A, Celi M, et al. Impacts of UV-B radiation on short-term cultures of sea urchin coelomocytes. Mar Biol, 2006, 149(1): 25~34
    [91] David A R, Jennifer R, Rebecca A N, et al. A complement component C3-like peptide stimulates chemotaxis by hemocytes from an invertebrate chordate, the tunicate, Pyura stolonifera. Comp Biochem Physiol, 2003, 134(2): 377~386
    [92] Hoèbaus E. Coelomocytes in normal and pathologically altered body walls of sea urchins. In: Jangoux M, eds. Proceedings of the European colloquium on echinoderms. Rotterdam, the Netherlands: Balkema A A, 1979. 247~249
    [93] Shimizu M. Histopathological investigation of the spotted gonad disease in the sea urchin, Strongylocentrotus intermedius. J Invert Pathol, 1994, 63(2): 182~187
    [94] Varadarajan J, Karp R D. Histological versus morphological assessment of graft rejection in invertebrates. Transplantation, 1983, 35(6): 629~631
    [95] Dales R P. Phagocyte interactions in echinoid and asteroid echinoderms. J Marine Biol Assoc UK, 1992, 72(2): 473~482
    [96] Arizza V, Giaramita F T, Parrinello D, et al. Cell cooperation in coelomocyte cytotoxic activity of Paracentrotus lividus coelomocytes. Comp Biochem Physiol, 2007, 147(2): 389~394
    [97] Pagliara P, Canicatti C. Isolation of cytolytic granules from sea urchin amoebocytes. Eur J Cell Biol, 1993, 60(1): 179~184
    [98] Greenberg S, Grinstein S. Phagocytosis and innate immunity. Curr Opin Immunol, 2002, 14(1): 136~145
    [99] Clow L A, Raftos D A, Gross P S, et al. The sea urchin complement homologue, SpC3, functions as opsonin. J Experimental Biology, 2004, 207(12): 2147~2155
    [100] Ito T, Matsutani T, Mori K, et al. Phagocytosis and hydrogen peroxide production by phagocytes of the sea urchin Strongylocentrotus nudus. Dev Comp Immunol, 1992, 16(4): 287~294
    [101] Clow L A, Gross P S, Shih C S, et al. Expression of SpC3, the sea urchin complement component, in response to lipopolysaccharide. Immunogenetics, 2000, 51(12): 1021~1033
    [102] Silva J R M C, Peck L. Induced in vitro phagocytosis of the Antarctic starfish Odontaster validus (Koehler 1906) at 0℃. Polar Biology, 2000, 23(4): 225~230
    [103] Smith L C. Thioester function is conserved in SpC3, the sea urchin homologue of the complement component C3. Dev Comp Immunol, 2002, 26(7): 603~614
    [104] Smith L C, Britten R J, Davidson E H. Lipopolysaccharide activates the sea urchin immune system. Dev Comp Immunol, 1995, 19(3): 217~224
    [105] Xing J, Chia F S. Opsonin-like molecule found in coelomic fluid of a sea cucumber, Holothuria leucospilota. Marine Biology, 2000, 136(6): 979~986
    [106] Pedro G S, César A B, Francisco R, et al. Lipopolysaccharides induce intestinal serum amyloid A expression in the sea cucumber Holothuria glaberrima. Dev Comp Immunol, 2003, 27(2): 105~110
    [107] Canicatti C. Lysosomal enzyme pattern in Holothuria polii coelomocytes. J Invert Pathol, 1990, 56: 70~74
    [108] Dybas L, Frankboner P V. Holothurian survival strategies: mechanisms for the maintenance of bacteriostatic environment in the coelomic cavity of the sea cucumber, Parastichopus californicus. Dev Comp Immunol, 1986, 10(3): 311~330
    [109] Haug T, Kjuul A K, Styrvold O B, et al. Antibacterial activity in Strongylocentrotus droebachiensis (Echinoidea), Cucumaria frondosa (Holothuroidea), and Asterias rubens(Asteroidea). J Invert Pathol, 2002, 81(2): 94~102
    [110] Bayne C J, Phagocytosis and non-self recognition in invertebrates. J Bioscience, 1990, 40: 723~731
    [111] Cohen N, Sige M M. The reticuloendothelial system. London: Plenum Publ Corp, 1982. 257~282.
    [112] Smith L C, Clow L A, Terwlliger D P. The ancestral complement system in sea urchins. J Immunological Reviews, 2001, 180: 16~34
    [113] Xing J. Phagocytosis by amoebocytes in a sea cucumber Holothuria leucospilota: [Doctor Thesis]. Hong Kong: Hong Kong University of Science and Technology, 1997
    [114] Kamiya H, Muramoto K, Goto R, et al. Lectins in the hemolymph of a starfish, Asterina pectinifera: purification and characterization. Dev Comp Immunol, 1992, 16(2-3): 243~250
    [115] Canicatti C, Pagliara P, Stabili L. Sea urcin coelomic fluid agglutinin mediates coelomocyte adhesion. Eur J Cell Biol, 1992, 58(2): 291~295
    [116] Matsui T, Ozeki Y, Suzuki M, et al. Purification and characterization of two Ca2+-dependent lectins from coelomic plasma of sea cucumber, Stichopus japonicus. J Biochem, 1994, 116(5): 1127~1133
    [117] Hatakeyama T, Nagatomo H, Yamasaki N. Interaction of the hemolytic lectin CEL-III from the marine invertebrate Cucumaria echinata with the erythrocyte membrane. J Biol Chem 1995, 270(8): 3560~3564.
    [118] Burke R D, Watkins R F. Stimulation of starfish coelomocytes by interleukin-1. Biochem Biophys Res Commun, 1991, 180 (2): 579~584
    [119] Canicatti C. Binding properties of Paracentrotus lividus (Echinoidea) hemolysin. Comp Biochem Physiol, 1991, 98(3-4): 463~468
    [120] Roch P, Canicatti C, Sammarco S. Tetrameric structure of the active phenoloxidase evidenced in the coelomocytes of the echinoderm Holothuria tubulosa. Comp Biochem Physiol, 1992,102B(2): 349~355
    [121] Soèderhaèll K, Smith VJ. Prophenoloxidaes-activating cascade as a recognition and defense system in arthropods. In: Gupta AP, editor. Hemolytic and humoral immunity in arthropods. New York: John Wiley, 1986, 251~285
    [122] Al-Sharif W Z, Sunyer J O, Lambris J D, et al. Sea urchin coelomocytes specifically express a homologue of the complement component C3. J Immunol, 1998, 160(6): 2983~2997
    [123] Nonaka M, Azumi K. Opsonic complement system of the solitary ascidian, Halocynthia roretzi. Dev Comp Immunol, 1999, 23(4-5): 421~427
    [124] Marino R, Kimura Y, De Santis R, et al. Complement in urochordates: Cloning and characterization of two C3-like genes in the ascidian Ciona intestinalis. Immunogenetics, 2002, 53(12): 1055~1064
    [125] Raftos D A, Nair S V, Robbins J, et al. A complement component C3-like protein from the tunicate, Styela plicata. Dev Comp Immunol, 2002, 26(4): 307~312
    [126] Zhu Y, Thangamani S, Ho B, et al. The ancient origin of the complement system. EMBO J, 2005, 24(2): 382~394
    [127] Dishaw L J, Smith S L, Bigger C H. Characterization of a C3-like cDNA in a coral: Phylogenetic implications. Immunogenetics, 2005, 57(7): 535~548
    [128] Lagueux M, Perrodou E, Levashina E A, et al. Constitutive expression of a complement-like protein in TOLL and JAK gain-of-function mutants of Drosophila. Proc Natl Acad Sci USA, 2000, 97(21): 11427~11432
    [129] Levashina E A, Moita L F, Blandin S, et al. Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell, 2001, 104(5): 709~718
    [130] Blandin S, Levashina E A. Thioester-containing proteins and insect immunity. Mol Immunol , 2004, 40(12): 903~908
    [131] Nakao M, Fushitani Y, Fujiki K, et al. Two diverged complement factor B/C2-like cDNA sequences from a teleost, the common carp (Cyprinus carpio). J Immunol, 1998, 161(9): 4811~4818
    [132] Smith L C, Shih C S, Dachenhausen S G. Coelomocytes express SpBf, a homologue of factor B, the second component in the sea urchin complement system. J Immunol, 1998, 161(12): 6784~6793
    [133] Azumi K, Santis R D, Tomaso A D, et al. Genomic analysis of immunity in a urochordate and the emergence of the vertebrate immune system: "Waiting for Godot". Immunogenetics, 2003, 55(8): 570~581
    [134] Terwilliger D P, Clow L A, Gross P S, et al. Constitutive expression and alternative splicing of the exons encoding SCRS in Sp152, the sea urchin homologue of complement factor B. Implications on the evolution of the Bf/C2 gene family. Immunogenetics, 2004, 56(7): 531~543
    [135] Volanakis J E, Frank M M. The human complement system in health and disease. New York: Marcel Dekker, 1998. 9~32
    [136] Dodds A W, Law S K. The phylogeny and evolution of the thioester bond-containing proteins C3, C4 and alpha 2- macroglobulin. Immunol Rev, 1998, 166: 15~26
    [137] Hibino T, Loza-Coll M, Messier C, et al. The immune gene repertoire encoded in the purple sea urchin genome. Developmental Biology, 2006, 300(1): 349~365
    [138] Pasare C, Medzhitov R. Toll-like receptors: Linking innate and adaptive immunity. Microbes and Infection, 2004, 6(15): 1382~1387
    [139] Sarrias M R, Gronlund J, Padilla O, et al. The scavenger receptor cysteine-rich (SRCR) domain: An ancient and highly conserved protein module of the innate immune system. Crit Rev Immunol, 2004, 24(1): 1~37
    [140] Pancer Z. Dynamic expression of multiple scavenger receptor cysteine-rich genes in coelomocytes of the purple sea urchin. Proc Natl Acad Sci USA, 2000, 97(24): 13156~13161
    [141] Nair S V, Valle H D, Gross P S, et al. Macroarray analysis of coelomocyte gene expression in response to LPS in the sea urchin. Identification of unexpected immune diversity in an invertebrate. Physiol Genomics, 2005, 22(1): 33~47
    [142] Buckley K M, Smith L C. Extraordinary diversity among members of the large gene family, 185/333, from the purple sea urchin, Strongylocentrotus purpuratus. BMC Mol Biol, 2007, 8: 68
    [143] Terwilliger D P, Buckley K M, Brockton V, et al. Distinctive expression patterns of 185/333 genes in the purple sea urchin, Strongylocentrotus purpuratus: an unexpectedly diverse family of transcripts in response to LPS, beta-1,3- glucan, and dsRNA. BMC Mol Biol. 2007, 8: 16
    [144] Brockton V, Henson J H, Raftos D A,et al. Localization and diversity of 185/333 proteins from the purple sea urchin—unexpected protein-size range and protein expression in a new coelomocyte type. J Cell Sci, 2008, 121(3): 339~348
    [145] Buckley K M, Munshaw S, Kepler T B et al. The 185/333 Gene Family Is a Rapidly Diversifying Host-Defense Gene Cluster in the Purple Sea Urchin Strongylocentrotus purpuratus. J Mol Biol, 2008 379(4): 912~928 [l46] Stillmark H. In: Kobert R, ed. Arbeiten des Phannakologischen Instituts zu Dorpat: Enke, Stuttgart, 1888.59~151
    [147]孙册.凝集素(Lectin)研究进展.生物化学与生物物理学进展, 1981, 3(1):15
    [148] Renkormen K O. Studies on hemagglutinins present in the seeds of some representatives of leguminoseae. Ann Med Exp Fenn, 1948, 26: 66~72
    [149] Boyd W C, Reguera R M. Studies on haemaglutinins present in seeds of some representatives of the family leguminosae. J Immun, 1949, 62: 333~339
    [150] Boyd W C, Shapleigh M J. Specific precipitating activity of plant agglutinins. Science, 1954, 119~419
    [151] Kocourek J V, Horejsi. A note on the recent discussion of the term“lectin”. In: Bog-HansenT C,Spengler G A , eds. Lectins: Biology, Biochemistry, Clinical Biochemistry. Vol 3. Berlin, Germany: Walter de Gruyter, 1983. 3~6
    [152] Perdigon G, Vintini E, Alvarez S, et al. Study of the possible mechanisms involved in the mucesal immune system activation by lactic acid baderia. J Dairy Sci, 1999, 82(6): 1108~1114
    [153] Sharon N. Research.TIBS.1993, 18: 221
    [154] Sharon N, Lis H. Lectins as cell recognition molecules science, 1989, 246: 227
    [155]孙册,等.凝集素.科学出版社,第1版.北京: 1986. 1~142
    [156]孙建忠,等.植物凝集素的超级家族.生物化学与生物物理进展, 1994, 21: 104
    [157] Hilder V A, Powell K S, Gatehouse A M R, et al. Expression of snowcrop lectin in transgenietabsco plants results in added protection against aphids. Transgenic Researeh, 1995, 4: 18~25
    [158] Mirelman D. Ed. Mierobial Lectins and Agglutinins: Properties and biological activity. NewYork: Wiley, 1987.
    [159]陈皓文,牟敦彩,李光友.微生物凝集素的研究.自然杂志, 2000, 22(2): 96
    [160] Ofek I. Sharon N. Lectinophagoeytosis: a molecular mechanism of recognition between cell surface sugars and lectins in the phagocytosis of baeteria. Infect. Immun.1988, 56: 539~547
    [161] Benedictis G D, CaPalbo P. An amphioxus lanceolatus agglutinating factor for human red cells. Immunogenetics, 1981, 8: 225~230
    [162] Mock A, Renwrantz L. Lectin activity and aprotease inhibitor in mucus from the skin of Branchiostoma lanceolatum. Invertebr Pathol, 1987, 49: 221~222
    [163] Fisher W S, Dinuzzo A R. Agglutination of bacteria and erythrocytes by serum from six species of marinemolluscs. Invertebr Pathol, 1991, 57: 380~394
    [164] Goto R, Muramoto K, Yamazaki M, et al. Purification and characterization of an agglutinin of the soft coral Sinularia species. Dev Comp Immunol, 1992, 16: 9~17
    [1] Dornbos S Q. Evolutionary palaeoecology of early epifaunal echinoderms: Response to increasing bioturbation levels during the Cambrian radiation. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 237(2-4): 225~239
    [2] Gross P S, Al-Sharif W Z, Clow L A, et al. Echinoderm immunity and the evolution of the complement system. Dev Comp Immunol, 1999, 23(4-5): 429~442
    [3] Smith L C. The sea urchin immune system. J Immunol, 2006, 3: 25~39
    [4] Coteur G, Mellroth P, Lefortery C D, et al. Peptidoglycan recognition proteins with amidase activity in early deuterostomes (Echinodermata). Dev Comp Immunol, 2007, 31(8): 790~804
    [5] Greenberg S S. Immunity and Survival. New York: Human Sciences Press, 1989.19~34.
    [6] Wilson M E, Pearson R D. Roles of CR3 and mannose receptors the attachment and ingestion of Leishmania donovani by human mononuclear phagocytes. Infect Immun, 1988, 56: 363~369
    [7] Xing J. Phagocytosis by Amoebocytes in a Sea Cucumber Holothuria leucospilota: [Doctor Thesis]. Hong Kong: Hong Kong University of Science and Technology, 1997
    [8] Yang R, Yoshino T P. Immunorecognition in the freshwater bivalve, Corbicula fluminea. I..electrophoretic and immunologic analyses of opsonic plasma components. Dev Comp Immunol, 1990b, 14: 385~395
    [9] Fu X Y, Xue C H, Miao B C, et al. Characterization of proteases from the digestive tract of sea cucumber (Stichopus japonicus): high alkaline protease activity. Aquaculture, 2005, 246: 321~329
    [10] Yuan X T, Yang H S, Zhou Y, et al. The influence of diets containing dried bivalve feces and/or powdered algae on growth and energy distribution in sea cucumber Apostichopus japonicus (Selenka) (Echinodermata: Holothuroidea). Aquaculture, 2006, 256: 457~467
    [11] Liu Y, Dong S L, Tian X L, et al. Effects of dietary sea mud and yellow soil on growth and energy budget of the sea cucumber Apostichopus japonicus (Selenka). Aquaculture, 2009, 286:266~270
    [12] Clow L A, Raftos D A, Gross P S, et al. The sea urchin complement homologue, SpC3, functions as opsonin. J Experimental Biology, 2004, 207: 2147~2155
    [13] Smith L C. Thioester function is conserved in SpC3, the sea urchin homologue of the complement component C3. Dev Comp Immunol, 2002, 26: 603~614
    [14] Blanco G A C, Escalada A M, Alvarez E, et al. LPS-induced stimulation of phagocytosis in the sipunculan worm Themiste petricola: possible involvement of human CD14, CD11B and CD11C crossreactive molecules. Dev Comp Immunol, 1997, 21: 349~362
    [15] Sambrook J, Fritsch E F, Maniatis T. Molecular cloning: a laboratory manual. 2nd ed, Cold Spring Harbor: CSHL Press, 2001
    [16] Bradford N. A rapid and sensitive method for the quantitation of microgram quantitics of protein utilizing the principle of protein-dye binding. Analyt Biochem, 1976, 72: 248~254
    [17] Ratcliffe N S, Millar D A. Comparative aspects and possible phylogenetic affinities of vertevrate and invertebrate blood cells. In: Rowley A F, Ratcliffe N A (Eds), Vertebrate blood cells. New York: Cambridge University Press, 1988. 1~17
    [18] Fryer S E, Bayne C J. Phagocytosis of latex beads by Biomphalaria glabrata hemocytes is modulated in a strain-specific manner by adsorbed plasma components. Dev Comp Immunol, 1996, 20: 23~27
    [19] Bilej M, Vetvicka V, Tuckova L, et al. Phagocytosis of synthetic particles in earthworms, effect of antigenic stimulation and opsonization. Folia Biologica, 1990, 36: 273~280
    [20] Beck G, O’Brien R F, Habicht G S, et al. Invertebrate cytokinesⅢ: Invertebrate interleukin-1-like molecules stimulate phagocytosis by tunicate and echinoderm cells. Cell Immunol, 1993, 146: 284~299
    [21] Blanco G A C, Alvarez E, Amor A, et al. Phagocytosis of yeast by coelomocytes of the Sipunculan worm Themiste petricola: opsonization by plasma components. J Invert Pathol, 1995,66: 39~45
    [22] Clow L A, Gross P S, Shih C S, et al. Expression of SpC3, the sea urchin complement component, in response to lipopolysaccharide. Immunogenetics, 2000, 51: 1021~1033
    [23] Gross P S, Clow L A, Smith L C. SpC3, the complement homologue from the purple sea urchin, Strongylocentrotus purpuratus, is expressed in two subpopulations of the phagocytic coelomocytes. Immunogenetics, 2000, 51: 1034~1044
    [24] Gross P S, Al-Sharif W Z, Clow L A, et al. Echinoderm immunity and the evolution of the complement system. Dev Comp Immunol, 1999, 23: 429~442
    [25] Pendland J C, Boucias D G. Phagocytosis of lectin-opsonized fungal cells and endocytosis of the ligand by insect Spodoptera exigua granular hemocytes: an ultrastructural and immunocytochemical study. Cell Tissue Res, 1996, 285: 57~67
    [26] Al–Sharif W Z., Sunyer J O, Lambris J D. Sea urchin coelomocytes specifically express a homologue of thecomplement component C3. J Immunol, 1998, 160: 2983~2997
    [27] Crouch E, Wright JR. Surfactant proteins A and D and pulmonary host defense. Annu Rev Physiol, 2001, 63: 521~554
    [28] Takahashi H, Sano H, Chiba H, et al. Pulmonary surfactant proteins A and D: innate immune functions and biomarkers for lung diseases. Curr Pharm Des. 2006, 12:589~598
    [29]包建华,陈淑靖.肺表面活性蛋白在肺部疾病中的研究进展.上海医学, 2007, 30(10): 796~799
    [30] Davey B. Immunology. Prentice Hall, Englewood Cliffs, New Jersey, 1990
    [31] Xing J, Chia F-S. Opsonin-like molecule found in coelomic fluid of a sea cucumber, Holothuria leucospilota. Marine Biology, 2000, 136: 979~986
    [1] Mausumee G, Nigel M. LPS induction gene expression in human monocytes. Cell Signall, 2001, 13: 85~94
    [2] Lukasiewicz J, Lugowski C. Biologic activity of lipopolysaccharides. Postepy Hig Med Dosw, 2003, 57(1): 33~53
    [3] D’Andrea A, Aste-Amezaga M, Valiante N M, et al. Interleukin 10 (IL-10) inhibits human lymphocyte interferon production by suppressing natural killer cell stimulatory factor/IL-12 synthesis inaccessory cells. Exp Med, 1993, 178: 1041~1048
    [4] Bogwald J. Vaccination of Atlantic salmon, salmo salar L., with particulate lipopolysaccharide antigens from vibrio salmonicida and vibrio anguillarum. Fish and shellfish Immunology, 1992, 2: 251~261
    [5] Klasing K C, Laurin D E, Peng R K, et al. Immunologically mediated growth depression in chicks: Influence of feed intake, corticosterone and interleukin-1. J Nutr, 1987, 117: 1629~1637
    [6] Johnson R W, Propes M J, Shavit Y. Corticosterone modulates the behavioral and metabolic effects of lipopolysaccharide. Am J Physiol, 1997, 270: R192~R198
    [7] Takahashi K, Miyake N, Ohta T, et al. Changes in plasmaα212acid glycoprotein concent ration and selected immune response in broiler chickens injected with Escherichia coli lipopolysaccharide. Br Poul Sci, 1998, 57: 152~155
    [8] Webel D M, Jonhnson R W, Baker D H. Lipopolysac-charide-induced reductions in food intake do not decrease the efficiency of lysine and threonine utilization for protein accretion in chickens. J Nut r, 1998, 128: 1760~1766
    [9] Kawai K, Kusuda R. Efficacy of the lipopolysaccharide vaccine against vibriosis in cultured ayu. Bull Japan Soc Sci Fish, 1987, 49(4): 511~514
    [10] Salati F, Kawai K, Kusuda R. Immune response of eel to Edwardsiella tardalipopolysaccharide. Fish Path, 1984, 19: 187~192
    [11]刘勇,汪成竹,陈昌福. 3种鱼类致病菌粗脂多糖(LPS)对斑点叉尾鮰的免疫原性.长江大学学报(自科版), 2006, 3(4): 170~173
    [12] Smith L C, Britten R J, Davidson E H. Lipopolysaccharide activates the sea urchin immune system. Dev Comp Immunol, 1995, 19: 217~224
    [13] Gross P S, Clow L A, Smith L C. SpC3, the complement homologue from the purple sea urchin, Strongylocentrotus purpuratus, is expressed in two subpopulations of the phagocytic coelomocytes. Immunogenetics, 2000, 51: 1034~1044
    [14]姜海龙.狂犬病病毒糖/核融合基因DNA疫苗的研究: [博士学位论文].长春:吉林农业大学, 2006
    [15] Sambrook J, Fritsch E F, Maniatis T. Molecular cloning: a laboratory manual. 2nd ed, Cold Spring Harbor: CSHL Press, 2001.
    [16]何昭阳,胡桂学,王春凤.动物免疫学实验技术.吉林科学技术出版社, 2002. 97~118
    [17]李建涛,蔡辉益,刘国华.脂多糖刺激对肉仔鸡内分泌激素和免疫机能的影响畜牧兽医学报, 2006, 37 (2):134~140
    [18] Stahl P, Allen R, Ezekowitz B. The mannose receptor is a pattern recognition receptor involved in host defense. Curr Opin Immunol, 1998, 10: 50-55
    [19] Lemaitre B, Nicolas E, Michaut L, et al. The dorsoventral regulatory cassette sp?tzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell, 1996, 86: 973~983
    [20] Matranga R, Preston-Hurlburt P, Janeway C A. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature, 1997, 388: 394~397
    [21] Rock F L, Hardiman G, Timans J C, et al. A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci USA, 1998. 95: 588-593
    [22] Carroll M C, Fischer M B. Complement and the immune response. Curr Opin Immunol, 1997, 9:64~69
    [23]王世若主编.兽医微生物学及免疫学.吉林科学技术出版社, 1989, 134~136
    [1] Cooper E L, Rinkevich B, Uhlenbruck G, et al. Invertebrate immunity: another viewpoint. Scand J Immunol, 1992, 35: 247~266
    [2] Ammerman J W, Fuhrman J A, Hagstrom A, et al. Bacterioplankton growth in sea waterⅠ. Growth kinetics and cellular characteristics in seawater cultures, Mar Ecol Prog Ser, 1984, 18: 31~39
    [3]廖绍安,李筠.日本对虾血清凝集素及其免疫作用的初步研究.中国水产科学, 2002, 9(3): 224~227
    [4] Bayne C J, Phagocytosis and non-self recognition in invertebrates. Bioscience, 1990, 40: 723~731
    [5]余燕泽,石安静.贝类血细胞研究的进展.动物学杂志, 1998, 33(5): 40~41
    [6] Rong Yang, Yoshino T P. Immunorecognition in the freshwater bivalve, corbiculafluminea.Ⅱ, isolation and characterization of aplasma opsonin with hemagglutinating activity.developmental and comparative immunology, 1990, 14(4): 397~404
    [7]牟海津,江晓路,刘树青,等.中国对虾血细胞凝集素的性能研究.中国水产科学, 1999, 6(3): 32~35
    [8] Gabius H J, Unverzagt C, Kayser K. Beyond plant lectin histochemistry: preparation and application of markers to visualize the cellular capacity for protein–carbohydrate recognition. Biotech Histochem, 1998, 73, 263~277
    [9] Stabili I, Pagliara P, Roch P. Antibacterial activity in the coelomycetes of the sea urchin Paracentrotus lividus. Comp Biochem Phys, 1996, 113B: 639~644
    [10]肖静,刘跟成. 4种软体动物凝集素粗提物的凝集活性初探.海洋水产研究, 2006, 27(3): 32~36
    [11]陈政强,黄倢,战文斌,等.贝类凝集素的特性与功能.集美大学学报(自然科版), 2007, 12(4): 314~321
    [12]孙杰,安利国,王雷,等.甲壳纲动物凝集素的结构特征和分离纯化方法.海洋科学, 2006, 30 (6): 73~76
    [13]戴聪杰.甲壳动物血清中凝集素对微生物细胞的凝集性能.海洋科学. 2003, 27(10): 63~68
    [14]李丹彤,宋亮,钟莉,等.刺参凝集素的分离纯化及其性质.水产学报, 2005, 29(5): 655~658
    [15] Benevides N M B, Holanda M L, Melo F R, et al. Purification and partial characterisation of the lectin from the marine red alga Enantiocladia duperreyi (C.Agardh) Falkenberg,Botanica Marina, 1998, 41: 521~525
    [16] Benevides N M B,Sugeta H, Degudei Y. Naturally occurring agglutinin in the hemolymph of Japanese coastal crustacean. Nippon Suisan Gakkaishi, 1991, 57: 69~78
    [17] Bradford N. A rapid and sensitive method for the quantitation of microgram quantitics of protein utilizing the principle of protein-dye binding, Analyt Biochem, 1976, 72: 248~254
    [18] Cominetti M R, Marques M R F, Lorenzini D M, et al. Characterization and partial purification of a lectin from the hemolymph of the white shrimp Litopenaeus schmitti. Developmental and Comparative Immunology, 2002, 26: 715~721
    [19] Belogortseva N I, Molchanova V I, Kurika A V, et al. Isolation and characterization of new GalNAc/Gal specific lectin from the sea mussel Crenomytilus grayanus, Comp Biochem Physiol, 1998, 119: 45~50
    [20]李丹彤,崔铁军,马国庆,等.角叉菜凝集素的分离纯化及其性质.中国水产科学, 2000, 7(3): 80~84
    [21]牟海津,江晓路,刘树青,等.双壳贝类血清中凝集素性能初步研究-对脊椎动物血细胞的凝集作用.青岛海洋大学学报, 1999, 29 (2): 249~254
    [22] Sun J, Wang L, Wang B, et al. Purification and characterisation of a natural Lectin from the serum of the shrimp Litopenaeus vannamei. Fish Shellfish Immunol, 2007, 23(2): 292~299
    [23] Dorai DT, Srimal S, Mohan S, et al. Recognition of 2-keto-3-deoxyoctonate in bacterial cells andlipopolysaccharides by the sialic acid binding lectin from horseshoe crab Carcinoscorpius rotundicauda. Biochem Biophys Res Commun, 1982, 104, 141~147
    [24] Charland N, Kellens J T C, Caya F, et al. Agglutination of Streptococcus suis by sialic acid-binding lectins. J Clinical Microbiol, 1995, 33: 2220~2221
    [25] Tamplin M L, Fisher W S. Occurrence and characteristics of agglutination of Vibrio cbolerae by serum from the eastern oyster Crassostrca virrginica. Appl Eniron Microbiol, 1989, 55(11): 2882~2887
    [26] Pitole T G. Interaction of bacteria and fungi with lectins and lectin-like substance. ANN. Rev Microbiol, 1981, 35: 85~112
    [27]周德庆.微生物学教程.北京:高等教育出版社, 1993
    [28]陈皓文,孙丕喜,宋庆云.外源凝集素——水产动物御敌的有力武器.黄渤海洋, 1995, 13 (3): 61~70
    [29] Tunkijjanukij S, Mikkelsen H V, Olafsen J A. A heterogeneous sialic acidbinding lectin with affinity for bacterial LPS from Horse Mussel (Modiolus modiolus) hemolymph. Comp Biochem Phys, 1997, 117B: 273~286
    [30] Olafsen J A, Fletcher T C, Grant P T. Agglutinin activity in Pacific oyster (Crassostrea gigas) hemolymph following in vivo Vibrio anguillarum challenge. Dev Comp Immunol, 1992, 16: 123~138
    [31] Ozaki A, Ariki S, Kawabata S, An antimicrobial peptide tachyplesin acts as a secondary secretagogue and amplifies lipopolysaccharide-induced hemocyte exocytosis. FEBS J, 2005, 272: 3863~3871
    [32] Yang H J, Luo T, Li F, et al. Purification and characterization of a calcium-independent lectin (PjLec) from the hemolymph of the shrimp Penaeus japonicus. Fish Shellfish Immunol, 2007, 22(1-2): 88~97
    [33]梁宋平,林莉.虎纹捕鸟蛛凝集素I (SHL-I)的细胞凝集活性分析.中国生物化学与分子生物学报, 2000, 16(l): 92~95
    [34]胡新平,李智恩,徐祖洪.海藻凝集素研究进展.海洋科学, 2000, 24 (8): 34~37
    [35] Pouwels P H, Leer R J, Boersma W J. The potential of Lactobacillus as a carrier for oral immunization: development and preliminary characterization of vector systems for targeted delivery of antigens. J Biotechnol 1996, 44(1-3): 183~192
    [36]曹广力,朱越雄,薛仁宇,等.中华绒鳌蟹血清中外源凝集素的凝集作用影响因素.水产养殖, 1999, 5: 16~18
    [37] Herrler G, Reuter G, Rott R, et al. N-acetyl-9-O-acetylneuraminic acid, the receptor determinant for influenza C virus, is a differentiation marker on chicken erythrocytes. Biol Chem, 1987, 368: 451~454
    [38] Schauer R, Casalsst J, Corfield A P, et al. Subcellular site of the biosynthesis of O-acetylated sialic acids in bovine submandibular gland. Glycocon J, 1988, 5: 257~270
    [39]牛建峰.海洋藻类功能性蛋白质的纯化、鉴定及其应用的研究: [博士学位论文].青岛:中国科学院海洋研究所, 2007
    [40]蒋琼.中国对虾血淋巴凝集素的分离纯化及其性质研究: [硕士学位论文].青岛:中国科学院海洋研究所, 2001
    [41] Tsuji T, Osawa T. Carbohydrate sructures of bovine submaxillary mucin. Carbohydr Res, 1986, 151: 391~402
    [42] Nilsson B, Norden N E, Svensson S. Structural studies on the carbohydrate portion of fetuin, J Biol Chem, 1979, 254: 4545~4553

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700