SDF-1/CXCR4在人多发性骨髓瘤的表达及其生物学功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多发性骨髓瘤(multiple myeloma,MM)是浆细胞在骨髓中呈恶性克隆增殖性疾病。与其它血液肿瘤不同,MM细胞起源于生发中心的记忆B细胞或前浆细胞,选择性归巢、定居在骨髓;到疾病的晚期,MM细胞可以播散至外周形成浆细胞白血病。而MM细胞的归巢及定位能促进MM细胞的生长、生存和迁移,从而导致病理性骨损害、骨折等一系列临床症状。迄今为止,MM仍然是一种不可治愈的疾病。研究发现,骨髓微环境中分泌的一些生物因子与表达在MM细胞上的趋化因子、黏附分子等受体相互作用,在MM细胞迁移、归巢并长期生存在骨髓过程中发挥至关重要作用。寻求以骨髓中的MM细胞生长及生存机制的靶向治疗一直是人们研究的焦点;因此深入研究MM细胞生长、生存及归巢机制以及一些促进MM细胞生长、生存及迁移的生物因子,具有重要的理论和潜在临床应用价值。
     鉴此,我们采用细胞生物学和分子生物学技术,以人多发性骨髓瘤为研究对象,围绕基质细胞衍生因子SDF-1与其受体CXCR4在MM细胞迁移、归巢及其生长中的生物学作用,进行了下述三个方面的研究。
     一、人多发性骨髓瘤患者血浆SDF-1的含量及MM细胞CXCR4的表达和作用
    
    SDF一1/C XCR4在人多发性骨髓瘤的表达及其生物学功能的研究
    中文摘要
    1、采用免疫荧光标记+流式细胞仪以及R丁一PCR方法检测了25例MM患
     者的MM细胞和依赖工L一6生长的MM细胞株:XGI、XGZ、XG6和XG7
     的CXCR4表达:EL工SA方法检测MM患者血浆SDF一1和工L一6的含量;
     采用体外微孔隔离室进行体外SDF一诱导的迁移运动实验。结果发
     现:①新鲜咖细胞及MM细胞株不同程度的表达功能性CxCR4[(42.7
     士17,3)%〕,.其表达水平与体外对SDF一1迁移能力「(23.2士1.08)
     %」密切相关(P<0.01=;②MM患者骨髓血浆SDF几表达水平显著高
     于正常人骨髓血浆表达水平〔(3489.23士651.63)pg/ml,(2818.57
     士597.79) pg/ml,P<0.05二;外周血浆SDF一1表达水平低于正常
     人外周血浆SDF一1的表达水平「(1973土133)pg/ml,(233吸.857士
     574.923),P二O;062〕;③浆细胞白血病患者外周血SDF一1含量
     4097.143士680.71,显著高于正常人外周血SDF一l的含量(P<0.01),
     由此首次证实sDF一1/CXCR4在MM患者体内异常表达,且与枷细胞
     的迁移运动相关。
    2、进一步研究证实,SDF一1/CXCR4相互作用可上调MM细胞表达粘附分
     子ICAM一1(CD54),工CAM一1的表达和可溶性ICAM一1的产生与CXCR4
     表达有一定相关性;表明SDF一1/CXCR4对介导粘附分子的调节效应
     在MM细胞的生物行为中起重要的作用。
    3、通过体外细胞培养观察,发现SDF一具有刺激XGI、XGZ细胞增殖的
     作用,但其作用效果明显低于工L一6,P<0.01;EL工SA方法检测XGs
     细胞培养上清及刚患者血浆中IL一6的表达水平结果显示:XGs细胞
     经SDF且诱导培养后,上清中工L一6含量较培养前增加;60%MM患者
     血浆IL一6含量较正常人显著增高;通过相关性分析表明,MM患者血
     浆SDF一含量与工L一6含量正相关。因此,SDF~1/CXCR4相互作用,
     可能通过促进自分泌和旁分泌IL一6两条途径调节MM的生长和增殖。
    4、通过免疫沉淀+Western blot分析表明,SDF一1/CXCR4作用的信号转
     导途径是通过活化毗PK,而与STAT3无关。
    5、临床资料相关性分析发现,SDF一1/CXCR4在MM体内的异常表达与MM
    
     SDF一1/C xCR4在人多发性骨髓瘤的表达及其生物学功能的研究中文摘要
     的临床症状、分期和免疫球蛋白分型等无关,但SDF--1/CXCR4在PCL
     均显著异常增高,提示SDF一1/CXCR4的异常高表达可能与MM的疾病
     进展、预后不良有关。
     二、ICOS/GL50信号转导在MM细胞生物学行为中的作用
     在上述SOF一1/CxCR4在枷作用的工作基础以及我们成功克隆和表达了-
    ICOS/GL50该对新型共刺激分子、构建了相应的的转基因细胞的基础上,采用细
    胞生物学和分子生物学技术研究率先发现:
     1、!cos/GL50不同程度的异常表达或共表达在朋细胞
     RT一PCR结果表明,从XGI、XGZ细胞和纯化的新鲜MM细胞的mRNA
     中均能扩增出ICOS和GL50的特异性条带。免疫荧光标记和流式细胞
     术分析结果表明,20例MM患者骨髓及外周血原始,幼稚浆细胞上表
     达不同程度的GLSO分子,其中3例MM细胞共表达ICOS/GLSO:XGI、XGZ
     细胞表面均异常表达JCOS分子,而XG6、XG7不表达ICOS分子。XGZ同
     时中等程度表达GLSO分子。
     2、COS/GLSO相互作用能够上调MM细胞功能性CXCR4的表达
     工COS/GLSO相互作用可上调XGZ细胞CXCR4和CD54的表达,以作用后24h
     最显著,而不表达工COS/GLSO的XG7细胞则无此变化。进一步体外迁移实验
     证实ICOS/GLSO介导删细胞CXCR4的上调表达与SDF月诱导的迁移功能有
     关。由此表明,工COS/GLSO分子的异常表达及其通过SDF一1/C XCR4途经调节
     MM患者肿瘤细胞的生物学行为中具有重要作用。
     三、s。「一1/CxcR4在人多发性骨髓瘤造血干细胞动员中的作用
     目前,大量的临床资料己经表明,大剂量化疗联合造血干细胞移植己使
Multiple myeloma(MM) is a monoclonal expansion of malignant cells with a plasmablast-plasma cell morphology that is almost exclusively localized to the bone marrow, except at the final stages of disease, when they proliferate in the extramedullary area. MM cells appear to be derived from a pst germinal centre B cell as they express somatically mutated Ig heavy chain genes. The mechanisms of the selective homing of MM cells to the bone marrow compartment are poorly understood. It is possible that the bone marrow localization reflects the expression of chemotactic receptors on MM cells that directs their migration to the bone marrow.
    The chemokine stromal cell-derived factor-1 (SDF-1) and its receptor CXCR4 contribute to stem cell homing and play a role in trafficking of leukemic cells. In this study we have investigated expression and biological behavior of SDF-1/CXCR4 in MM-derived cell lines and primary MM cells.
    Part I. Plasma Levels of SDF-1 and Expression of SDF-1 Receptor on
    Multiply Myeloma Cells of Human Multiply Myeloma
    1. FACS and RT-PCR analysis was used to study the expression of CXCR4 and ICAM-1(CD54) on the surface of MM cells from 4 IL-6 dependant cell lines (XG1.XG2,XG6 and XG7) and 25 freshly isolated tumor samples from patients with diagnosed MM. Mononuclear cells were purified by positive selection of magnetical and FACS sorting. Chemotaxis assay through transwell bore polycaronate and ELISA assay were employed to monitor the SDF-1, IL-6, and sICAM-1 levels. We found that 瓼resh MM cells and MM cell lines expressed various levels of functional CXCR4
    
    
    ranging from 23.1% to 77.7%,which was correlated with the in vitro migration ability of MM cells[ (23.2?.08) %, PO.01]; DSDF-1 levels in the bone marrow(BM) of MM patients were significantly higher than the those of healthy persons [(3489.23?51.63)pg/ml, (2818.57?97.79)pg/mL P<0,05 = ; but plasma levels of SDF-1 in peripheral blood of MM patients were lower than those of healthy persons[(1973 ?133)pg/ml, (2334.857 ?574.92), P=0.062]; ㏄lasma levels of PCL(4097.14 ?80.71) were significantly higher than those of healthy persons, P< 0.01. The results firstly demonstrated abnormal expression of SDF-1 and its receptor CXCR4 on Human MM cells, which is closely correlated with the migration of MM cells.
    2. Furthermore, we discovered that SDF-1 could up-regulate the expression of ICAM-1 on MM cells; the plasma level of soluble ICAM-1 was correlated with the expression of CXCR4 on MM cells. These findings suggested that SDF-1/CXCR4 axis play a key role on the trafficking of MM cells via mediating the effect of adhesion molecules.
    3. We also found that SDF-1 could promote long-term proliferation of myeloma cells besides inducing migration of myeloma cells as IL-6 did. An up-regulation of autocrine IL-6(from 5.1pg/105 cells/24hours to 32.3 pg/105 cells/24hours) by XG1 cells was found in culture supernatant when SDF-1 was added in the culture system. The proliferation of myeloma cells induced by SDF-1 could be blocked by additional anti CXCR4 monoclonal antibody(12G5) or anti-IL-6 monoclonal antibody (B-E8); Moreover, we observed higher plasma levels of IL-6 in PB of 60% MM patients compared with those of healthy individuals. Finally, the levels of IL-6 were closely correlated with SDF-1 levels (y=0.8, P<0.01), These data indicated that in the IL-6-dependent myeloma cell lines or fresh myeloma samples and myeloma cell growth triggered by SDF-1 maybe due to up-regulation of autocrine and paracrine IL-6 by myeloma cells and stromal cells in BM. The results suggested that the expression of CXCR4 have an essential role in the proliferation and migration of myeloma cells in patients with multiple myeloma.
    
    
    4. Western-blot found that SDF-1 induced a transient up-regulation in the phophorylation
    of the p44/42 MAP kinase on XGs, but do not induced the phophorylation of the STATS on XGs. These study indicated that signal transduction of SDF-1/CXCR4 is through MAP kinase, but not STATS.
    5. We demonstrated that abnormal expression
引文
1. Calle EE, Rodriguez C, Walker-thurmond K. et al. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U. S. adults. N Engl J Med. 2003:24:1625-38.
    2. Hideshima T, Bergsagel PL, Kuehl WM, et al. Advances in Biology of Multiple
    
    Myeloma: Clinical Applications. Blood. 2004 Apr 15 [Epub ahead of print]
    3. Vincent T, Mechti N. IL-6 regulates CD44 cell surface expression on human myeloma cells. Leukemia. 2004; 18:967-75.
    4. Iankov L, Atanasova G, Praskova M, et al. Bacterial lipopolysaccharide induces proliferation of IL-6-dependent plasmacytoma cells by MAPK pathway activation. Immunobiology. 2004;208:445-54.
    5. Tai ET, Catley LP, Mitsiades cs, et al. Mechanisms by which SGN-40, a humanized anti-CD40 antibody, induces cytotoxicity in human multiple myeloma cells: clinical implications. Cancer Res. 2004;64:2846-52.
    6. Wang LH, Yang XY, Zhang X, et al. Transcriptional inactivation, of STAT3 by PPARgamma suppresses IL-6-responsive multiple myeloma cells. Immunity. 2004;20:205-18.
    7. Giuliani N, Lunghi P, Morandi F, et al. Downmodulation of ERK protein kinase activity inhibits VEGF secretion by human myeloma cells and myeloma-induced angiogenesis. Leukemia. 2004;18:628-35.
    8. Molostvov G, Morris A, Rose P, et al. The effects of selective cytokine inhibitory drugs (CC-10004 and CC-1088) on VEGF and IL-6 expression and apoptosis in myeloma and endothelial cell co-cultures. Br J Haematol. 2004;124:366-75.
    9. Okada T, Akikusa S, Okuno H, et al. Bone marrow metastatic myeloma cells promote osteoclastogenesis through RANKL on endothelial cells. Clin Exp Metastasis. 2003;20:639-46.
    10. Kovacs E. How does interleukin-6 affect the membrane expressions of interleukin-6 receptor and gp130 and the proliferation of the human myeloma cell line OPM-2? Biomed Pharmacother. 2003;57:489-94.
    11. Burger R, Bakker F, Guenther A, et al. Functional significance of novel neurotrophin-1/B cell-stimulating factor-3 (cardiotrophin-like cytokine) for human myeloma cell growth and survival. Br J Haematol. 2003:123:869-78.
    12. Hideshima T. Chauhan D, Hayashi T, et al. Proteasome inhibitor PS-341 abrogates IL-6 triggered signaling cascades via caspase-dependent downregulation of gp130 in
    
    multiple myeloma. Oncogene. 2003;22:8386-93.
    13. Lee JW, Chung HY, Ehrlich LA, et al. IL-3 expression by myeloma cells increases both osteoclast formation and growth of myeloma cells. Blood. 2004;103:2308-15. Epub 2003 Nov 13.
    14. Trikha M, Corringham R, Klein B, et al. Targeted anti-interleukin-6 monoclonal antibody therapy for cancer: a review of the rationale and clinical evidence. Clin Cancer Res. 2003;9:4653-65.
    15. Chauhan D, Li G, Hideshima T, et al. Blockade of ubiquitin-conjugating enzyme CDC34 enhances anti-myeloma activity of Bortezomib/Proteasome inhibitor PS-341. Oncogene. 2004;23:3597-602.
    16. Ishikawa H, Tsuyama N, Abroun S, et al. Interleukin-6, CD45 and the src-kinases in myeloma cell proliferation. Leuk Lymphoma. 200344:1477-81.
    17. Beenson J, Wong R, Kim K, et al. Evidence of peripheral blood lymphocyte but not T lymphocyte involvement in multiple myeloma. Blood. 1987;70:1550.
    18. Grand EK, Chase AG, Heath C, et al. Targeting FGFR3 in multiple myeloma: inhibition of t(4;14)-positive cells by SU5402 and PD173074. Leukemia. 2004 May:18(5):962-6.
    19. EI Kassimi B, Benchemsi N, Benchekroun H, et al. Multiple myeloma and herpesvirus 8 in Morocco. Ann Biol Clin (Paris). 2003;61:365-367.
    20. Malnati MS, Dagna L, Ponzoni M, et al. Human herpesvirus 8 (HHV-8/KSHV) and hematologic malignancies. Rev Clin Exp Hematol. 2003;7:375-405.
    21. Du W, Hattori Y, Hashiguchi A, et al. Tumor angiogenesis in the bone marrow of multiple myeloma patients and its alteration by thalidomide treatment. Pathol Int. 2004;54:285-94.
    22. Asosingh K, De Raeve H, Menu E, et al. Angiogenic switch during 5T2MM murine myeloma tumorigenesis: role of CD45 heterogeneity. Blood. 2004; 103:3131-7. Epub 2003 Nov 26.
    23. Eleutherakis-Papaiakovou V, Krali M, Kokkonouzis I, et al. Bone marrow angiogenesis and progression in multiple myeloma: clinical significance and therapeutic approach. Leuk Lymphoma. 2003:44:937-48.
    
    
    24. Kumar S, Witzig TE, Greipp PR, et al. Bone marrow angiogenesis and circulating plasma cells in multiple myeloma. Br J Haematol. 2003;122:272-4.
    25. Johrer K, Janke K, Krugmann J, et al. Transendothelial migration of myeloma cells is increased by tumor necrosis factor (TNF)-alpha via TNF receptor 2 and autocrine up-regulation of MCP- 1. Clin Cancer Res. 2004; 10:1901-10.
    26. Parmo-Cabanas M, Bartomole RA, Wright N, et al. Integrin alpha4betal involvement in stromal cell-derived factor-lalpha-promoted myeloma cell transendothelial migration and adhesion: role of cAMP and the actin cytoskeleton in adhesion. Exp Cell Res. 2004;294:571-80.
    27. Hirayama Y. Sakamaki S, Tsuji Y, et al. IgM type multiple myeloma expressing various surface adhesion molecules and demonstrating an aggressive clinical course. Rinsho Ketsueki. 2003;44:957-61.
    28. Tai YT, Podar K, Catley L, et al. Insulin-like growth factor-1 induces adhesion and migration in human multiple myeloma cells via activation of betal-integrin and phosphatidylinositol 3'-kinase/AKT signaling. Cancer Res. 2003;63:5850-8.
    29. Einsele H, Bamberg M, Budach W, et al. A new conditioning regimen involving total marrow irradiation, busulfan and cyclophosphamide followed by autologous PBSCT in patients with advanced multiple myeloma. Bone Marrow Transplant. 2003;32:593-9.
    30. Hahn T, Wingard JR, Aderson KC, et al. The role of cytotoxic therapy with hematopoietic stem cell transplantation in the therapy of multiple myeloma: an evidence-based review. Biol Blood Marrow Transplant. 2003;9:4-37.
    31. Corradini P, Cavo M, Lokhorst H, et al. Molecular remission after myeloablative allogeneic stem cell transplantation predicts a better relapse-free survival in patients with multiple myeloma. Blood. 2003:102:1927-9.
    32. Kreiter S, Minkelmann N, Schneider PM, et al. Failure of sustained engraftment after non-myeloablative conditioning with low-dose TBI and T cell-reduced allogeneic peripheral stem cell transplantation. Bone Marrow Transplant. 2001;28:157-61.
    33. Raje N, Hideshima T, Davies FE, et al. Tumour cell/dendritic cell fusions as a
    
    vaccination strategy for multiple myeloma. Br J Haematol. 2004; 125:343-52.
    34. Kwak LW, Neelapu SS, Bishop MR. Adoptive immunotherapy with antigen-specific T cells in myeloma: a model of tumor-specific donor lymphocyte infusion. Semin Oncol. 2004;31:37-46.
    35. Coscia M, Mariani S, Battaglio S, et al. Long-term follow-up of idiotype vaccination in human, myeloma as a maintenance therapy after high-dose chemotherapy. Leukemia. 2004;18:139-45.
    36. Lauta VW. A review of the cytokine network in multiple myeloma: diagnostic, prognostic, and therapeutic implications. Cancer. 2003;97:2440-52.
    37. Klein B, Zhang XG, Lu Z-Y, et al. Interleukin-6 in human multiple myeloma. Blood. 1995;85:863-872.
    38. Hallek M, Bergsagel PL, Anderson KC, et al. Multiple myeloma increasing evidence for a multistep transformation process. Blood. 1998;91:3-21.
    39. Wells TN, Proudfoot AE, Power CA, et al. Chemokine receptors - the new frontier for AIDS research. Chem Biol. 1996;3:603-9.
    40. Nagasawa T, Kikutani H, Kishimoto T. Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc Natl Acad Sci U S A. 1994;91:2305-2309.
    41. Tashiro K, Tada H, Heilker R, et al. Signal aequence trap: a cloning strategy for secreted proteins and type Ⅰ membrane proteins. Science. 1993;261:600-603.
    42. Shirozu M, Nakano T, Inazawa J, et al. Structure and chromosomal localization of the human stromal cell-derived factor (SDF1) gene. Genomics. 1995;28:495-500.
    43. Imai K, Kobayashi M, Wang J, et al. Selective secretion, of chemoattractants for haemopoietic progenitor cells by bone marrow endothelial cells: a possible role homing of haemopoietic progenitor cells to bone marrow. Br J Haematol. 1999;106:905-911
    44. Nagasawa T, HIROTA s, Tachibana K, et al. Defects of B-cell lymphopoiesis and bone marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature, 1996;382:635-638.
    45. Ma Q, Jones D, Borghesani PR, et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in cxcr4 and SDF-1 deficient mice. Proc Acad
    
    Sci USA, 1998;95:9448-9453.
    46. Zou YR, Kottmann AH, Kuroda M, et al. Function of the chemokine receptor CXCR4 in hematopoiesis and in cerebellar development. Nature, 1998;:393:595-599
    47. Gleichmann M, et al. Eur J Neurosci, 2001;12:1857
    48. Peled A, Hardan I, Trakhtenbrot L, Migratory behavior of leukemic cells from acute myeloid leukemia patients. Leukemia 2002 Apr; 16(4):650-7
    49. Bleul CC, Fuhlbrigge R, Casanovas JM, et al. A highly efficacious lymphocyte chemoattractant stromal cell-derived factor 1 (SDF-1). J Exp Med. 1996;184:1101-1109.
    50. Oberlin E, Amara A. Bachelerie F, et al. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature. 1996;382:833-835.
    51. Kollet O, Spiegel A, Peled A, et al. Rapid and efficient homing of human CD341CD382/lowCXCR41 stem and progenitor cells to the bone marrow and spleen of NOD/SCID and NOD/SCID/B2mnull mice, 1996;382:833-835
    52. Berson JF, Long D, Doranz BJ, et al. A seven-transmembrane domain receptor involved in fusion and entry of T-cell-tropic human immunodeficiency virus type 1 strains. J Virol. 1996;70:6288-95.
    53. Aiuti A, Webb IJ, Bleul C, et al. The chemokine SDF-1 is a chemoattractant for human CD34+ progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to explain the peripheral blood. J Exp Med. 1997;185:111-120.
    54. Wang JF. Liu ZY, Groopman JE. The α-chemokine receptor CXCR4 is expressed on the megakaryocytic lineage from progenitor to platelets and modulates migration and adhesion. Blood, 1998;92:756-764.
    55. Hoshino Y. Tse DB, Rochford G, et al. HIV co-receptors as targets for antiviral therapy. Curr Top Med Chem. 2004;4:883-93.
    56. D'Apuzzo M, Rolink A,Loetscher M,et al.The chemokine sdf-1,stromal cell-derived factor 1,attracts early stage B cell precursors via the chemokine receptor CXCR4.Eur J Immunol,1997;27:1788-1793.
    
    
    57. Wright DE, Bowman EP, Wagers AJ, et al. Hematopoietic stem cells are uniquely selective in their migratory response to chemokines. J Exp Med. 2002; 195:1145-1154.
    58. Mohle R, Bautz F, Malcolm AS. The chemokine receptor CXCR4 is expressed on CD34+ hematopotietic progenitors and leukemic cells and mediates transendothelial migration induced by stromalcell-derived factor-1. Blood. 1998;91:4523-4530
    59. Lataillade JJ, Clay D, Dupuy C, et al. Chemokine SDF-1 enhances circulating CD34(+) cell proliferation in synergy with cytokines: possible role in progenitor survival. Blood. 2000 Feb 1;95(3):756-68.
    60. Devine SM, Flomenberg N, Vesole DH, et al. Rapid mobilization of CD34+ cells following administration of the CXCR4 antagonist AMD3100 to patients with multiple myeloma and non-Hodgkin's lymphoma. J Clin Oncol. 2004 Mar 15;22(6):1095-102.
    61. Liles WC, Broxmeyer HE, Rodger E, et al. Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood. 2003;102:2728-30.
    62. Yong K, Fahey A, Reeve L, et al. Cord blood progenitor cells have greater transendothelial migratory activity and increased responses to SDF-1 and MIP-3beta compared with mobilized adult progenitor cells. Br J Haematol. 1999;107:441-9.
    63. Peled A, Kollet O, Ponomaryov T, et al. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood. 2000;95:3289-96.
    64. Avigdor A, Goichberg P, Shivtiel S, et al. CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. Blood. 2004;103:2981-9.
    65. Lataillade JJ, Clay D, Dupuy C, et al. Chemokine SDF-1 enhances circulating CD34(+) cell proliferation in synergy with cytokines: possible role in progenitor survival. Blood. 2000;95(3):756-68.
    66. Voermans C, van Heese WP, de Jong I, Stromal cell-derived factor 1 regulates primitive hematopoiesis by suppressing apoptosis and by promoting G(0)/G(1)
    
    transition in CD34(+) cells: evidence for an autocrine/paracrine mechanism. Blood 2002;99(4):1117-29
    67. Lataillade JJ, Clay D, Bourin P, Stromal-derived factor 1 inhibits the cycling of very primitive human hematopoietic cells in vitro and in NOD/SCID mice. Blood 2002;99(3):792-9.
    68. Gazitt Y, Akay C. Mobilization of myeloma cells involves SDF-1/CXCR4 signaling and downregulation of VLA-4. Exp Cell Res. 2004;294(2):571-80.
    69. Nagasawa T, HIROTA s, Tachibana K, et al. Defects of B-cell lymphopoiesis and bone marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature, 1996;382:635-638.
    70. Hernandez PA, Gorlin RJ, Lukens JN, et al. Klotman ME, Diaz GA. Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet. 2003;34:70-74.
    71. Tavor S, Petit I, Porozov S, et al. CXCR4 regulates migration and development of human acute myelogenous leukemia stem cells in transplanted NOD/SCID mice. Cancer Res. 2004;64:2817-24.
    72, Voermans C, van Heese WP, de Jon I, et al. Migratory behavior of leukemic cells from acute myeloid leukemia patients. Leukemia. 2002 Apr;16(4):650-7.
    73. Crazzolara R, Kreczy A, Mann G, et al. High expression of the chemokine receptor CXCR4 predicts extramedullary organ infiltration in childhood acute lymphoblastic leukaemia. Br J Haematol. 2001;115:545-553.
    74. Sirard c, Immature leukemic CD34+CXCR4+ cells from CML patients have lower integrin-dependent migration and adhesion in response to the chemokine SDF-1. Stem Cells 2002;20(3):259-66
    75. Ptasznik A, Urbanowska E, Chinta S, et al. Crosstalk between BCR/ABL oncoprotein and CXCR4 signaling through a Src family kinase in human leukemia cells. J Exp Med. 2002;196:667-78.
    76. Peled A, Hardan I, Trakhtenbrot L, et al. Immature leukemic CD34+CXCR4+ cells from CML patients have lower integrin-dependent migration and adhesion in response to the chemokine SDF-1. Stem Cells. 2002;20:259-66.
    
    
    77. Cashman J, Clark-Lewis I, Eaves A, Yong KL, Fahey A, Pizzey A, Linch DC. Influence of cell cycling and cell division on transendothelial migration of CD34+ cells. Br J Haematol. 2002;119(2):500-9.
    78. Durig J, Rosenthal, C, Elmaagacli A, et al. Biological effects of stroma-derived factor-1 alpha on normal and CML CD34+ haemopoietic cells. Leukemia. 2000;14:1652-60.
    79. Cashman J, Clark-lews I, Eaves A, et al. Stromal-derived factor 1 inhibits the cycling of very primitive human hematopoietic cells in vitro and in NOD/SCID mice. Blood. 2002;99:792-9.
    80. Mohle R, Failenschmid C, Bautz F, et al. Overexpression of the chemokine receptor CXCR4 in B cell chronic lymphocytic leukemia is associated with increased functional response to stromal cell-derived factor-1 (SDF-1). Leukemia. 1999;13:1954-9.
    81. Burger JA, Tsukara N, Burger M, et al. Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell-derived factor-1. Blood. 2000;96:2655-63.
    82. Bradstock KF, Makrynikola V, Bianchi A, et al. Effects of the chemokine stromal cell-derived factor-1 on the migration and localization of precursor-B acute lymphoblastic leukemia cells within bone marrow stromal layers. Leukemia. 2000;14:882-8.
    83. Sanz-Rodriguez F, Hidalgo A, Teixido J. Chemokine stromal cell-derived factor-1 modulates VLA-4 integrin-mediated multiple myeloma cell adhesion to CS-1/fibronectin and VCAM-1. Blood, 2001; 97:346-351.
    84. Brainard DM, Tharp WG, Granado E, et al. Migration of antigen-specific T cells away from CXCR4-binding human immunodeficiency virus type 1 gp120. J Virol. 2004;78:5184-93.
    85. Ara T, Itoi M, Kawabata K, et al. A role of CXC chemokine ligand 12/stromal cell-derived factor-1/pre-B cell growth stimulating factor and its receptor CXCR4 in fetal and adult T cell development in vivo. J Immunol. 2003;170:4649-55.
    86. Yonezawa A. Morita R, Takaori-kondo, A, et al. Natural alpha interferon-producing
    
    cells respond to human immunodeficiency virus type 1 with alpha interferon production and maturation into dendritic cells. J Virol. 2003;77:3777-84.
    87. Kwa D, van Rjj RP, Boeser-Nunnink B, et al. Association between an interleukin-4 promoter polymorphism and the acquisition of CXCR4 using HIV-1 variants. AIDS. 2003;17:981-5.
    88. Hailu A, Pater JM, Kager PA, Increased expression of HIV co-receptor CXCR4 on CD4+ T-cells in patients with active visceral leishmaniasis. Scand J Infect Dis. 2004;36:56-8.
    89. Nanki T, Lipsky PE. Cutting edge: stromal cell-derived factor-1 is a costimulator for CD4+ T cell activation. J Immunol. 2000;164:5010-4.
    90. Yonezawa A, Hori T, Sakadai H, et al. SDF-1 has costimulatory effects on human T cells: possible involvement of MAPK (ERK2) activation. Microbiol Immunol. 2000;44:135-41.
    91. Nanki T, Hayashida K, El-Gabalawy HS, et al. Stromal cell-derived factor-1-CXC chemokine receptor 4 interactions play a central role in CD4+ T cell accumulation in rheumatoid arthritis synovium. J Immunol. 2000;165:6590-8.
    92. Dunussi-Joannopoulos K, Zuberek K, Runyon K, et al. Efficacious immunomodulatory activity of the chemokine stromal cell-derived factor 1 (SDF-1): local secretion of SDF-1 at the tumor site serves as T-cell chemoattractant and mediates T-cell-dependent antitumor responses. Blood. 2002;100:1551-8.
    93. Hutloff A, Dittrich AM, Beier KC, Eljaschewitsch B, Kraft R, Anagnostopoulos I, Kroczek RA. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature, 1999, 397;(6716):263-266
    94. Yoshinaga SK, Whoriskey JS, Khare SD, Sarmiento U, Guo J, Horan T, Shih G et al. T-cell co-stimulation through B7RP-1 and ICOS. Nature,1999, 402 (6736): 827-832
    95. Coyle AJ, Lehar S, Lloyd C, Tian J, Delaney T, Manning S, Nguyen T et al. The CD28-related molecule ICOS is required for effective T cell-dependent immune responses. Immunity, 2000, 13 (1):95-105
    96. Tezuka K, Tsuji T, Hirano D, et al. Identification and characterization of rat AILIM/ICOS, a novel T-cell costimulatory molecule, related to the CD28/CTLA4
    
    family. Biochem Biophys Res Commun, 2000, 276(1):335
    97. Mages HW, Hutloff A, Heuck C, et al. Molecular cloning and characterization of murine ICOS and identification of B7h as ICOS ligand. Eur J Immunol, 2000, 30(4):1040-7.
    98. Ling V, Wu PW, Finnerty HF, et al. Assembly and annotation of human chromosome 2q33 sequence containing the CD28, CTLA4, and ICOS gene cluster: analysis by computational, comparative, and microarray approaches. Genomics, 2001;78:155.
    99. Peach RJ, et al. Complementarity determing region(CDR1)-and CDR3-analogous regions in CTLA-4 and CD28 determine the binding to B7-1. J ExpMed, 1994, 180:2049.
    100. Aicher A, Hayden LM, Brady WA, et al. Characterization of human inducible costimulator ligand expression and function. J. Immunol, 2000;164:4689-4696.
    101. Swallow MM, Wallin JJ, Sha WC. B7h, a novel costimulatory homolog of B7.1 and B7.2, is induced by TNFalpha. Immunity, 1999;11: 423-432.
    102. Ling V, Wu PW, Finnerty HF, Bean KM, Spaulding V, Fouser LA, Leonard JP et al. Cutting edge: identification of GL50, a novel B7-like protein that functionally binds to ICOS receptor. J. Immunol, 2000;164: 1653-1657.
    103. Brodie D, Collins AV, Iaboni A, Fermelly JA, Sparks LM, Xu XN, van der Merwe PA et al. LICOS, a primordial costimulatory ligand? Curr Biol, 2000;10:333-6.
    104. Yoshinaga SK, Zhang M, Pistillo J, Horan T, Khare SD, Miner K, Sonnenberg M et al. Characterization of a new human B7-related protein: B7RP-1 is the ligand to the co-stimulatory protein ICOS. Int. Immunol, 2000;12:1439-1447.
    105. Wang S, Zhu G, Chapoval AI, et al. Costimulation of T cells by B7-H2, a B7-like molecule that binds ICOS. Blood, 2000;96:2808-2813.
    106. Aicher A, Hayden-Ledbetter M, Brady WA. Pezzutto A, Richter G, Magaletti D, Buckwalter S et al. Characterization of human inducible costimulator ligand expression and function. J. Immunol, 2000;164: 4689-4696.
    107. T Tamatani T, Tezuka K, Hanzawa-Higuchi N. AILIM/ICOS' a novel lymphocyte adhesion molecule. Int Immunol 2000;12:51-5.
    108. McAdam AJ, Chang TT, Lumelsky AE, Greenfield EA, Boussiotis VA, Duke-Cohan
    
    JS, Chernova T et al. Mouse inducible costimulatory molecule (ICOS) expression is enhanced by CD28 costimulation and regulates differentiation of CD4+ T cells. J. Immunol, 2000;165:5035-5040.
    109. Hutloff H, Mages HW, Witsch E, et al. Identification of ICOS-ligand and analysis of the interdependence of the CD28 and ICOS pathways(个人通讯)
    110. Villegas EN, Lieberman LA, Marson N, et al. A role for inducible costimulator protein in the CD28-independent mechanism of resistance to Toxoplasma gondii. J Immunol, 2002; 169:937.
    111. Riley JL, Blair PJ, Musser JT, et al. ICOS costimulation requires IL-2 and can be prevented by CTLA-4 engagement. J Immunol, 2001;166:4943.
    112. Ogasawara K, Yoshinaga SK. Lanier LL. Inducible costimulator costimulates cytotoxic activity and IFN-gamma production in activated murine NK cells. J Immunol,2002;169:3676-85.
    113. Ling V, Wu PW, Finnerty HF, et al. Differential Expression of Inducible Costimulator-Ligand Splice Variants: Lymphoid Regulation of Mouse GL50-B and Human GL50 Molecules.J Immunol, 2001,166:7300-7308.
    114. Chen L, Ashe S, Brady WA et al. Costimulation of antitumor immunity by the B7 counte receptor for the T lymphocyte molecules CD28 and CTLA-4. Cell, 1992;71:1093-1102.
    115. Townsend SE, Allison JP. Tumor rejection after direct costimulation of CD8 T cells by B7-transfected melanoma cells. Science. 1993;259:368-370.
    116. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science, 1996;271: 1734-1736.
    117. Xiang J. Expression of co-stimulatory 4-1BB ligand induces significant tumor regression and protective immunity. Cancer Biother Radiopharm, 1999;14:353-361.
    118. Weinberg AD, Rivera MM, Prell R, Morris A et al. Engagement of the OX-40 receptor in vivo enhances antitumor immunity. J Immunol, 2000;30:1040-1047.
    119. Liu X, Bai XF, Wen J, Gao JX, Liu J, Lu P, Wang Y, Zheng P, Liu Y. B7H costimulates clonal expansion of, and cognate destruction of tumor cells by, CDS(+) T lymphocytes in vivo. J Exp Med, 2001;194:1339-1348.
    
    
    120. Wallin JJ, Liang L, Bakardjiev A, Sha WC. Enhancement of CD8+ T cell responses by ICOS/B7h costimulation. J Immunol, 2001;167:132-139.
    121. Ara G, Baher A, Storm N, Horan T, Baikalov C, Brisan E, Camacho R et al. Potent activity of soluble B7RP-1-Fc in therapy of murine tumors in syngeneic hosts. Int J Cancer, 2003:103:501-507.
    122. Klein, B., Zhang, X. G., Lu, Z. Y. & Bataille, R. Interleukin-6 in human multiple myeloma. Blood. 1995;85:863-872.
    123. Portier, M., Rajzbaum, G, Zhang, X, G., et al. In vivo interleukin 6 gene expression in the tumoral environment in multiple myeloma. Eur. J. Immunol. 1991;21:1759-1762.
    124. Chauhan, D., Uchiyama, H., AkbaraIi, Y., Urashima, M., Yamamoto, K., Libermann, T. A. & Anderson, K. C. Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kappa B. Blood. 1996;87:1104-1112.
    125. Kishimoto, T., Akira, S., Narazaki, M. & Taga, T. Interleukin-6 family of cytokines and gp130 Blood. 1995;86:1243-1254.
    126. Ferlin-Bezombes, M., Jourdan, M., Liautard, J., Brochier, J., Rossi, J. F. & Klein, B. IFN-alpha is a survival factor for human myeloma cells and reduces dexamethasone-induced apoptosis. J Immunol. 1998; 161:2692-2699.
    127. Ferlin, M., Noraz, N., Hertogh, C., Brochier, J., Taylor, N. & Klein, B. Insulin-like growth factor induces the survival and proliferation of myeloma cells through an interleukin-6-independent transduction pathway. Br J Haematol. 2000; 111:626-34.
    128. Balabanian K. Foussat A, Bouchet-Delbos L, et al. Interleukin-10 modulates the sensitivity of peritoneal B lymphocytes to chemokines with opposite effects on stromal cell-derived factor-1 and B-lymphocyte chemoattractant. Blood, 2002;99:427-437

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700