盐酸多奈哌齐对血管性痴呆小鼠海马神经元谷氨酸转运体、细胞周期依赖性蛋白激酶5/p25和活性氧通路的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:血管性痴呆(vascular dementia,VD)是由各种脑血管疾病导致的获得性、持续性智能障碍综合征,以学习、记忆功能损害为主要症状,可伴有语言、运动、视空间及人格障碍。随着社会人口日益老龄化和脑血管病后生存率的提高,由脑血管病造成的精神及智能损害日益突出,给社会和家庭带来沉重负担。因此探讨其可能的发病机制,制定合理的治疗方案已成为当前医学界的紧迫任务之一。
     近年研究显示:谷氨酸的兴奋毒性参与了血管性痴呆的病理机制。因此,减轻兴奋性氨基酸(excitatory amino acids, EAA)的毒性作用,对于减轻缺血性脑损伤及其继发的学习与记忆障碍,具有极为重要的意义。谷氨酸转运体(excitator aminoacid transporters, EAATs)作为清除兴奋性氨基酸的主要物质,在全脑缺血的发生机制和治疗中发挥了重要作用。脑缺血时,细胞外液谷氨酸浓度持续大量升高,过度激活谷氨酸受体,导致Ca2+大量内流,细胞内Ca2+超载可激活中性蛋白酶Calpain,使其对细胞酶产生过度降解,引起细胞结构与功能异常及细胞死亡。细胞周期依赖性蛋白激酶5(Cyclin dependent kinase 5, Cdk5)参与突触小泡循环、离子通道和细胞内信号转导通路的调节,在突触可塑性、学习与记忆过程中发挥关键作用。Cdk5的激动亚基p35也是Calpain的作用底物之一,病理条件下,Calpain可使p35蛋白降解成p25蛋白,后者使Cdk5激酶活性失调,导致包括凋亡、兴奋毒性等多种形式的细胞死亡。由活性氧(reactive oxygen species, ROS)引起的氧化损伤是导致认知功能障碍的重要原因。超氧化物歧化酶(superoxide dismutase, SOD)和丙二醛(malondialdehyde, MDA)是评价氧化和抗氧化程度的重要指标。神经元内的氧化损伤和其他危害可引起Calpain介导的p35向p25的裂解。另外, Cdk5对自由基的产生具有调节作用。已有证据表明,在缺血、缺氧等条件下,自由基引起的氧化损伤参与了线粒体破坏、细胞坏死和凋亡等过程。目前有关EAATs、Calpain-Cdk5和活性氧通路在VD发生中的作用尚鲜有报道。
     盐酸多奈哌齐是胆碱酯酶抑制剂,可选择性抑制中枢神经系统中乙酰胆碱(Acetylcholine, Ach)的降解,增加神经细胞突触间隙Ach的浓度,提高记忆脑区的神经传导功能,从而改善大脑学习和记忆能力。有资料表明,多奈哌齐可增加VD患者受损脑区局部脑血流量,激活细胞外信号调节激酶(Extracellular signal-regulated kinases, ERK)的表达,降低海马神经元N-甲基-D-天门冬氨酸(N - methyl - D - aspartate receptor, NMDA)受体亚单位R1(NMDAR1, NR1)的表达,通过影响p38丝裂原活化蛋白激酶(mitogen activated protein kinase, MAPK)的mRNA表达而改善学习和记忆功能,提示该药除发挥胆碱酯酶抑制剂的作用外,还通过多通道、多靶点参与学习和记忆功能的调节。但该药对EAATs和Calpain-Cdk5/p25通路以及ROS在VD中的作用尚未见报道。基于此,本文通过探讨EAATs和钙信号转导机制,观察该药治疗VD的效果并探讨其作用机制。
     方法:
     1采用双侧颈总动脉反复三次缺血-再灌注方法,制备小鼠VD模型,并设立假手术组和药物组(盐酸多奈哌齐);通过跳台试验和水迷宫试验进行学习和记忆成绩测试,HE染色观察海马组织病理变化。2采用免疫组化方法测定海马CA1区神经细胞膜上EAAT1和EAAT2的表达。3免疫组化方法测定海马CA1区神经元内Calpain I的表达。4反转录-聚合酶链反应(reverse transcription PCR, RT-PCR)和Western-blot方法测定小鼠海马组织Cdk5的mRNA表达和蛋白表达,Western-blot方法测定各组小鼠海马组织p25表达。5紫外分光光度法测定海马神经元SOD活性和MDA含量。
     结果:
     1 VD小鼠模型的行为学评价和海马病理学特征
     1.1跳台试验学习成绩
     模型组术后第29d,43d和57d的反应时间分别是(120.46±30.25),(133.16±29.77)和(121.05±31.43),较假手术组的(29.38±3.76),(28.33±4.28)和(28.72±2.67)明显延长(P<0.05);多奈哌齐治疗组的反应时间分别是(48.12±11.23),(56.12±12.44)和(42.17±11.26),较模型组显著缩短(P<0.05)。模型组术后第29d,43d和57d的错误次数分别是(3.88±1.29),(4.38±1.13)和(3.14±1.29),假手术组分别是(1.96±0.46),(2.16±0.43)和(1.58±0.63),模型组错误次数较假手术组显著增多(P<0.05);多奈哌齐治疗组的错误次数分别是(2.27±0.64),(2.86±0.87)和(1.96±0.78),较模型组显著减少(P<0.05),与假手术组无明显差异(P>0.05)。
     1.2跳台试验记忆成绩
     术后第30d,44d和58d模型组的潜伏时间分别是(79.97±26.38),(80.78±26.12)和(79.87±20.17),较假手术组的(195.78±36.55),(186.78±36.21)和(178.26±35.23)均明显缩短(P<0.05),多奈哌齐治疗组的潜伏时间分别是(156.13±31.25),(161.22±33.15)和(129.58±22.43),较模型组显著延长(P<0.05);模型组术后第30d、44d和58d错误次数分别是(4.14±1.25),(4.04±0.98)和(3.98±1.14),假手术组分别是(1.93±1.01),(1.91±0.56)和(1.76±1.06),模型组错误次数较假手术组显著增多(P<0.05),多奈哌齐治疗组的错误次数分别是(2.56±1.08),(2.74±0.87)和(1.89±0.86),较模型组显著减少(P<0.05);药物组与假手术组之间无明显差别(P>0.05)。1.3水迷宫试验学习成绩
     术后第29d、43d和57d模型组小鼠游完全程时间分别为(124.33±53.22)、(116.21±50.31)和(119.31±55.41) ,较假手术组的(66.32±51.61)、(61.63±38.86)和(65.73±51.96)均明显延长(P<0.05),多奈哌齐治疗组小鼠游完全程的时间分别是(80.56±53.28)、(76.43±43.86)和(77.49±48.86),较模型组显著缩短(P<0.05);模型组术后第29d、43d和57d的错误次数分别是(11.68±1.36)、(15.76±1.68)和(13.78±1.77),假手术组分别是(5.76±1.55)、(5.65±1.28)和(5.85±1.39),模型组错误次数较假手术组显著增多(P<0.05),多奈哌齐治疗组的错误次数分别是(7.48±1.67)、(7.38±1.34)和(7.38±1.49),较模型组显著减少(P<0.05);提示药物组的学习成绩得到改善;并且与假手术组相比无明显差别(P>0.05)。
     1.4水迷宫试验记忆成绩
     术后第30d、44d和58d模型组小鼠游完全程时间分别为(111.58±48.32)、(109.77±51.28)和(111.32±58.38) ,较假手术组的(51.23±45.75)、(49.34±36.36)和(49.56±40.33)均明显延长(P<0.05),多奈哌齐治疗组小鼠游完全程的时间分别是(76.29±41.27)、(66.27±40.86)和(57.27±40.11),分别较模型组显著缩短(P<0.05);模型组术后第30d、44d和58d的错误次数分别是(11.69±2.34)、(14.65±1.39)和(14.95±2.19),假手术组分别是(5.31±1.22)、(5.35±1.04)和(5.68±1.13),模型组错误次数较假手术组显著增多(P<0.05),多奈哌齐治疗组的错误次数分别是(6.33±1.46)、(7.01±1.26)和(7.07±1.35),较模型组显著减少(P<0.05);提示药物组的记忆成绩得到改善;并且与假手术组相比无明显差别(P>0.05)。
     1.5 HE染色显示海马CA1区病理变化
     (1)假手术组:HE染色示各组小鼠海马CA1区轮廓清楚、锥体细胞为3~5层,数量丰富,呈圆形或椭圆形,排列规则致密,细胞核圆而大,核仁清晰,染色质丰富,神经纤维密集。术后4、6、8周各组单位面积正常神经元计数分别为(101.58±15.32)、(108.24±11.33)和(101.24±12.26)。
     (2)模型组:各组小鼠海马CA1区的锥体细胞层次减少,排列松散,细胞数目减少,细胞核体积变小,结构不清,呈核固缩表现,神经纤维排列紊乱。术后4周、6周和8周时各组单位面积内正常神经元计数分别为(65.33±19.28)、(21.23±3.12)和( 50.52±11.28),较假手术组均显著降低(P<0.05),其中以术后6周损害最严重,绝大部分神经元死亡,仅有少量细胞存活,正常神经元计数较模型组术后4、8周时也显著减少(P<0.05)。
     (3)治疗组:术后4周和8周时,小鼠海马CA1区锥体细胞排列较整齐,层次较清楚;无明显核固缩现象。正常神经元计数分别是(88.22±19.88)和(83.36±12.21),较模型组显著增高(P<0.05),与假手术组相比无明显差别(P>0.05)。术后6周小鼠海马组织CA1区锥体细胞排列较整齐,层次较清楚;仍有部分核固缩现象。正常神经元计数为(46.38±5.17),较模型组显著增高(P<0.05),但仍显著低于假手术组(P<0.05)。上述结果表明,海马是影响学习和记忆功能的重要结构,脑缺血-再灌注可引起VD的发生,伴海马神经元严重受损,以术后6周最明显。盐酸多奈哌齐可减轻VD小鼠的病理改变和学习与记忆能力。
     2 VD小鼠海马CA1区EAATs表达及盐酸多奈哌齐的影响
     取出小鼠脑组织,经4 %多聚甲醛灌注固定后,石蜡包埋,冠状切片,进行免疫组化染色,观察EAAT1和EAAT2的平均光密度值(mean optical density,OD)表达。结果显示:假手术组在术后4周、6周和8周时小鼠海马CA1区细胞膜上EAAT1表达的OD值分别是(0.030±0.003)、(0.031±0.002)和(0.030±0.003);模型组细胞膜上EAAT1表达的OD值分别是(0.099±0.009)、(0.122±0.009)和(0.112±0.010),较假手术组均显著升高(P<0.05),尤以术后6周时增高明显;盐酸多奈哌齐治疗组在上述三个时间点EAAT1表达的OD值分别是(0.047±0.004)、(0.046±0.003)和(0.044±0.004),显著低于模型组(P<0.05),与假手术组无明显差异(P>0.05);术后4、6、8周假手术组海马CA1区细胞膜上EAAT2表达的平均OD值分别是(0.031±0.003)、(0.030±0.002)和(0.030±0.003);模型组的平均OD值为(0.098±0.008)、(0.113±0.008)和(0.101±0.009),较假手术组均显著增高(P<0.05),药物组EAAT2表达的平均OD值分别是(0.039±0.003)、(0.047±0.005)和(0.042±0.004),均较模型组显著降低(P<0.05),与假手术组无显著差异(P>0.05)。提示EAAT1和EAAT2参与了VD的发生,多奈哌齐改善学习和记忆的能力可能与其降低EAAT1和EAAT2表达有关。
     3 VD小鼠海马CA1区Calpain I的表达及盐酸多奈哌齐的影响
     小鼠脑组织经4 %多聚甲醛灌注固定后,石蜡包埋,冠状切片,行免疫组化染色,观察海马CA1区Calpain I的OD值。结果显示:假手术组术后4周、6周和8周时小鼠海马CA1区细胞层次清晰,胞浆内仅有微量Calpain I的表达(分别是0.030±0.003、0.031±0.003和0.029±0.003);模型组术后4周、6周和8周时海马CA1区神经细胞结构松散,神经元胞浆内Calpain I的平均OD值分别是(0.099±0.009)、(0.121±0.010)和(0.115±0.010)较假手术组均显著增高(P<0.05),尤以术后6周时增高明显;盐酸多奈哌齐治疗组在上述三个时间点Calpain I的表达分别是(0.040±0.004)、(0.044±0.004)和(0.042±0.003),均较模型组显著降低(P<0.05),与假手术组接近(P>0.05)。说明脑缺血-再灌注可引起神经元内Ca2+超载,激活Calpain I,出现持续高表达,引起神经元损害和VD的发生。盐酸多奈哌齐可能通过降低Calpain I的表达而发挥神经保护作用。
     4 VD小鼠海马Cdk5的蛋白表达和mRNA表达及盐酸多奈哌齐的影响
     4.1 Western-blot显示海马组织Cdk5的蛋白表达
     脑缺血-再灌注后4周、6周和8周时模型组海马组织Cdk5的蛋白表达为(0.54±0.05)、(0.73±0.07)和(0.70±0.06) ,分别较假手术组的(0.23±0.02)、(0.31±0.02)和(0.33±0.02)显著增高(P<0.05),提示Cdk5的蛋白表达在脑缺血-再灌注8周内呈持续性增高;盐酸多奈哌齐治疗组在上述三个时间点Cdk5蛋白表达分别为(0.28±0.02)、(0.33±0.03)和(0.38±0.02),均较模型组显著降低,差异有统计学意义(P<0.05)。
     4.2 RT-PCR检测Cdk5的mRNA表达
     术后4周、6周和8周时模型组海马组织Cdk5的mRNA表达分别为(0.80±0.07)、(0.91±0.08)和(0.92±0.08),分别较假手术组的(0.35±0.02)、(0.38±0.04)和(0.36±0.03)显著增高(P<0.05);盐酸多奈哌齐治疗组在上述三个时间点mRNA表达分别为(0.33±0.02)、(0.40±0.04)和(0.39±0.08),较模型组均显著降低,差异有统计学意义(P<0.05)。
     以上结果提示,在脑缺血-再灌注后4周时海马组织Cdk5蛋白表达和mRNA表达均显著增高,且持续至术后8周仍未恢复,此与行为学改变和神经元损害基本一致,并与Cdk5的上游激活物Calpain I的表达相一致,提示Calpain I-Cdk5的异常增多参与了脑缺血后VD小鼠海马神经元的死亡,并可能与记忆损害相关。盐酸多奈哌齐可能通过降低Calpain I的表达和Cdk5的生成,进而改善学习和记忆能力。
     5 VD小鼠海马组织p25蛋白表达及盐酸多奈哌齐的影响
     Western-blot检测海马组织p25蛋白的表达水平:术后4周、6周和8周时模型组海马组织p25蛋白的表达分别为(0.44±0.04)、(0.51±0.04)和(0.55±0.06),分别较假手术组的(0.19±0.02)、(0.24±0.02)和(0.20±0.02)显著增高(P<0.05),提示p25蛋白表达在脑缺血-再灌注8周内呈持续性增高;盐酸多奈哌齐治疗组在上述三个时间点p25蛋白表达分别为(0.26±0.02)、(0.25±0.03)和(0.21±0.02),较模型组显著降低,差异有统计学意义(P<0.05)。p25蛋白是Cdk5的异常激活因子,其显著增高提示Cdk5活性失调,是导致脑缺血-再灌注后神经元死亡的重要因素,盐酸多奈哌齐可能通过降低Calpain 1的表达而减少p35的裂解,使p25生成减少,缓解Cdk5的活性失调,从而减轻神经元死亡。
     6 VD小鼠海马组织SOD活性和MDA含量变化及盐酸多奈哌齐的影响
     6.1 SOD活性测定结果
     脑缺血-再灌注后4、6和8周时,模型组SOD活性分别是(7.17±1.66 U/mg*prot)、(7.07±1.43U/mg*prot)和(7.23±1.33U/mg*prot),分别高于假手术组的(3.10±0.46 U/mg*prot)、(3.22±0.52 U/mg*prot)和(3.19±0.40 U/mg*prot),差异有统计学意义(P<0.05);药物组术后4、6和8周的SOD活性分别为(4.39±0.38 U/mg*prot)、(4.88±0.47 U/mg*prot)和(4.76±0.55 U/mg*prot),显著低于模型组(P<0.05),与假手术组无明显差异(P>0.05)。
     6.2 MDA含量测定结果
     术后4、6和8周时,模型组MDA含量分别是(15.26±3.23 nmol/mg *prot)、(16.33±3.76 nmol/mg*prot)和(16.67±3.75 nmol/mg*prot),高于假手术组的(6.33±1.16nmol/mg*prot)、(6.87±1.06nmol/mg*prot)和(6.63±1.11 nmol/mg*prot),差异有统计学意义(P<0.05);药物组术后各模型组的MDA含量分别为(7.42±1.89nmol/mg*prot)、(8.32±1.68nmol/mg*prot)和(8.58±1.7 6nmol/mg*prot),显著低于模型组(P<0.05),与假手术组无差异(P>0.05)。
     本研究通过对脑缺血后MDA含量和SOD活性的检测发现氧化损伤参与了该病的发生。盐酸多奈哌齐可通过降低MDA含量和SOD活性而发挥神经保护作用。
     结论:
     1本实验成功建立了小鼠VD模型,经HE染色显示海马神经元受损严重,以缺血再灌注后6周时最明显,持续至术后8周仍未恢复正常。提示本模型能够基本模拟临床上VD的智能障碍,是比较理想的VD动物模型;盐酸多奈哌齐通过减轻小鼠海马病理损害而改善其学习和记忆能力,取得了相应的治疗效果。
     2 EAAT1和EAAT2作为对谷氨酸转运起决定作用的兴奋性氨基酸转运体,在脑缺血-再灌注后8周内小鼠海马出现持续性高表达,与神经元损伤和认知能力下降相一致,提示EAATs异常继而导致谷氨酸转运失调,及其后的Ca2+信号系统功能障碍可能是VD发生的重要因素。
     3 Calpain I是Ca2+信号通路的重要组成部分,在脑缺血-再灌注后8周内呈持续高表达,伴海马神经元受损,RT-PCR和Western-blot技术进一步证实海马组织Cdk5表达增加,其病理性激活因子p25的生成也相应增高,提示Calpain I-Cdk5/p25通路的表达增加参与了VD的发生。
     4 ROS的代表性物质SOD和MDA参与了VD的发生,提示氧化应激在脑缺血-再灌注后痴呆的发生中扮演了重要角色。
     5盐酸多奈哌齐可以通过减少Calpain I-Cdk5/p25通路的表达、EAAT1和EAAT2的表达和ROS的产生而改善VD的临床症状。
Objective: As an acquired syndrome of intelligent impairment, vascular dementia(VD), which is a kind of cerebral dysfunction caused by various kinds cerebral vascular disease, demonstrates mainly as learning and memory dysfunction, accompanied with the possible disorder of tongue, motion, direction and personality. With the increase of the proportion of the elderly in the population and that of the curing rate of cerebral vascular disease, morbidity of VD mounts continuously and hence brings about heavy loads to the society and family. However, both the pathogenesis of VD and its specific treatment remain unknown up to now. It is therefore significant to study the pathophysiological mechanism of VD and to find some effective treatments .
     Evidence emerging within the last decade has shown that glutamate excitotoxicity is presumed to be involved in pathological mechanisims in vascular dementia. It is very important to attenuate the injury of excitatory amino acid as well as ischemic damage and learning and memory. The excitator aminoacid transporters (EAATs) provide the primary mechanism for the reuptake of glutamate from the extra-cellular space, which will help to prevent over-activation and cytotoxicity. Hypoxia and/or ischemia can induce the release of glutamate. Such increased levels of glutamate, and the subsequent activation of ionotropic NMDA receptors, are primarily responsible for an increase in intracellular Ca2+, Ca2+ overload intracellular can active Calpain, which induce overactivation of enzyme and dysfunction of cells. Recent advances suggest roles for cyclin dependent kinase 5(Cdk5) in vesicle cycling, ion channel modulation and intracellular signalling. These data are correlated with others implicating Cdk5 in synaptic plasticity, learning and memory. p35, an activator of Cdk5, is also a substrate of Calpain. Under pathological condition, p35 can be cleavaged by Calpain to p25 protein, the latter causes hyperactivation of Cdk5, leading to neurodegeneration via several cell death paradigms including apoptosis, excitotoxicity and neurifila- ment hyperphosphorylation. Oxidative damage caused by reactive oxygen species(ROS) has been proposed to be critically involved in cognitive dysfun- ction. The oxidant-antioxidant status of neurons was assessed by determine- ing the levels of superoxide dismutase(SOD) activity and malondialdehyde (MDA). Oxidative stress and other perturbation to neurons can result in the calpain-mediated cleavage of p35 to p25. On the other hand, deregulated Cdk5 may cause oxidative stress by compromising the cellular anti-oxidant defense system. Recent evidence indicates that under ischemic and hypoxic episodes, the oxidative stress induced by free radicals take part in the dysfun- ction of mitochondria and cell death. To date much less is known about the role of EAATs, Calpain-Cdk5 and ROS signal transduction cascades in VD.
     Donepezil hydrochloride has been used widely in the treatment of VD, but the pharmacological mechanism of treating VD is still in discussion. Donepezil can inhibit acetylcholinesterase(AchE) to degrade to acetylcholine (Ach) reversibility, increase quantity of Ach, which affect neuronal conduction and increase the ability of learning and memory . Extensive research revealed that donepezil can increase cerebral blood flow, activates the express of ERK, and decrease express of subtype of NMDAR1-NR1, increase NR2B express of hippocampus, affect expression of MAPK mRNA to adjust learning and memory. These results indicates that donepezil can increase learning and memory function by multiple pathway besides inhibiting AchE. To date the role of donepezil on EAATs, Calpain-Cdk5 pathway and oxidative stress in VD have not been studied in detail. The present study aims to examine the involvement of the EAATs, Calpain-Cdk5 pathway and oxidative stress in VD mice, in order to elucidate the potential effect of donepezil in treating VD.
     Method:(1) Kunming mice were subjected for continuously three repeated times ischemia-reperfusion through the ligation of the bilateral common carotid arteries, accompanied by sham group and drug group (donepezil hydrochloride). The capability of learning and memory of mice were investigated by the stepdown test and water maze test, the pathological change of hippocampus in each group were observed by HE staining. (2) The tissue were dyed by immunohistochemistry technique to observe the expression of EAAT1 and EAAT2. (3)The expression of CalpainⅠin hippocampus were studied by immunohistochemistry. (4) The expression of Cdk5mRNA and protein were studies by RT-PCR and Western-blot technique. Western-blot was used to observe the expression of p25 protein. (5) Ultraviolet method was used to evaluate the activity of SOD and the content of MDA.
     Results:
     1 Behavioral test and pathology change of VD mice
     1.1 Learning ability of step-down test:
     The response time of model group 29d, 43d and 57d postsurgery were (120.46±30.25),(133.16±29.77)and(121.05±31.43) respectively, longer than sham-operated group(29.38±3.76), (28.33±4.28)and (28.72±2.67) (P<0.05); The response time of donepezil-treated group were(48.12±11.23), (56.12±12.44)and(42.17±11.26) respectively, shorter than model group (P <0.05). The number of error of model group 29d、43d and 57d were (3.88±1.29), (4.38±1.13)and(3.14±1.29) respectively, with that of sham- operated group were(1.96±0.46)、(2.16±0.43) and (1.58±0.63). The number of error of model group were much more than sham-operated group (P<0.05); The number of error of donepezil-treated group were(2.27±0.64), (2.86±0.87) and (1.96±0.78)respectively, lower than model group(P <0.05).
     1.2 Memory ability of step-down test:
     The latent time of model group 30d、44d and 58d postsurgery were(79.97±26.38), (80.78±26.12) and (79.87±20.17) respectively, shorter than that of sham-operated group (195.78±36.55), (186.78±36.21) and (178.26±35.23)(P<0.05). The latent time of donepezil-treated group were (156.13±31.25), (161.22±33.15) and (129.58±22.43) respectively, longer than model group(P <0.05). The number of error of model group at 30d, 44d and 58d were(4.14±1.25), (4.04±0.98) and (3.98±1.14)respectively, more than sham-operated group (1.93±1.01), (1.91±0.56) and (1.76±1.06) (P<0.05). The number of error of donepezil-treated group were (2.56±1.08), (2.74±0.87) and (1.89±0.86) respectively, lower than that of model group (P <0.05).
     1.3 Learning ability of Morris water maze test:
     The swimming time of model group 29d、43d and 57d post surgery were(124.33±53.22), (116.21±50.31) and (119.31±55.41)respectively, longer than that of sham-operated group (66.32±51.61), (61.63±38.86) and (65.73±51.96) (P<0.05). The swimming time of donepezil-treated group were(80.56±53.28), (76.43±43.86) and (77.49±48.86) respectively, shorter model group(P <0.05). The number of error of model group 29 d、43d and 57d post surgery were(11.68±1.36), (15.76±1.68) and (13.78±1.77) respectively, more than that of sham-operated group (5.76±1.55), (5.65±1.28) and (5.85±1.39)(P<0.05). The number of error of donepezil- treated group were(7.48±1.67), (7.38±1.34) and (7.38±1.49) respectively, lower than model group(P <0.05). There was no significant difference between sham-operated group and donepezil-treated group(P>0.05).
     1.4 Memory ability of Morris water maze test:
     The swimming time of model group 30d、44d and 58d post surgery were(111.58±48.32), (109.77±51.28) and (111.32±58.38) respectively, longer than sham-operated group (51.23±45.75), ,(49.34±36.36) and (49.56±40.33) (P<0.05). The swimming time of donepezil-treated group were (76.29±41.27), (66.27±40.86) and (57.27±40.11) respectively, shorter than that of model group(<0.05). The number of error of model group 30d、44d and 58d post surgery were(11.69±2.34), (14.65±1.39) and (14.95±2.19) respectively, more than that of sham-operated group(5.31±1.22), (5.35±1.04) and (5.68±1.13)(P<0.05). The number of error of donepezil- treated group were(6.33±1.46), (7.01±1.26) and (7.07±1.35) respectively, lower than model group(<0.05). There was no significant difference between sham-operated group and donepezil-treated group (P>0.05).
     1.5 HE staining of hippocampus:
     (1) Sham-operated group:The hippocampal profile was clear, there were 3 to 5 layers pyramidal cells, circinal and big nucleus, clear nucleolus. The many pyramidal cells ranged tightly, and dense nerve fibers were observed. The number of normal neuron 4, 6 and 8 weeks post surgery were (101.58±15.32), (108.24±11.33) and (101.24±12.26).
     (2) Model group:There were decreased layers pyramidal cells that ranged loosely. Their nucleus that had not clear structure became small, were dyed strongly, nerve fibers ranged unregularly. The number of normal neuron 4, 6 and 8 weeks post surgery were(65.33±19.28), (21.23±3.12) and (50.52±11.28), lower than sham-operated group(P<0.05), among those the most damaged group were 6 weeks post surgery, there are only e few neuron alive, the number of normal cell were lower than that of 4 and 8 weeks post surgery (P<0.05).
     (3) Donepezil-treated group:Above mentioned pathologic changes eased off in drug group. The pyramidal cells ranged tightly at 4 and 8 weeks post surgery. The number of normal neuron were(88.22±19.88) and (83.36±12.21), higher than that of model group(P<0.05). There was no significant difference between sham-operated group and donepezil-treated group(P>0.05). At 6 weeks post surgery, the pyramidal cells ranged tightly, but still with some nucleus shrinkage. The number of normal neuron were(46.38±5.17), higher than that of model group (P<0.05), but still lower than sham-operated group (P<0.05). These results suggest that hippocampus is an important region relating to learning and memory. Cerebral ischemia and reperfusion can induce the occurrence of VD, with hippocampus neurons damaged severely, among which the worst is emerging at 6 weeks post surgery. Donepezil can reduce the pathological changes and the ability of learning and memory of VD.
     2 Expression of EAATs in hippocampus of VD mice and the effect of donepezil
     The mice’s cerebral tissue were fast taken out, fixed up via perfusion of 4% paraformaldehyde solution. Then paraffin–embedded, coronal and serial sections were taken from each brain and EAAT1 and EAAT2 were stained through immunohistochemistry. The result revealed that:(1) In model group, the expression of EAAT1 on membrane of cells 4 weeks, 6 weeks and 8 weeks post surgery were (0.099±0.009), (0.122±0.009)and(0.112±0.010), higher than sham-operated group(0.030±0.003), (0.031±0.002)and(0.030±0.003)(P<0.05), with the highest expression was at 6 weeks post surgery; the expression of EAAT1 in donepezil-treated group at the three time points were (0.047±0.004), (0.046±0.003)and(0.044±0.004), lower than model group (P<0.05), there was no significant difference between sham-operated group and donepezil-treated group (P>0.05). (2) In model group, the expression of EAAT2 at 4 weeks、6 weeks and 8 weeks post surgery were (0.098±0.008),(0.113±0.008) and (0.101±0.009), higher than sham-operated group (0.031±0.003), (0.030±0.002)and(0.030±0.003) (P<0.05), the expression of EAAT2 in donepezil-treated group at the three time points were (0.039±0.003), (0.047±0.005) and (0.042±0.004), lower than model group(P<0.05), there was no significant difference between sham-operated group and donepezil-treated group(P>0.05). These results suggest that EAAT1 and EAAT2 were involved in the occurrence of VD, donepezil may improve learning and memory ability through reducing the expression of EAAT1 and EAAT2.
     3 Expression of Calpain I in hippocampus of VD mice and the effect of donepezil
     The mice’s cerebral tissue were fast taken out, fixed up via perfusion of 4% paraformaldehyde solution, then paraffin–embedded, coronal and serial sections were taken from each brain and Calpain I was stained through immunohistochemistry. The result revealed that: in model group, the expression of Calpain I in plasm of neurons 4 weeks, 6 weeks and 8 weeks post surgery were respectively(0.099±0.009, 0.121±0.010 and 0.115±0.010), higher than sham-operated group(0.030±0.003, 0.031±0.003 and 0.029±0.003) (P<0.05), with the highest expression at 6 weeks post surgery. The expression of Calpain I in donepezil-treated group at the three time points were (0.040±0.004, 0.044±0.004and0.042±0.003), lower than model group (P<0.05), there was no significant difference between sham-operated group and donepezil-treated group(P>0.05). These results suggest that cerebral ischemia can induce Ca2+ overload intracellular, with sustain high expression of Calpain I, paralleled with hippocampus neuronal damage. Donepezil may protect neurons from injury by reducing the expression of Calpain I.
     4 The Cdk5 mRNA and protein expression in hippocamous of VD mice and the effect of donepezil
     4.1 Protein expression of Cdk5 in hippocamous by Western-blot
     The protein expression of Cdk5 in model group 4, 6 and 8 weeks post surgery were (0.54±0.05), (0.73±0.07) and (0.70±0.06), higher than sham- operated group (0.23±0.02), (0.31±0.02) and (0.33±0.02) (P<0.05), suggesting that the protein expression of Cdk5 was increased within 8 weeks after cerebral ischemia and reperfusion. In donepezil-treated group, the protein expression of Cdk5 were (0.28±0.02), (0.33±0.03) and (0.38±0.02), lower than that of model group and there was significant difference(P<0.05).
     4.2 Cdk5 mRNA expression in hippocamous by RT-PCR
     The Cdk5 mRNA expression in model group 4, 6 and 8 weeks post surgery were (0.80±0.07), (0.91±0.08)and(0.92±0.08), higher than sham- operated group (0.35±0.02), (0.38±0.04) and (0.36±0.03) (P<0.05), suggesting that Cdk5 mRNA expression was increased within 8 weeks after cerebral ischemia and reperfusion. In donepezil-treated group, the mRNA expression of Cdk5 were (0.33±0.02), (0.40±0.04)and(0.39±0.08), lower than that of model group and there was significant difference (P<0.05).
     The result mentioned above indicate that the mRNA and protein expression of Cdk5 were increased from 4 weeks to 8 weeks after cerebral ischemia and reperfusion, this is accordance with behavioral test and neuronal damage, and with the expression of Calpain I, which is upstream of Cdk5. It is reasonable to consider that abnormal increase expression of Calpain I-Cdk5 pathway take part in the hippocampus neuronal death of VD mice after cerebral ischemia, and maybe correlate to memory injury. Donepezil may improve learning and memory ability by reduce the expression of Calpain I and Cdk5.
     5 p25 expression of VD mice and the effect of donepezil
     The expression of p25 in model group 4, 6 and 8 weeks post surgery were (0.44±0.04), (0.51±0.04)and(0.55±0.06), higher than that of sham- operated group (0.19±0.02), (0.24±0.02) and (0.20±0.02) (P<0.05), suggesting that the protein expression of p25 was increase within 8 weeks after cerebral ischemia and reperfusion. In donepezil-treated group, the p25 expression of were (0.26±0.02), (0.25±0.03) and (0.21±0.02), lower than model group and there was significant difference(P<0.05). As an abnormal activator of Cdk5, p25 high expression indicating irregulation of Cdk5, which is one of the most important case in evoking cell death, donepezil can reduce the expression of Calpain I and the Calpain-mediated generation of p25.
     6 The changes of SOD activity and MDA content in VD mice and the effect of donepezil
     6.1 The activity of SOD
     SOD activity in model group 4, 6 and 8 weeks post surgery were (7.17±1.66 U/mg*prot), (7.07±1.43 U/mg*prot) and (7.23±1.33 U/mg*prot), higher than sham-operated group (3.10±0.86 U/mg*prot, 3.22±0.92 U/mg* Prot and 3.19±0.90 U/mg*prot) (P<0.05). In drug group, the SOD activity were (4.39±0.98 U/mg*prot), (4.88±0.97 U/mg*prot) and (4.76±0.95 U/mg* prot), there was no significant difference between the two groups(P<0.05). 6.2 The content of MDA
     MDA content in model group were(15.26±3.23, 16.33±3.76 and 16.67±3.75 nmol/mg*prot), higher than sham-operated group (6.33±1.16, 6.87±1.06 and 6.63±1.11 nmol/mg*prot) (P<0.05). In drugl- treated group, MDA content were (7.42±1.89, 8.32±1.68 and 8.58±1.76 nmol/mg*prot), lower than model group and there was significant difference (P<0.05).
     Both SOD activity and MDA content were increase in model groups, suggesting that oxidative stress is a key feature of the neurodegenerative process of VD. Donepezil , as a potent free radical scavenger, might protect neurons against oxidative stress by regulating the activity and expression of antioxidant enzymes.
     Conclusion:
     (1) This study has successfuly established VD model. The pathological features in hippocampus show that pyramidal cells are damaged, especially at 6 weeks post surgery. This model might mimic the cognitive deficiency of VD in clinic. Donepezil hydrochloride might improve learning and memory ability of mice by attenuate the injury of neurons.
     (2) It was confirmed by immunohistochemistry that sustain increased expression of EAAT1 and EAAT2 during 8 weeks post surgery in hippocampus were related to cognitive damage and neuronal damage in VD. This indicate that glutamate excitotoxicity is a main factor in pathogenesis of VD.
     (3) As an importmant content of Ca~(2+) -signal cascade, Calpain I expression is sustain high during 8 weeks post ischemia-reperfusion, accompanied by neuronal injury. Cdk5 expression is also increased demonstrated by immunohistochemistry method、RT-PCR and Western-blot technique, with high expression of its activator p29 protein, indicating that more p35 is cleavaged to p25 by Calpain, which induce dysregulation of Cdk5 and neuronal death. These results suggest an importmant role of Calpain I-Cdk5/p25 pathway in the occurrence of VD.
     (4)Ultraviolet results demonstrate that SOD and MDA might be involved in the occurrence of VD, indicating that oxidative stress play an important role in dementia after cerebral ischemia.
     (5) The cognitive abilities of mouse with VD could be improved by Donepezil hydrochloride through reducing the expression of Calpain I-Cdk5/p25 pathway, EAAT1 and EAAT2 and the production of ROS, this result suggest that Donepezil hydrochloride might have neuroprotective effects.
引文
1 Roman GC. Vascular dementia revisited:diagnosis, pathogenesis, treatment, and prevention. Med Clin North Am, 2002, 86(3):477-499
    2吕佩源,王伟斌,尹昱,等.石杉碱甲对血管性痴呆小鼠额叶皮层和海马cAMP水平的影响.中华神经科杂志, 2005, 38(5): 325-327
    3吕佩源,胡亚卓,李玲等。盐酸多奈哌齐对血管性痴呆模型小鼠海马神经元ERK表达的影响.中国神经免疫学和神经病学杂志,2008, 15(1): 46-49
    4扈荣,钟晓明。血管性痴呆动物模型的研究概况。浙江中医药大学学报, 2008, 32(1): 137-140
    5 Wang ZF, Tang LL, Yan Han, et al. Effects of huperzine A on memory deficits and neurotrophic factors production after transient cerebral ischemia and reperfusion in mice. Pharmacology, Biochemistry and Behavior, 2006, 83(4): 603-611
    6 Pulsinelli WA, Brierley JB. A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke, 1979, 10 (3): 267-272
    7 Takagi K, Takeo S. The model of stroke induced by microsphere embolism in rats. Nippon Yakurigaku Zasshi, 2003, 121(6): 440-446
    8 Cho KO, La HO, Cho YJ, et al. Minocycline attenuates white matter damage in a rat model of chronic cerebral hypoperfusion. Neurosci Res, 2006, 83(2): 285-291
    9赵勇,崔淑芳,汤球。血管性痴呆动物模型研究进展。上海实验动物科学, 2005, 25(1): 54-58
    10蔺心敬,胡长林,李吕力等。血管性痴呆发生机制的研究。脑与神经疾病杂志,2003, 11(4): 235-236
    11马丛,王蕾。小鼠脑缺血再灌注模型方法及中药的药理作用。中华中医药学刊,2008, 26(2): 280-282
    12 Kiyota Y, Miyamoto M, Nagaoka A. Relationship between brain damage and memory impairment in rats exposed to transient forebrain ischemia. Brain Research, 1991, 538(2): 295-302
    13 Lack S, Roman GC, Geldmacher DS, et al. Efficacy and tolerability of donepezil in vascular dementia: positive results of a 24-week, multicenter, international, randomized, placebo-controlled clinical trial. Stroke, 2003, 34(10): 2323 -2330
    14 Kosasa T, Kuriya Y, Matsui K, et al. Inhibitory effects of donepezil hydrochloride (E2020) on cholinesterase activity in brain and peripheral tissues of young and aged rats. Eur J Pharmacol, 1999, 386(1): 7-13
    15 Kosasa T, Kuriya Y, Matsui K, et al. Inhibitory effect of orally administered donepezil hydrochloride (E2020),a novel treatment for Alzheimer's disease, on cholinesterase activity in rats. Eur J Pharmacol, 2000, 389(2-3): 173-179
    16 Lojkowska W, Ryglewicz D, Jedrzejczak T, et al. The effect of cholinesterase inhibitors on the regional blood flow in patients with Alzheimer's disease and vascular dementia. J Neurol Sci, 2003, 216(1): 119-126
    17 Liu C, Wu JL, Gu J, et al. Baicalein improves cognitive deficits induced by chronic cerebral hypoperfusion in rats. Pharmacology Biochemistry and Behavior, 2007, 86(3): 423-430
    18 Demaerschalk BM, Wingerchuk DM. Treatment of vascular dementia and vascular cognitive impairment. Neurologist, 2007, 13(3):37-41
    19樊素琴,刘合玉,闫丙川,等。盐酸多奈哌齐对拟VaD大鼠海马CA1区NR1和NR2B免疫组织化学表达的影响.中风与神经疾病杂志,2006, 23(5): 705-708
    20李强,戚基萍。盐酸多奈哌齐对AD模型大鼠学习记忆能力及CAT、GSH-Px含量影响。齐齐哈尔医学院学报,2007, 28(2): 25-27
    21王雪笠,吕佩源,郭宗成,等。盐酸多奈哌齐对血管性痴呆模型小鼠海马p38MAPK mRNA表达的影响。中国新药与临床杂志,2008, 27(3): 176-179
    1 Hynd MR, Scott HL, Dodd PR. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer,s disease. Neurochem. Int, 2004, 45(5):583-595
    2吴喆,赵宇阳,康秋君等?劝彼岽槐浠肽匀毖鹕恕V泄涤?医药,2008, 3(2): 101-103
    3黄晓磊,王树礼。谷氨酸、NMDA受体1与缺血性脑损伤关系研究进展。中国微循环杂志,2006, 10(1):69-72
    4 Pocock M, Nicholls DG. Exocytotic and nonexocytotic modes of glutamate release from cultured cerebellar granule cells during chemical ischemia. J Neurochem, 1998, 70(2): 806-813
    5 Nishizawa Y. Glutamate release and neuronal damage in ischemia. Life Science, 2001, 69(4): 369-381
    6 Storck T, Schultes S, Hofmann K, et al. Structure, expression and functional analysis of a Na+-dependent glutamate/aspartate transporter from rat brain. PNAS, 1992,89(22): 10955-10959
    7 Pines G, Danbolt NG, Bjoras M, et al. Cloning and expression of a rat brain L- glutamate transporter. Nature, 1992, 360(6403): 464-467
    8 Fairman WA, Vandenberg RJ, Arriza JL, et al. An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature, 1995, 375(6532): 599-603
    9 Rothstein JD, Dykes-Hoberg M, Pardo CA, et al. Knockout of glutamate transporters reveals a major role of astroglial transport in excitotoxicity and clearance of glutamate. Neuron, 1996, 16(3): 675-686
    10 Rozyczka J, Engele J. Multiple 5,-splice variants of the rat glutamate transporter-1. Brain Res Mol Brain Res, 2005, 133(1): 157-161
    11 Sattler R, Xiong Z, Lu WY, et al. Distinct roles of synaptic and extrasynaptic NMDA receptors in excitotoxicity. J Neurosci, 2000, 20(1): 22-33
    12 Rossj DJ, Oshima T, Attwe ID. Glutamate release in severe brain ischemiais mainly by reversed up take. Nature, 2000, 403(6767): 316-321
    13 Akasofu S, Kimura M, Kosasa T, et al. Study of neuroprotection of donepezil, a therapy for Alzheimer,s disease. Chemico- Biological Int, 2008, 175(2): 222-226
    1 Bernath E, Kupina N, Liu MC, et al. Elevation of cytoskeletal protein breakdown in aged Wistar rat brain. Neurobiol Aging, 2006, 27(4): 624-632
    2 Wu HY, Lynch DR. Calpain and synaptic function. Molecular Neurobiology, 2006, 33(3): 215-135
    3 Neumar RW, Xu YA, Gada H, et al. Cross-talk between calpain and caspase proteolytic systems during neuronal apoptosis. J Biol Chem, 2003, 278(16): 14162-14267
    4 Liou AK, Zhou Z, Pei W, et al. BimEL up-regulation potentiates AIF translocation and cell death in response to MPTP. FASEB J, 2005, 19(10): 1350-1352
    5张红,王粤,金丽英等。肌苷对脑缺血再灌注后神经细胞凋亡和卡配因基因表达的影响。齐鲁医学杂志,2004, 19(1):14-19
    6 Neumar RW, Meng FH, Mills AM, et al. Calpain activity in the rat brain after transient forebrain ischemia. Exp Neurol, 2001, 170(1): 27-35
    7 Crocker SJ, Smith PD, Jackson-Lewis V, et al. Inhibition of calpains prevents neuronal and behavioral deficits in an MPTP mouse model of Parkinson,s disease. J Neurosci, 2003,23: 4081-4091
    8 Alvira D, Ferrer I, Gutierrez-Cuesta J, et al. Activation of the calpain/Cdk5/p25 pathway in the girus cinguli in Parkinson,s disease. Parkinsonism Relat Disord, 2007, 16(6): 213-219
    9 Camins A, Verdaguer E, Folch J, et al. Involvement of calpain activation in neurodegenerative processes. CNS Drug Reviews. 2006. 12(2): 135-148
    10王雪笠,吕佩源,郭宗成,等。多奈哌齐对血管性痴呆模型小鼠海马p38 MAPK mRNA表达的影响。中国新药与临床杂志,2008, 27(3): 176-179
    11吕佩源,宋春风,樊敬峰,等。石杉碱甲对血管性痴呆小鼠海马NMDA受体及mRNA表达的影响。中国医院药学杂志,2005, 25(9): 800-802
    12 Akasofu S, Kimura M, et al. Protective effect of donepezil in primarycultured rat cortical neurons exposed to N-methyl-D-aspartate (NMDA) toxicity. Eur J Pharmaco, 2006, 20(3): 215-222
    13樊素琴,刘合玉,杨伟民,等。盐酸多奈哌齐对拟VD大鼠模型海马神经元保护作用机制的研究。中国老年保健医学,2006,4(2): 25-29
    14 Maurice T, Meunier J, Feng B, et al. Interaction with sigma(1) protein,but not N-methyl-D-aspartate receptor, is involved in the pharmacological activity of donepezil. J Pharmacol Exp Ther, 2006, 317(2): 606-614
    1 Pines J. Cyclins and their associated cyclin-dependent kinases in the human cell cycle. Biochem Soc Trans, 1993, 21(4):921-925
    2 Zhang J, Cicero SA, Wang L, et al. Nuclear localization of Cdk5 is a key determinant in the postmitotic state of neurons. PNAS, 2008, 105(25): 8772-8777
    3 Ko J, Humbert S, Bronson RT, et al. p35 and p39 are essential for cyclin-dependent kinase 5 function during neurodevelopment. J Neurosci, 2001, 21(17): 6758-6771
    4 Julien JP, Mushynski WE. Neurofilaments in health and disease. Prog Nucleic Acid Res Mol Biol, 1998,61(12):1-23
    5 Rosales JL, Nodwell MJ, Johnston RN, et al. Cdk5/p25(nck5a) interaction with synaptic proteins in bovine brain. J Cell Biochem, 2000, 78(1): 151-159
    6 Rosales JL, Ernst JD, Hallows J, et al. GTP-dependent secretion from neutrophils is regulated by CDK5. J Biol Chem, 2004, 279(52): 53932- 53936
    7 Barclay JW, Aldea M, Craig TJ. Regulation of the fusion pore conductance during exocytosis by cyclin-dependent kinase 5. J Biol Chem, 2004, 279(40): 41495-41503
    8 Takei K, Yoshida Y, Yamada H. Regulatory mechanisms of dynamin- dependent endocytosis. J Biochem, 2005, 137(3): 243-247
    9 Li BS, Sun MK, Zhang L, et al. Regulation of NMDA receptors by cyclin-dependent kinase-5. PNAS, 2001, 98(22): 12742-12747
    10 Hawasli AH, Benavides DR, Nguyen C, et al. Cyclin-dependent kinase 5 governs learning and synaptic plasticity via control of NMDA degradation. Nature Neuroscience, 2007, 10(7): 880-886
    11 Dhavan R, Greer PL, Morabito MA, et al. The cyclin-dependent kinase 5 activators p35 and p39 interact with theα-subunit of Ca2+/calmodulin- dependent protein kinaseⅡandα- actinin-1in a calcium-dependentmanner. J Neuroscience, 2002, 22(18): 7879-7891.
    12 Angelo M, Plattner F, Giese KP. Cyclin-dependent kinase 5 in synaptic plasticity, learning and memory. J Neurochem, 2006, 99(2):353-370
    13 Plattner F, Angelo M, Giese K. P. The roles of Cdk5 and glycogen synthase kinase 3 in tau phosphorylation. J Biol Chem, 2006, 281(35): 25457-25465
    14 Patrick GN, Zukerberg L, Nikolic M, et al. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature, 1999, 402: 615-622
    15 Nguyen MD, Lariviere RC, Julien JP. Deregulation of Cdk5 in a mouse model of ALS:toxicity alleviated by perikaryal neurofilament inclusions. Neuron, 2001,30(5):135-147
    16 Bu B, Li J, Davies P, et al. Deregulation of Cdk5, hyperphosphorylation, and cytoskeletal pathology in the Niemann-Pick type C murine model. J Neurosci, 2002,22(8):6515-6525
    17 Arias-Vásquez A,Aulchenko YS,Isaacs A,et al. Cyclin-dependent kinase 5 is associated with risk for Alzheimer,s disease in a Dutch population-based study. J Neurol, 2008, 255(5):655-662
    18 Mitsios N, Pennucci R, Krupinski J, et al. Expression of cyclin-dependent kinase 5 mRNA and protein in the human brain following acute ischemic stroke. Brain Pathol, 2007, 17(1):11-23
    19 Kaminosono S, Saito T, Oyama F, et al. Suppression of mutant Huntingtin aggregate formation by Cdk5/p35 through the effect on microtubule stability. J Neurosci, 2008, 28(35):847-55
    20 Akasofu S, Kimura M, Kosasa T, et al. Study of neuroprotection of donepezil, a therapy for Alzheimer,s disease. Chem Biol Interact. 2008, 175(1-3):222-226
    21 Akasofu S, Sawada K, Kosasa T, et al. Donepezil attenuates excitotoxic damage induced by membrane depolarization of cortical neurons exposed to veratridine. Eur J Pharmacol, 2008, 588(2-3): 189-197
    22 Fischer A, Sananbenesi F, Spiess J, et al. Cdk5 in the adult non-dementedbrain. Curr Drug Targets CNS Neurol Disord. 2003,2(6): 375-81
    23 Plattner F, Angelo M, Giese K. P. The roles of Cdk5 and glycogen synthase kinase 3 in tau phosphorylation. J Biol Chem, 2006, 281(35): 25457-25465
    1 Plattner F, Angelo M , Giese K. P. The roles of Cdk5 and glycogen synthase kinase 3 in tau phosphorylation. J Biol Chem, 2006, 281(35): 25457-25465 2
    2 Fischer A, Sananbenesi F, Schrick C, et al. Cyclin-dependent kinase 5 is required for associative learning. J Neurosci, 2002,22(6):3700-3707
    3 Darios F, Muriel MP, Khondiker ME, et al. Nrurotoxic calcium transfer from endoplasmic reticulum to mitochondria is regulated by cyclin-dependent kinase 5-dependent phosphorylation of tau. J Neurosci,2005,25(1):4159-4168
    4 Fendt M, Fanselow MS. The neuroanatomical and neurochemical basis of condition fear. Neurosci Biobehav Rev,1999,23(16): 743-760
    5 Asada A, Yamamoto N, Gohda M,et al. Myristoylation of p39 and p35 is a determinant of cytoplasmic or nuclear localization of active cycline- dependent kinase 5 complexes. J Neurochem, 2008, 106(3): 1325-1336
    6 Camins A, Verdaguer E, Folch J, et al. Involvement of Calpain activation in neurodegenerative processes. CNS Drug Reviews, 2006, 12(2): 135-148
    7 Dhavan R, Greer PL, Morabito MA, et al. The cyclin-dependent kinase 5 activators p35 and p39 interact with theα-subunit of Ca2+/calmodulin- dependent protein kinaseⅡandα- actinin-1in a calcium-dependent manner. The Journal of Neuroscience, 2002, 22(18):7879-7891
    8 Crespo BN, Camins A, Pelegri C, et al. 3-Nitropropionic acid activates calpain/CDK5 pathway in rat striatum. Neurosci Lett, 2007, 421(1):77-81
    9 Cruz JC, Tseng HC, Goldman JA, et al. Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron. 2003 ,40(3): 471-483
    10 Lee MS, Kwon YT, Li M, et al. Neruotoxicity induces cleavage of p35 to p25 by calpain. Nature. 2000, 405(6784):360-364
    11 Wang J, Liu S, Fu Y, et al. Cdk5 activation induces hippocampal CA1 celldeath by directly phosphorylating NMDA receptors. Nat. Neurosci. 2003, 6(10):1039-1047
    12 Huang TW, Chen XC, Zhang J, et al. Calpain-CDK5 pathway is involved inβ-amyloid peptide25-35-induced tau hyperphosphorylation. Chin J Neurol. 2006, 39(7): 477-480
    13 Fischer A, Sananbenesi F, Pang PT, et al. Opposing role of transient and prolonged expression of p25 in synaptic plasticity and hippocampus- dependent memory. Neuron. 2005, 48(5):825-838
    14 Mitsios N, Pennucci R, Krupinski J, et al. Expression of cyclin- dependent kinase 5 mRNA and protein in the human brain following acute ischemic stroke. Brain Pathol, 2007, 17(1):11-23
    1 Kishida KT, Klann E. Sources and targets of reactive oxygen species in synaptic plasticity and memory. Antioxid Redox Signal, 2007, 9(2): 233- 244
    2 Guidi I, Galimberti D, Lonati S. Oxidative imbalance in patients with mild cognitive impairment and Alzheimer, sdisease. Neurobiol Aging, 2006, 27(2): 262-269
    3 Knapp LT, Klann E. Role of reactive oxygen species in hippocampal long-term potentiation: contributory or inhibitory? J Neurosci Res, 2002, 70(1): 1-7
    4 Xiong Z, Liu C, Wang F. Protective effects of Breviscapine on ischemic vascular dementia in rats. Biol Pharm Bull, 2006, 29(9): 1880-1885
    5 Knapp LT, Klann E. Role of reactive oxygen species in hippocampal long-term potentiation:contributory or inhibitory? J Neurosci Res, 2002, 70(3):1-7
    6 Kishida KT, Klann E. Sources and targets of reactive oxygen species in synaptic plasticity and memory. Antioxid Redox Signal, 2007, 9(2): 233-244
    7曹仁存,周厚永,冉春梅。反复性脑缺血海马OFR的代谢变化。西南军医,2007, 9(1): 1-2
    8 Liu C, Wu JL, Gu J, et al. Baicalein improves cognitive deficits induced by chronic cerebral hypoperfusion in rats. Pharmacology Biochemistry and Behavior, 2007, 86(3): 423-430
    9 Sun KH, de Pablo Y, Vincent F, et al. Deregulated Cdk5 promotes oxidative stress and mitochondrial dysfunction. 2008, 107(1):265-278
    10王雪笠,吕佩源,郭宗成,等.盐酸多奈哌齐对血管性痴呆模型小鼠海马p38MAPK mRNA表达的影响,中国新药与临床杂志,2008, 27(3): 176-179
    11李强,戚基萍.盐酸多奈哌齐对AD模型大鼠学习记忆能力及CAT、GSH-Px含量影响。齐齐哈尔医学院学报,2007, 28(1): 25-27
    12 Akasofu S, Kimura M, Kosasa T, et al. Study of neuroprotection of donepezil, a therapy for Alzheimer,s disease. Chem Biol Interact. 2008, 175(1-3): 222-226
    13 Akasofu S, Sawada K, Kosasa T, et al. Donepezil attenuates excitotoxic damage induced by membrane depolarization of cortical neurons exposed to veratridine. Eur J Pharmacol, 2008, 588(2-3): 189-197
    14樊素琴,刘合玉,杨伟民等。盐酸多奈哌齐对拟VD大鼠模型海马神经元保护作用机制的研究。中国老年保健医学,2006, 4(2):25-29
    1 Zhang J, Cicero SA, Wang L, et al. Nuclear localization of Cdk5 is a key determinant in the postmitotic state of neurons. Proc Natl Acad Sci, 2008, 105(25): 8772-8777
    2 Fischer A, Sananbenesi F, Schrick C, et al. Cyclin-dependent kinase 5 is required for associative learning. J Neurosci, 2002,22(6):3700-3707
    3 Darios F, Muriel MP, Khondiker ME, et al. Nrurotoxic calcium transfer from endoplasmic reticulum to mitochondria is regulated by cyclin-dependent kinase 5-dependent phosphorylation of tau. J Neurosci,2005,25(1):4159-4168
    4 Fendt M, Fanselow MS. The neuroanatomical and neurochemical basis of condition fear. Neurosci Biobehav Rev,1999,23(16): 743-760
    5 Asada A, Yamamoto N, Gohda M,et al. Myristoylation of p39 and p35 is a determinant of cytoplasmic or nuclear localization of active cycline- dependent kinase 5 complexes. J Neurochem, 2008, 106(3): 1325-1336
    6 Fischer A, Sananbenesi F, Spiess J, et al. CDK5 in the adult non-demented brain. Curr Drug Targets CNS Neurol Disord, 2003, 2(6):375-381
    7 Cheung ZH, Ip NY. The role of cyclin-dependent kinase 5 in dendrite and synapse development. Biotechnol J, 2007, 2(8):949-957
    8 Rosales JL, Ernst JD, Hallows J, et al. GTP-dependent secretion from neutrophils is regulated by CDK5. J Biol Chem, 2004, 279(52): 53932- 53936
    9 Barclay JW, Aldea M, Craig TJ. Regulation of the fusion pore conductance during exocytosis by cyclin-dependent kinase 5. J Biol Chem, 2004, 279(40): 41495-41503
    10 Takei K, Yoshida Y, Yamada H. Regulatory mechanisms of dynamin- dependent endocytosis. J Biochem, 2005, 137(3): 243-247
    11 Lee SY, Voronov S, Letinic K, et al. Regulation of the interaction between PIPKI gamma and talin by proline-directed protein kinases. J Cell Biol,2005,168(5): 789-799
    12 Li BS, Sun MK, Zhang L, et al. Regulation of NMDA receptors by cyclin-dependent kinase-5. PNAS, 2001, 98(22): 12742-12747
    13 Hawasli AH, Benavides DR, Nguyen C, et al. Cyclin-dependent kinase 5 governs learning and synaptic plasticity via control of NMDA degradation. Nature Neuroscience, 2007, 10(7):880-886
    14 Dhavan R, Greer PL, Morabito MA, et al. The cyclin-dependent kinase 5 activators p35 and p39 interact with theα-subunit of Ca2+/calmodulin- dependent protein kinaseⅡandα- actinin-1in a calcium-dependent manner. The Journal of Neuroscience, 2002, 22(18):7879-7891
    15 Angelo M, Plattner F, Giese KP. Cyclin-dependent kinase 5 in synaptic plasticity,learning and memory. Journal of Neurochemistry, 2006, 99(2): 353-370
    16 Cheung ZH. CDK5 is involved in BDNF-stimulated dendritic growth in hippocampal neurons. PLoS Biol, 2007, 5(4):e63, 865-877
    17 Plattner F, Angelo M , Giese K. P. The roles of Cdk5 and glycogen synthase kinase 3 in tau phosphorylation. J Biol Chem, 2006, 281(35): 25457-25465
    18 Chergui K, Svenningsson P, Greengard P. yclin-dependent kinase 5 regulates dopaminergic and glutamatergic transmission in the striatum. PNAS, 2004, 101(7): 2191-2196
    19 Futter M, Uematsu K, Bullock SA, et al. Phosphorylation of spinophilin by ERK and cyclin-dependent Kinase 5 (CDK5). PNAS, 2005, 102(9):3489-3494
    20 Patrick GN, Zukerberg L, Nikolic M, et al. Concersion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature,1999,402(3): 615-622
    21 Lee MS, Kwon YT, Li M, et al. Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature,2000, 405(6784):360-364
    22 Camins A, Verdaguer E, Folch J, et al. The role of CDK5/P25 formation/inhibition in neurodegeneration. Drug News Perspect, 2006, 19(8):453-460
    23 Camins A, Verdaguer E, Folch J, et al. Involvement of Calpain activation in neurodegenerative processes. CNS Drug Reviews, 2006, 12(2): 135-148
    24 Crespo BN, Camins A, Pelegri C, et al. 3-Nitropropionic acid activates calpain/CDK5 pathway in rat striatum. Neurosci Lett, 2007, 421(1):77-81
    25 Kamei H, Saito T, Oawa M, et al. Suppression of calpain-dependent cleavage of the CDK5 activator p35 to p25 by site-specific phosphory- lation. J Biol Chem, 2007, 282(3):1687-1694
    26 Fischer A, Sananbenesi F, Pang PT, et al. Opposing role of transient and prolonged expression of p25 in synaptic plasticity and hippocampus- dependent memory. Neuron,2005, 48(5):825-838
    27 Arias-Vásquez A,Aulchenko YS,Isaacs A,et al. Cyclin-dependent kinase 5 is associated with risk for Alzheimer,s disease in a Dutch population-based study. J Neurol, 2008, 255(5):655-662
    28 Mitsios N, Pennucci R, Krupinski J, et al. Expression of cyclin-dependent kinase 5 mRNA and protein in the human brain following acute ischemic stroke. Brain Pathol, 2007, 17(1):11-23
    29 Kaminosono S, Saito T, Oyama F, et al. Suppression of mutant Huntingtin aggregate formation by Cdk5/p35 through the effect on microtubule stability. J Neurosci, 2008, 28(35):847-55
    1 Vila ED, Fernandez MM, Larraya JG, et al. Neuroprotection in vascular dementia. Cerebrovasc Dis, 2006, 21(suppl 2): 106-117
    2 Chabriat H, Bousser MG, Vascular dementia: potential of antiplatelet agents in prevention. Eur Neurol, 2006, 55(2): 61-69
    3 Knopman D, Boland LL, Mosley T, et al. Cardiovascular risk factors and cognitive decline in middle-aged adults. Neurology, 2001, 56 (1 ): 42-48
    4 Forette F, Seux ML, Staessen JA, et al. Prevention of dementia in randomized double-blind placebo-controlled Systolic Hypertension in Europe(Syst-Eur) trial. Lancet, 1998, 352(9137):1347-1351
    5 Qiu C, Winblad B, Viitanen M, et al. Pulse pressure and risk of Alzheimer disease in person aged 75 years and older: a community-based, longitudinal study. Stroke, 2003, 34:594-599
    6 Freitag MH, Peila R, Masaki K, et al. Midlife pulse pressure and incidence of dementia The Honolulu-Asia Aging Study. Stroke, 2006, 37(1): 33-37
    7 Brands AM, Biessels GJ, de Haan EH, et al. The effects of Type 1 diabetes on cognitive performance: a meta-analysis. Diabetes Care, 2005, 28(3): 726-735
    8 Janson J, Laedtke T, Parisi JE, et al. Increased risk of type 2 diabetes in Alzheimer disease. Diabetes, 2004,53(2): 474-481
    9 Ott A, Breteler MM, de Bruyne MC, et al. Atrial fibrillation and dementia in a population-based study. The Rotterdam Study. Stroke, 1997, 28(2):316-321
    10 Kilander L, Andren B, Nyman H, et al. Atrial fibrillation is an independent determinant of low cognitive function: a cross-sectional study in elderly men. Stroke, 1998, 29(9): 1816-1820
    11 Newman AB; Fitzpatrick AL; Lopez O et al.Dementia and Alzheimer's disease incidence in relationship to cardiovascular disease in the Cardiovascular Health Study cohort. J Am Geriatr Soc, 2005,53(7):1101-1107
    12 Engelberg H. Pathogenic factors in vascular dementia and Alzheimer,s disease. Dement Geriatr Cogn Disord, 2004, 18(3-4): 278-298
    13 Watanabe T, Miyazaki A, Katagiri T et al. Relationship between serum insulin-like growth factor-1 levels and Alzheimer's disease and vascular dementia. J Am Geriatr Soc, 2005, 53(10): 1748-1753
    14 Panza F, D'Introno A, Colacicco AM, et al. Lipid metabolism in cognitive decline and dementia. Brain Res Rev, 2006, 51(2): 275-292
    15 Watanabe T, Koba S, Kawamura M, et al.Small dense low-density lipoprotein and carotid atherosclerosis in relation to vascular dementia. Metabolism, 2004, 53(4): 476-482
    16 Juan D, Zhou DH, Li J et al. A 2-year follow-up study of cigarette smoking and risk of dementia. Eur J Neurol, 2004, 11(4): 277-282
    17 Deng J, Zhou DH, Li J et al. A 2-year follow-up study of alcohol consumption and risk of dementia. Clin Neurol Neurosurg, 2006, 108(4): 378-383
    18 Selhub J. The many facets of hyperhomocysteinemia: studies from the Framingham Cohorts . J Nutr, 2006, 136: 1726S-1730S
    19 Quadri P, Fragiacomo C, Pezzati R, et al. Homocysteine, folate, and vitamin B-12 in mild cognitive impairment, Alzheimer disease, and vascular dementia. Am J Clin Nutr, 2004, 80(1): 114-122
    20 Davidson Y, Gibbons L, Purandare N et al. Apolipoprotein E epsilon4 allele frequency in vascular dementia.Dement Geriatr Cogn Didord, 2006, 22(1): 15-19
    21 Lin HF, Lai CL, Tai CT et al. Apolipoprotein E polymorphism in ischemic cerebrovascular disease and vascular dementia patients in Taiwen. Neuroepidemiology, 2004, 23(3): 129-134
    22 Di Rosa M, Dell,Ombra N, Zambito AM, et al. Chitotriosidase and inflammatory mediator levels in Alzheimer,s disease and cerebrovascular dementia. European Journal of Neuroscience, 2006, 23(10): 2648-2656
    23 Van Oijen M, Witteman JC, Hofman A, et al. Fibrinogen is associated with an increased risk of Alzheimer disease and vascular dementia. Stroke, 2005, 36(12): 2637-2641.
    24陈忠义,李寅超,柳文科.血管性痴呆危险因素研究进展.实用医药杂志,2006,23(4):490-492
    25 Magalhaes JP, Sandberg A. Cognitive aging as an extention of brain development: a model linking learning, brain plasticity and neurodegeneration. Mech Ageing , 2005,126(10): 1026-1033
    26 Hayden KM, Zandi PP, Lyketsos CG, et al. Vascular risk factors for incident Alzheimer disease and vascular dementia: the Cache County study. Alzheimer Dis Assoc Disord, 2006,20(2): 93-100
    27 Erkinjuntti T, Roman G, Gauthier S, et al. Emerging therapies for vascular dementia and vascular cognitive impairment. Stroke, 2004, 35(4): 1010- 1017
    28 Schindler RJ. Dementia with cerebrovascular disease: the benefits of early treatment. Eur J Neurol, 2005, 12(3):17-21
    29 Blasko I, Bodner T, Knaus G. Efficacy of donepezil treatment in Alzheimer patients with and without subcortical vascular lesions. Pharmacology, 2004, 72(1): 1-5
    30 Paci C, Gobbato R, Carboni T, et al. P300 auditory event-related potentials and neuropsychological study during donepezil treatment in vascular dementia. Neurol Sci, 2006, 26(6):435-437
    31 Erkinjuntti T, Kurz A, Gauthier S, et al. Efficacy of galantamine in probable vascular dementia and Alzheimer,s disease combined with cerebrovascular disease: a randomized trial. Lancet, 2002, 359(9314): 1283- 1290
    32 Thavichachart N, Phanthumchinda K, Chankrachang S, et al.Efficacy study of galantamine in possible Alzheimer's disease with or without cerebrovas- cular disease and vascular dementia in Thai patients: a slow-titration regimen. Int J Clin Pract, 2006, 60(5):533-540
    33 Craig D, Birks J. Galantamine for vascular cognitive impairment. Cochrane Database Syst Rev, 2006, 25(1):CD004746
    34 Moretti R, Torre P, Antonello RM, et al. Rivastigmine in subcortical vascular dementia: an open 22-month study. J Neurol Sci, 2002,15 (203-204): 141-146
    35 Moretti R, Torre P, Antonello RM, et al. Rivastigmine superior to aspirin plus nimodipine in subcortical vascular dementia: an open, 16-month, comparative study. Int J Clin Pract, 2004, 58(4):346-353
    36 Craig D, Birks J. Rivastigmine for vascular cognitive impairment. Cochrane Database Syst Rev, 2005, (2): CD004744
    37 Demaerschalk BM, Wingerchuk DM. Treatment of vascular dementia and vascular cognitive impairment. Neurologist, 2007, 13(5):37-41
    38 Wang R, Yan H, Tang XC. Progress in studies of huperzine A, a natural cholinesterase inhibitor from Chinese herbal medicine. Acta Pharmacol Sin, 2006, 27(1):1-26
    39 Orgogozo JM, Rigaud AS, Stoffler A, et al. Efficacy and safety of memantine in patients with mild to moderate vascular dementia:a randomized,placebo-controlled trial(MMM 300). Stroke, 2002, 33(7):1834- 1839
    40 Pantoni L, Bianchi C, Beneke M, et al. The Scandinavian Multi-Infarct Dementia Trial: a double-blind, placebo-controlled trial on nimodipine in multi-infarct dementia. J Neurol Sci, 2000, 175(2):116-123
    41 Pantoni L, del Ser T, Soglian AG, et al . Efficacy and safety of nimodipine in subcortical vascular dementia: a randomized placebo-controlled trial. Stroke, 2005, 36(3):619-624.
    42 Frampton M, Harvey RJ, Kirchner V. Propentofylline for dementia. Cochrane Database Syst Rev. 2003, 8(2): CD002853
    43 European Pentoxifylline Multi-Infarct Dementia Study. Eur Neurol, 1996, 36(1): 315-321
    44 Sha MC, Callahan. The efficacy of pentoxifylline in the treatment of vascular dementia: a systematic review. Alzheimer Dis Assoc Disord, 2003, 17(1): 46-54
    45 Cohen RA, Browndyke JN, Moser DJ,et al . Long-term citicoline (cytidine diphosphate choline) use in patients with vascular dementia: neuroimaging and neuropsychological outcomes. Cerebrovasc Dis, 2003, 16(3): 199-204
    46 Fioravanti M, Yanagi M. Cytidinediphosphocholine (CDP-choline) for cognitive and behavioural disturbances associated with chronic cerebral disorders in the elderly. Cochrane Database Syst Rev. 2005, 18(2): CD000269
    47 Parnetti L, Mignini F, Tomassoni D, et al . Cholinergic precursors in the treatment of cognitive impairment of vascular origin: Ineffective approaches or need for re-evaluation? J Neurol Sci, 2007, 257(3): 264-269
    48 Emeriau JP, Lehert P, Mosnier M. Efficacy of naftidrofuryl in patients with vascular or mixed dementia: results of a multicenter, double-blind trial. Clin Ther 2000, 22(7): 834-844
    49 M?ller HJ, Hartmann A, Kessler C, et al. Naftidrofuryl in the treatment of vascular dementia. Eur Arch Psychiatry Clin Neurosci, 2001, 251(6):247-254
    50 Bidzan L, Biliekiewicz A, Turczyński J. Preliminary assessment of ginkgo biloba(Ginkofar)in patients with dementia. Psychiatr Pol, 2005, 39(3): 559-566
    51 Napryeyenko O, B orzenko I. GINDEM-NP Study . Ginkgo biloba special extract in dementia with neuropsychiatric features. A randomised, placebo-controlled, double-blind clinical trial. GroupArzneimittelforschu- mg, 2007, 57(1): 4-11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700