久效磷对雄性金鱼的生殖毒性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
久效磷能够诱导雄性金鱼卵黄原蛋白的产生,具有环境雌激素活性,但关于久效磷生殖毒性的研究报道还很少。本文以金鱼精巢超显微结构、精巢特征性酶活性、生殖腺指数(GSI)、精子存活率、运动率、运动时间、精子彗星尾部DNA含量、尾长、尾矩为指标,研究了久效磷对雄性金鱼生殖系统、精子运动力及精子DNA的损伤情况,探讨了久效磷对雄性金鱼的生殖毒性效应及其致毒机理。以期将该研究结果应用到人类,为环境激素对人类生殖健康的研究提供参考资料。
     0.01、0.10、1.00 mg·L~(-1)的久效磷暴露金鱼21d,随暴露浓度的升高GSI逐渐降低,1.00 mg·L~(-1)的久效磷可以造成GSI的显著下降,表明久效磷对金鱼精巢发育有一定程度延迟作用。久效磷的暴露导致精小叶基膜断裂、Leydig氏细胞水肿、精原细胞膨胀、间质扩大,这可能会引起精子质量下降。
     久效磷暴露21 d,支持细胞细胞膜和核膜溶解,脂滴和髓磷脂象数量增加,吞噬的精子数量增多;金鱼精子头部变形、线粒体和质膜溶解以及鞭毛断裂。且随着暴露浓度的升高,损伤越严重。对照组、0.01、0.10、1.00 mg·L~(-1)暴露组精巢乳酸脱氢酶(LDH)的活性分别为: 1879.58±141.69、1614.06±233.97、1409.20±86.93、1111.81±199.13 U·mg~(-1)pro。γ-谷氨酰转移酶(γ-GTP)活性分别为:6.03±1.09、4.33±0.87、3.47±0.44和3.08±0.56U·mg-1pro。可见久效磷对LDH、γ-GTP均有抑制作用。不同浓度久效磷暴露条件下,金鱼精巢山梨醇脱氢酶(SDH)、酸性磷酸酶(ACP)和碱性磷酸酶(ALP)活性下降,氧化物歧化酶(SOD)活性升高,结果表明久效磷可能通过损伤精巢膜系统结构,干扰精巢能量供应和代谢等生理过程,影响生精细胞的成熟,造成生殖毒性。
     雄性生殖系统最主要的功能是产生精子,精子质量是世代健康繁衍的重要保障。0.01 mg·L~(-1),0.10 mg·L~(-1)和1.00 mg·L~(-1)的久效磷体外暴露金鱼精子3h,对精子存活率没有影响。0.10和1.00mg·L~(-1)久效磷暴露金鱼精子1h即可引起精子运动时间和运动率的下降。对照组精子运动时间为92±3s,运动率为92.73±2.48%;0.10 mg·L~(-1)暴露组,精子运动时间为70±3s,运动率为37.74±4.04%;1.00mg·L~(-1)暴露组,精子运动时间为63±5s,运动率为29.17±2.06%。久效磷体外暴露金鱼精子3h,对照组、0.01、0.10和1.00 mg·L~(-1)暴露组彗星尾部DNA含量分别为:1.17±0.81%、4.55±1.24%、14.60±2.17%、17.50±1.98%;彗星尾长分别为:3.94±1.29μm 6.80±2.78μm、9.21±1.51μm和12.89±3.09μm;彗星尾矩分别为:0.39±0.27μm、0.70±0.38、1.90±0.45、4.47±0.33μm。久效磷的暴露导致精子彗星尾长、尾部DNA含量和尾矩的增加,表明久效磷可以损伤金鱼精子的遗传物质。
     本文在组织水平、生化水平和DNA水平上,通过对精巢超显微结构的观察、特征性酶活性的检测和精子活力、DNA损伤的分析,首次提出了久效磷对雄性金鱼的生殖毒性是通过损伤精巢支持细胞、Leydig氏细胞及精子线粒体结构,影响了多种特征性酶活性,最终导致生精障碍的;久效磷还能降低精子运动力,损伤精子DNA,可能造成对受精过程、胚胎发育和子代健康的危害。
Monocrotophos is one of the environment hormones, because it can induce the production of vitellogenin in male goldfish. However, very few reports about the reproduction toxicity of monocrotophos exist in the literature. So the gonadosomatic index(GSI)of male goldfish (Carassius auratus) under monocrotophos treatment was tested in this paper. The activities of several characteristic enzymes in testis were then measured; the micro- and ultrastructure of testis were observed as well. The toxicity effect of monocrotophos to DNA and motility of sperm was evaluated via the investigation of the viability, the percentage and duration of motility of sperms by microscope, and the percentage of DNA in comet tail(Tail DNA%), the tail length(TL) and tail moment(TM) by comet assay of sperm comets. All the works aim at exploring the effect and mechanism of reproduction toxicity of monocrotophos on male goldfish. The data might give useful information to toxicological research of environment hormones on reproduction system of human.
     Exposure to monocrotophos led to the change of GSI and microstructure of male goldfish. After exposed to monocrotophos of various concentration(0.01、0.10、1.00 mg·L~(-1)) for 21 days, the GSI of adult male goldfish decreased gradually with the increase of concentration of monocrotophos. The GSI of male goldfish in exposure concentration of 1.00 mg·L~(-1) decreased significantly compared to the control, indicating that the monocrotophos delayed the development of testis. As a result of monocrotophos exposure, dissolution of ground membrane, swelling of Leydig’s and spermatogenous cell and enlargement of interstitial tissue were clearly observed. The changes in microstructure of testis may lead to the decline of sperm quantity.
     The alteration of ultrastructure and activities of several characteristic enzymes in testis of male goldfish treated by monocrotophos were further studied. In Sertoli’s cell, monocrotophos induced the dissolution of nuclear membrane, accumulation of lipid droplet, increase of myelin-like figure and necrosis of sperm. To the sperms, the deformation of head, the dissolution of mitochondrial and plasma membrane and the fragment of tail were observed. The damage became severer with the increase of exposure concentration. In the control and treated goldfish which were exposed to 0.01, 0.10, 1.00 mg·L~(-1) monocrotophos, the lactate dehydrogenase (LDH) activities were1879.58±141.69, 1614.06±233.97, 1409.20±86.93, 1111.81±199.13U·mg-1pro separately, and the activities ofγ-glutamyl transpeptidase (γ-GTP) were 6.03±1.09, 4.33±0.87, 3.47±0.44, 3.08±0.56 U·mg-1pro respectively. So the activities of LDH andγ-GTP were inhibited by monocrotophos. The activities of acid phosphatase, alkaline phosphatase, sorbitol dehydrogenase declined, and the activity of superoxide dismutase increased as a result of monocrotophos exposure. It is supposed that the changes of ultrastructure and enzyme activities in testis of goldfish treated by monoccrotophos will interrupt the physiological courses such as energy metabolism, and further disturb the seminiferous process.
     The main function of male reproduction system is to produce sperms whose quantity is essential to healthy reproduction for generations. The exposure of sperms to monocrotophos(0.01 mg·L~(-1), 0.10 mg·L~(-1), 1.00 mg·L~(-1)) in vitro for 3h didn’t have any effect on viability of sperms. After exposed to monocrotophos at concentration of 0.10 and 1.00 mg·L~(-1) for 1h, the percentage of motility of sperms was 37.74±4.04% and 29.17±2.06%; the duration of motility was 70±3s and 63±5s, while that of control was 92.73±2.48% and 92±3s, respectively. The result showed that the monocrotophos reduced the motility of sperms. In the sperms of control and treated goldfish which were exposed to 0.01, 0.10, 1.00 mg·L~(-1) monocrotophos for 3h, the Tail DNA% was 1.17±0.81%、4.55±1.24%、14.60±2.17%、17.50±1.98% respectively; the TL of each group was 0.39±0.27, 0.70±0.38, 1.90±0.45, 4.47±0.33μm, and the TM was 0.39±0.27, 0.70±0.38、1.90±0.45、4.47±0.33μm respectively. The increase of DNA% in comet tail, tail length and TM implied that the DNA of sperm was damaged by monocrotophos.
     The micro- and ultrastructure of testis were observed at the histological level, the activities of characteristic enzymes in testis were measured at the biochemical level and the damage of DNA of sperms was tested at the DNA level. Finally, it is concluded that monocrotophos inhibits the seminiferous process via the damage to Leydig’s cell, Sertoli’s cell and mitochondrial of sperm and the changes in activities of characteristic enzymes. The monocrotophos can damage the motility and DNA of sperm as well, resulting in the harm to fertilization, development of embryo and the health of offspring.
引文
[1]华小梅,单正军.我国农药的生产,使用状况及其污染环境因子分析.环境科学进展, 1996, 4(2): 33-45.
    [2]Akbarsha M A , Latha P N , Murugaian P. Retention of cytoplasmic droplet by rat cauda epididymal spermatozoa after treatment with cytotoxic and xenobiotic agents. J Reprod Fertil , 2000 , 120 (2): 385 - 390.
    [3]Contreras H R, Badilla J, Bustos-Obregon E. Morphofunctional disturbance of human spermafter incubation with organophosphorate pesticides. Biocell, 1999, 23 (2) :135-141.
    [4]康跃惠,张干,盛国英,等.固相萃取法测定水源地中的有机磷农药.中国环境科学, 2000, 20(1): 1-4.
    [5]邴欣,汝少国,姜明,等.久效磷对雄性金鱼的生殖毒性研究.中国海洋大学学报, 2004, 34(69): 69-74.
    [6]魏渲辉,汝少国,姜明,等.久效磷对美国红鱼鳃Na+/K+-ATP酶活性和超显微结构的影响.应用生态学报, 2003, 14(12): 2289-2294.
    [7]邴欣,汝少国等.久效磷对真鲷腮、肝、肾显微及超显微结构的影响.海洋科学, 2002, 26(9): 42~45.
    [8]闫建国,汝少国,王蔚.久效磷对黄鳝乙酰胆碱酯酶、羧酸酯酶和磷酸酶活性的影响.安全与环境学报, 2006, 6(3): 61-63.
    [9]Rao V J. Biochemical alterations in euryhaline fish, Oreochromis mossambicus exposed to sub-lethal concentrations of an organophosphorus insecticide, monocrotophos. Chemosphere, 2006, 65: 1814–1820.
    [10]Banu S B, Danadevi K, Rahman F M, et al. Genotoxic effect of monocrotophos to sentinel species using comet assay. Food and Chemical Toxicology, 2001, 39: 361-366.
    [11]Jiang Q G, Yu Y Q. The theory and method of male reproduction toxicity[M]. Beijing Medical University and Chinese Xiehe Medical University Press, 1994: 225.
    [12]Hodgen, G D, Sherins, J R. Enzymes as markers of testicular growth and development in the rat. Endocrinology, 1973, 93: 983-989.
    [13]Huggett R A. Biomarkers, biochemical, physiological and histological markers of Anthropogenic Stress. Boca Raton Florida: Lewis Publishers, 1992: 235-335.
    [14]Kavelock RJ. Research needs for risk assessment of health and environmental effects of endocrine disrupters : A report of U.S.EPA sponsored workshop. Environ Health Perspect, 1996, 104:715-740.
    [15]Stone R. Environmental estrogens stir debate. Science. 1994, 265:308-310.
    [16]Raloff J. That feminine touch: Are men suffering from prenatal or childhood exposures to“hormonal”toxicants? Science News, 1994, 145:56-58.
    [17]Meacalfe TL, Metcalfe LD, Kiparissis Y, et al. Gonadal development and endocrine response in Japanese Medaka (Oryzias Latipes) exposed to o,p’-DDT in water or through material transfer. Environ Toxicol Chem, 2000, 19(7):1893-1900.
    [18]Shahalam A , Abu-Zahra-Bassam M, Jaradat A. Wastewater irrigation effect on soil , crop and environment; a pilot scale study at Irbid , Jordan. Water, Air and Soil Pollution, 1998, 106 (3-4): 425-445
    [19]Sanchez J, Marino N, Vaquero M C, et al. Metal pollution by old lead-zinc mines in Urumea River valley(Basque Country, Spain), soil, biota and sediment. Water, Air and Soil Pollution, 1998, 107 (1-4): 303-319.
    [20]祝红红.植物性雌激素对人类的潜在影响.国外医学卫生学分册, 1996, 23: 234-237.
    [21]王陶,王辉.植物性雌激素及其对人类的作用.湖南中医药导报, 1999, 5: 14-16.
    [22]Petrovic M, Eljarrat E, Alda M J L, et al. Recent advance in the mass spectrometric analysis related to endocrine disrupting compounds inaquatic environmental samples. Journal of Chromatography A, 2002, 974(1/2): 23-29.
    [23]Gimeno S, Komen H, Jobling S, et al. Demasculinisation of sexually mature male common carp, Cyprinus carpio, exposed to 4-tert-pentylphenol during Spermatogenesis. Aquatic Toxicology, 1998, 43:93–109.
    [24]Jobling S, Sheahan D, Osborne J A, et al. Inhibition of testicular growth in rainbow trout (Oncorhynchus mykiss) exposed to estrogenic alkylphenolic chemicals. Environ Toxicol Chem, 1996, 15: 194–202.
    [25]Sinha N, Adhikari N, Saxena DK. Effect of endosulfan during fetal gonadal differentiation on spermatogenesis in rats. Environmental Toxicology and Pharmacology, 2001, 10: 29-32.
    [26]Moore R W, Rudy T A, Lin T W, et al. Abnormalities of sexual development in male rats with in utero and lactational exposure to the antiandrogenic plasticizer Di (2-ethylhexyl) phthalate. Environ Health Perspect, 2001, 109(3):227-231.
    [27]Olea N, Pazos P, Exposition J. Inadvertent exposure to xenoestrogens. Eur. J. Cancer Pprev., 1998, 7: 17-23.
    [28]Colborn T, Vom F S, Soto A M. Developmental effects of endocrine-disruption chemicals in wildlife and humans. Environmental Health Perspectives, 1993, 101(4): 378-384.
    [29]Crisp T M, Clegg E D, Cooper R L, et al. Environmental endocrine-disruption: an effects assessment and analysis. Environmental Health Perspectives, 1998, 106:11-56.
    [30]Foster P M , Mylchreest E , Gaido K W , et al. Effect s of phthalate esters on the developing reproductive tract of male rats. Hum Reprod Update, 2001, 7(3) :230-237.
    [31]Murthy R C, Saxena D K, Gupta S K, et al. Ultrastructural observations in testicular tissue of chromium-treated rats. Reprod Toxicol, 1999, 5(5):443-447.
    [32]Nielsen L, Baatrup E. Quantitative studies on the effects of environmental estrogens on the testis of the guppy, Poecilia reticulate. Aquatic Toxicology, 2006, 80:140-148.
    [33]Islinger M, Willimski D, V?lkl A, et al. Effects of 17α-ethinylestradiol on the expression of three estrogen-responsive genes and cellular ultrastructure of liver and testis in male zebrafish. Aquatic Toxicology, 2003, 62:85-103.
    [34]Callard G V, Peter Z, Ryan K J. Estrogen synthesis in vitro and in vivo in the brain of a marine teleost (Myoxocephalus). Gen Comp Endocrinol, 1981, 29: 14-20.
    [35]Callard G V, Peter Z. Brain estrogen biosynthesis and estrogen conjugating system in the sculpin (Myoxocephalus). Bull Mt Desert Isl Biol Lab Rep, 1982, 22 :41-43.
    [36]Monod G A , Mones D , Fostier A. Inhibition of ovarian microsomal aromatase and follicular estradiol secretion by imidazole fungicides in rainbow trout (Oncorhynchus mykiss). Int Sym on responses of marine organisms to pollutants. Woods Hole MA USA, 1992, 35: 153-167.
    [37]Hecker M, Kim W J, Park J et al., Plasma concentrations of estradiol and testosterone, gonadal aromatase activity and ultrastructure of the testis in Xenopus laevis exposed to estradiol or atrazine. Aquatic Toxicology, 2005, 72(4): 383-396.
    [38]Kime D E. A strategy for assessing the effects of xenobiotics on fish reproduction. The Science of the Totol Environment, 1999, 225: 3-11.
    [39]Gill T S, Tewari H, Pande J. Use of the fish enzyme system in monitoring water quality: effects of mercury on tissue enzymes.Comparative Biochemistry and Physiology Part C, 1990, 97(2):287-292.
    [40]贾秀英,董爱华.镉、铅对蟾蜍精巢毒作用的酶学研究.生态学报, 2004, 24(10): 2329-2333.
    [41]Kinnberg R, Korsgaard B, Bjerregaard P, et al. Effect of nonylphenol and 17β-estradiol on vitellogenin synthesis and testis morphology in male platyfish, Xiphophorus maculates. J Exp Biol, 2000, 203:171-181.
    [42]Guest W C, Avault J W, Roussel J D. Preservation of channel catfish sperm. Trans. Am. Fish. Soc, 1976, 3: 469-474.
    [43]EI-Sabeawy F, W ang S, Overstreet J, et al. Treatment of rats during pubertal development with TCDD alter both signaling kinase activities and epidermal growth factor receptor binding in the testing and motility and acrosomal reaction of sperm . Toxicol Appl Pharm acol, 1998, 150 (2): 427-442.
    [44]Hsu P C, Guo Y L, Li M H. Effects of acute postnatal exposure to 3,3(’),4,4(’)– tetrachloro- biphenyl on sperm function and hormone levels in adult rats. Chemosphere, 2004, 54(5): 7-12.
    [45] Rurangwa E, Volckaert FAM, Huyskens G, et al. Quality control of refrigerated and cryopreserved semen using computer-assisted sperm analysis (CASA), viable staining and standardized fertilisation in African catfish (Clarias gariepinus). Theriogenology, 2001, 55: 751-769.
    [46]Dreanno C, Cosson J, Suquet M et al. Nucleotides content, oxidative phosphorylation, morphology and fertilizing capacity of turbot (Psetta maxima) spermatozoa during the motility period. Mol. Reprod. Dev., 1999, 53, 230-243.
    [47]Linhart O, Rodina M., Cosson, J. Cryopreservation of sperm in common carp Cyprinus carpio: sperm motility and hatching success of embryos. Cryobiology, 2000, 41: 241-250.
    [48]Lahnsteiner F. Semen cryopreservation in the Salmonidae and in the Northern pike. Aquac. Res, 2000, 31: 245-258.
    [49]Rurangwa E, Biegniewska A, Slominska E, et al. Effect of tributyltin on adenylate content and enzyme activities of teleost sperm: a biochemical approach to study the mechanisms of toxicant reduced spermatozoa motility. Comparative Biochemistry and Physiology Part C, 2002, 131: 335–344.
    [50]Van Look K J W, Kime D E. Automated sperm morphology analysis in fishes: the effect of mercury on goldfish sperm. Journal of Fish Biology, 2003, 63: 1020-1033.
    [51]Ciereszko A, Dabrowski K. In vitro effect of gossypol acetate on yellow perch (Perca fla6escens) spermatozoa. Aquatic Toxicology, 2000, 49: 181-187.
    [52]Gavella M. Seminal plasma isozyme LDH-X in infertile men. Andrologia, 1982, 14: 103-105.
    [53]邓顺美,李叔庚,文建国,等.不育症精子乳酸脱氢酶同功酶LDH-X活性测定及其定位研究.中国组织化学与细胞化学杂志, 2001, 10(1): 7-13.
    [54]Latchoumycandane C, Chitra K C, Mathur P P. Induction of oxidative stress in rat epididymal sperm after exposure to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin. Arch Toxicol, 2002, 76(2) : 113-118.
    [55]Matsuyama M, Adachi S, Nagahama Y, et al. Diurnal rhythm of oocyte development and plasma steroid hormone levels in the female red sea bream, Pagrus major,during the spawning season. Aquaculture, 1990, 73: 357-372.
    [56]Nagao T, Ohta R, Marumo H, et al. Effect of butyl benzyl phthalate in Sprague Dawley rats after gavage administration: a two-generation reproductive study. Reprod. Toxicol., 2001, 14: 513-532.
    [57]胡静熠,王守林,赵人等.氰戊菊酯对雄性大鼠生殖内分泌系统的影响.中华男科学, 2002, 8(1): 18-21.
    [58]Trudeau V L, Wade M G, Kraak V D G J, et al. Effects of 17β-estradiol on pituitary and testicular function in male goldfish. Can J Zool, 1993, 71: 1131-1136.
    [59]Karels A A, Manning S, Brouwer T H, et al. Reproductive effects of estrogenic and antiestrogenic chemicals on sheephead minnows. Environ Toxicol Chem, 2003, 22(4): 855-865.
    [60]Khrana S, Ranmal S, Ben-Jonathan N, et al. Exposure of newborn male and female rats to environmental estrogens: delayed and sustained hyperoprolactinemia and alterations in estrogen receptor expression. Endocrinology, 2000, 141(12): 4512-4517.
    [61]Improta-Brears T, Whorton A R, Codazzi F, et al. Estrogen-induced activation of mitogen-activated protein kinase requires mobilization of intracellular calcium. Proc. Natl. Acad. Sci. U. S. A., 1999, 96: 4686-4691.
    [62]Nakhla A M, Khan M S, Romas N P, et al. Estradiol causes the rapid accumulation of cAMPin human prostate. Proc. Natl. Acad. Sci. U. S.A., 1994, 91: 5402-5405.
    [63]Watters J J, Dorsa D M. Transcriptional effects of estrogen on neuronal neurotensin gene expression involve cAMP/protein kinase A-dependent signaling mechanisms. J. Neurosci., 1998, 18: 6672-6680.
    [64]Watters, J J, Campbell J S, Cunningham M J, et al. Rapid membrane effects of steroids in neuroblastoma cells, effects of estrogen on mitogen activated protein kinase signaling cascade and c-fos immediate early gene transcription. Endocrinology, 1997, 138: 4030-4033.
    [65]Wade C B, Dorsa D M. Estrogen activation of cyclic adenosine 5′-monophosphate response element-mediated transcription requires the extracellularly regulated kinase/mitogen-activated protein kinase pathway.Endocrinology, 2003, 144: 832-838.
    [66]Lagrange A H, Ronnekleiv O K, Kelly M J. Modulation of G proteincoupled receptors by an estrogen receptor that activates protein kinase A. Mol. Pharmacol., 1997, 51: 605-612.
    [67]Qiu J, Bosch M A, Tobias S C, et al. Rapid signaling of estrogen in hypothalamic neurons involves a novel G-protein-coupled estrogen receptor that activates protein kinase C. J. Neurosci., 2003, 23: 9529-9540.
    [68]Simoncini, T, Hafezi-Moghadam A, Brazil D P, et al. Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature, 2000, 407: 538-541.
    [69]Alexaki V I, Charalampopoulos I, Kampa M, et al. Estrogen exerts neuroprotective effects via membrane estrogen receptors and rapid Akt/NOS activation. FASEB J., 2004, 18: 1594-1596.
    [70]Kennedy A M, Shogren K L, Zhang M, et al. 17beta-estradiol-dependent activation of signal transducer and activator of transcription-1 in human fetal osteoblasts is dependent on Src kinase activity. Endocrinology, 2005, 146: 201-207.
    [71]Nikula H, Talonpika T, Kaleva M, et al. Inhibition of hGG-stimulated steroidogenesis in mouse Leydig tumour cells by Bisphenol A and octyphenols. Toxicol Appl Pharmacol, 1999, 157(3): 421-428.
    [72]Masuyama H, Hiramatsu Y, Kunitomi M, et al. Endocrine disrupting chemicals phthalic acid and nonylphenol activate Pregnane X receptor-mediated transcription. Mol Endocrinol, 2000, 14(3): 421-428.
    [73] Sarah M Z, Dustin J P. Abnormal behaviours induced by chemical pollution: a review of the evidence and new challenges. Animal Behaviour, 2004, 68: 649-664.
    [74]Harris R M, Waring R H, Kirk C J, et al. Sulfation of estrogenic alkyphenols and 17β-estradiol by human platelet phenol sulfotransferases. J Biol Chem, 2000, 275: 159-166.
    [75]Kirk C J, Bottomley L, Minican N, et al. Environmental endocrine disruptors dysregulate estrogen metabolism and Ca2+homeostatsis in fish and mammals via receptor-independent mechanism. Comp Biochem Phydiol, 2003, 135: 1-8.
    [76]Kester M H A, Bulduk S, Toor V H, et al. Potent inhibition of estrogen sulfortransferase by hydroxylated metabolites of polyhalogenated aromatic hydrocarbons reveals alternative mechanism for estrogenic hydrocarbons reveals alternative mechanism for estrogenic activityof endocrine disruptors. J Clin Endocrinol Metab, 2002, 87: 1142-1150.
    [77]Nellemann C, Vinggaard A M, Dalgaard M, et al. Quantification of antiandrogen effect determined by Lightcycler technology. Toxicology, 2001, 163 (1): 29-38.
    [78]Monsees TK, Franz M, Gebhardt S, et al. Sertoli cells as a target for reproductive hazards. Andrologia, 2000, 32 (425) :239-246.
    [79]Stephanie R, Richardson M, Kramer V J. Effects of waterborne exposure of 17β- estradiol on secondary sex characteristics and gonads of fathead minnows (Pimephales promelas). Aquatic Toxicology, 1999, 47: 129-145.
    [80]Nakayama K, Oshima Y, Yamaguchi T, et al. Fertilization success and sexual behavior in male medaka,Oryzias latipes, exposed to tributyltin. Chemosphere, 2004, 55: 1331-1337.
    [81]Kinnberg K, Toft G. Effects of estrogenic and antiandrogenic compounds on the testis structure of the adult guppy (Poecilia reticulata). Ecotoxicology and Environmental Safety, 2003, 53: 16–24.
    [82]Blazquez M, Zanuy S, Carrillo M, et al. Structural and functional effects of early exposure to estradiol-17βand 17β-ethinylestradiol on the gonads of the gonochoristic teleost Dicentrarchus labrax. Fish Physiol.Biochem., 1998, 18: 37-47.
    [83]Leino R L, Jensen K M, Ankley G T. Gonadal histology and characteristic histopathology associated with endocrine disruption in the adult fathead minnow (Pimephales promelas). Environmental Toxicology and Pharmacology, 2005, 19: 85-98.
    [84]Malbrouck C, Trausch G, Devos P, et al. Hepatic accumulation and effects of microcystin-LR on juvenile goldfish Carassius auratus L. Comparative Biochemistry and Physiology Part C, 2003, 135: 39-48.
    [85]陶义训,冯仁丰,孙荫,等.实用医学检验学,上海:科学技术出版社, 1996: 431-432.
    [86]张旭晨,王所安.细鳞鱼精巢超微结构和精子发生.动物学报, 1992, 38: 355-358.
    [87]管汀鹭.金鱼精巢支持细胞间连接和血睾屏障.实验生物学报, 1990, 23(1): 29-39.
    [88]Lee J, Richburg J H, Shipp E B, et al. The FAS system, a regular of testicular germ cell apoptosis, is differentially up-regulated in Sertoli cell versus germ cell injury of the testes. Endocrinology, 1999, 140: 852-858.
    [89]管汀鹭.金鱼精子质膜和核膜的区域特异性.实验生物学报, 1990, 23(1): 17-27.
    [90]胡家会,张士璀,张永忠,等.水胺硫磷对玫瑰无须鲃精子的体外毒性作用.高技术通讯, 2005, 15(2): 104-107.
    [91]McAllister B G, Kime D E. Early life exposure to environmental levels of the aromatase inhibitor tributyltin causes masculinisation and irreversible sperm damage in zebrafish (Danio rerio). Aquat. Toxicol., 2003, 65: 309-316.
    [92]Meistrich ML, Trostle PK, Frapart M, et al. Biosynthesis and localization of lactate dehydrogenase-X in pachitene spermatocytes and spermatids of mouse testes. Dev Biol 1977, 60: 42-48.
    [93]Misshra R, Shukla P S. Impact of endosulfan on lactate dehydrogenase from the freshwatercatfish Clarias batrachus. Pesticide Biochemistry and Physiology, 1997, 57: 220-234.
    [94]Abdel N A B. Studies on the mechanism of testicular toxicity induced by acrylonitrile. Ph.D. Thesis, Al-Azhar University, Cairo, Egypt, 1995.
    [95]Traina M E, Rescia M, Urbani E, et al. Long-lasting effects of lindane on mouse spermatogenesis induced by in utero exposure. Reproductive Toxicology, 2003, 17(1): 25-35.
    [96]Srivastava S C, Kumar R, Prasad A K, et al. Effect of hexachlorocyclohexane (HCH) on testicular plasma membrane of rat Toxicology Letters, 1995, 75: 153-157.
    [97]Tandon R, Saxena D K, Chandra S V, et al. Testicular effects of acrylonitrile in mice. Toxicology Letters, 1988, 42(1): 55-63.
    [98]Christiansen T, Korsgaard B, Jespersen A. Effects of nonylphenol and 17β-estradiol on vitellogenin synthesis, testicular structure and cytology in male eelpout Zoarces viviparous. The Journal of Experimental Biology, 1998, 201:179-192.
    [99]Liu S Q, Jiang X L, Mou H J, et al. Effects of immunopoiysacchaeide on LSZ, ALP, ACP and POD activities of Penaeus Chinensis serum. Oceanologia Et Limnologia Sinica, 1999, 30(3): 278-283.
    [100]江泉观,于永强主编.雄(男)性生殖毒理学.北京:北京医科大学中国协和医科大学联合出版社, 1994, 229-235.
    [101]Ghorpade N, Mehta V, Khare M. Toxicity study of diethyl phthalate on freshwater fish Cirrhina mrigala. Ecotoxicology and Environmental Safety, 2002, 53: 255-258.
    [102]Corpas I, Castillo M, Marquina D, et al. Lead intoxication in gestational and lactation periods alters the development of male reproductive organs. Ecotoxicology and Environmental Safety, 2002, 53: 259-266.
    [103]Sinha N, Narayan R, Saxena, D K. Effect of endosulfan on the testis of growing rats. Bull. Environ. Contam. Toxicol., 1997, 58: 75-80.
    [104]Scandalios, J.G. Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz. J. Med. Biol. Res, 2005, 38: 995-1014.
    [105]Livingstone, D.R. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar. Pollut. Bull, 2001, 42: 656-666.
    [106]Pandey S, Parvez S, Sayeed I, et al. Biomarkers of oxidative stress: a comparative study of river Yamuna fish Wallago attu . Sci.Total. Environ., 2003, 309: 105-115.
    [107]Oost R, Beyer J, Vermeulen N P E. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ. Toxicol. Pharmacol, 2003, 13: 57-149.
    [108]Oruc E ?, Usta D. Evaluation of oxidative stress responses and neurotoxicity potential of diazinon in different tissues of Cyprinus carpio. Environmental Toxicology and Pharmacology, 2007, 23: 48-55.
    [109] Zhang J, Shen H, Wang X, et al. Effects of chronic exposure of 2,4-dichlorophenol on the antioxidant system in liver of freshwater fish Carassius auratus. Chemosphere, 2004, 55: 167-174.
    [110]Dimitrova M S T, Tishinova V, Velchava, V. Combined effect of zinc and lead on the hepatic superoxide dismutase-catalase system in carp (Cyprinus carpio). Comp. Biochem. Physiol. C, 1994, 108: 43-46.
    [111]Oruc E O, Uner N. Combined effects of 2,4-D and azinphosmethyl on antioxidant enzymes and lipid peroxidation in liver of Oreochromis niloticus. Comp. Biochem. Physiol. C, 2000, 127: 291-296.
    [112]Alves S R C, Severino P C, Ibbotson D P. Effects of furadan in the brown mussel Perna perna and in the mangrove oyster Crassostrea rhizophorae. Mar. Environ. Res., 2002, 54: 1-5.
    [113]Hai D Q, Varga S I, Matkovics B. Organophosphate effects on antioxidant system of carp (Cyprinus carpio) and catfish (Ictalurus nebulosus). Comp. Biochem. Physiol. C, 1997, 117: 83-88.
    [114]Durmaz H, Sevgiler Y,üner N. Tissue-specific antioxidative and neurotoxic responses to diazinon in Oreochromis niloticus. Pesticide Biochemistry and Physiology, 2006, 84: 215-226.
    [115]Thomas P C, Murthy T L. Studies on the impact of a few organic pesticides on certain fish enzymes. Indian J. Anim. Sci., 1976, 46: 619-624.
    [116]Sayeed I, Parvez S, Pandey S, et al. Oxidative stress biomarkers of exposure to deltamethrin in freshwater fish Channa punctatus Bloch. Ecotoxicol. Environ.Safety, 2003, 56: 295-302.
    [117]Kavitha P, Rao V. Oxidative stress and locomotor behaviour response as biomarkers for assessing recovery status of mosquito fish, Gambusia Ynis after lethal effect of an organophosphate pesticide, monocrotophos. Pesticide Biochemistry and Physiology, 2007, 87: 182-188.
    [118]Au D W T, Olga V, Yurchenko, et al. Sublethal effects of phenol on spermatogenesis in sea urchins (Anthocidaris crassispina). Environmental Research, 2003, 93(1): 92-98.
    [119]Rurangwa E, Kime D E, Ollevier F, et al. The measurement of sperm motility and factors affecting sperm quality in cultured fish. Aquaculture, 2004, 234: 1-28.
    [120]Grzyb K, Rychowski M, Biegniewska A, et al. Quantitative determination of creatine kinase release from herring (Clupea harengus) spermatozoa induced by tributyltin. Comparative Biochemistry and Physiology Part C, 2003, 134(2): 207-213.
    [121]Vijayalaxmi, Raymond R T, Strauss G H S. Assessment of radiation-induced DNA damage in human blood lymphocytes using the single-cell gel electrophoresis technique. Mutation Research / Environmental Mutagenesis and Related Subjects, 1992, 271(3): 243-252.
    [122]Olive P L, Banath J P, Durand R E, et al. Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the comet assay. Radiat Res, 1990, 122(1): 86-94.
    [123]Ciereszko A, Wolfe T D, Dabrowski. Analysis of DNA damage in sea lamprey (Petromyzon marinus) spermatozoa by UV, hydrogen peroxide, and the toxicant bisazir. Aquatic Toxicology, 2005, 73(2): 128-138.
    [124]Dietrich G J, Szpyrka A, Wojtczak M, et al. Effects of UV irradiation and hydrogen peroxideon DNA fragmentation, motility and fertilizing ability of rainbow trout (Oncorhynchus mykiss) spermatozoa. Theriogenology, 2005, 64(8): 1809-1822.
    [125]Vigreux C, Poul J M, Deslandes E, et al. DNA damaging effects of pesticides measured by the single cell gel electrophoresis assay (comet assay) and the chromosomal aberration test, in CHOK1 cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 1998, 419, 79-90.
    [126]Lemaire P, Livingstone D R. Aromatic Hydrocarbon Quinone-mediated Reactive Oxygen Species Production in Hepatic Microsomes of the Flounder (Platichthys flesus L.). Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 1997, 117(2): 131-139.
    [127]Livingstone D R, Mitchelmore, Hara O P, et al. Increased potential for NAD(P)H-dependent reactive oxygen species production of hepatic subcellular fractions of fish species with in vivo exposure to contaminants. Marine Environmental Research, 2000, 50: 57-60.
    [128]Oakes K D, McMaster M E , Van der Kraak G J. Oxidative stress responses in long nose sucker (Catostomus catostomus) exposed to pulp and paper mill and municipal sewage effluents. Aquat. Toxicol, 2004, 67: 255-271.
    [129]Wild D. Chemical induction of streptomycin-resistant mutations in Escherichia coli dose and mutagenic effects of dichlorvos methyl methanesulfonate. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 1973, 19(1): 33-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700