1.MC3T3-E1细胞分化过程中DNA甲基化的研究 2.Taurine抑制破骨细胞分化的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:构建MC3T3-E1细胞增殖期、基质分泌期、矿化期三个阶段甲基化表达差异谱并进行初步分析。验证甲基化芯片结果,探讨DNA甲基化对基因mRNA表达的影响,以及去甲基干预后基因mRNA表达情况的变化。
     方法:MC3T3-E1细胞使用含抗坏血酸和p-甘油磷酸钠(β-GP)的培基培养,分别在细胞培养的0天、10天、24天抽提RNA做逆转录,real-time PCR观察Ⅰ型胶原、骨钙素、骨桥蛋白、ALPmRNA表达情况。观察细胞形态变化,并行矿化结节染色。分别抽取培养0天、10天、24天的MC3T3-E1细胞gDNA,进行甲基化芯片杂交,获得三个不同分化阶段的DNA甲基化谱。挑选出细胞增殖期、基质分泌期、矿化期三个阶段高甲基化或低甲基化基因,获得DNA甲基化水平存在差异的基因分组。对差异基因进行染色体分布分析以及染色体定位,使用DAVID在线软件分别对各个分化阶段甲基化状态不同的基因进行功能分类。使用MassARRAY DNA甲基化定量分析技术对甲基化芯片中有差异的若干个基因进行验证。对部分基因进行real-time PCR,检测DNA甲基化对基因mRNA表达的影响。使用去甲基化药物RG108干预细胞后再进行MTT试验以及real-time PCR,与对照组相比较观察DNA甲基化水平改变对细胞增殖和基因mRNA表达情况的影响。
     结果:1.使用含抗坏血酸和β-GP的诱导培基培养MC3T3-E1细胞,]eal-timePCR显示Ⅰ型胶原mRNA在培养24天时较培养0天和10天表达量有显著增加;ALP培养第10天表达量最高;骨钙素、骨桥蛋白mRNA表达随着培养时间增加递增明显。细胞形态观察显示诱导培基培养0天时MC3T3-E1细胞形态近似梭形;培养10天时MC3T3-E1细胞近似“铺石路”样改变;培养22天时MC3T3-E1细胞重叠生长,并自发形成汇聚的细胞团,培养24天,Von Kossa染色可见典型矿化结节产生。根据ALP、骨钙素、骨桥蛋白等基因表达的变化将MC3T3-E1细胞的分化分为细胞增殖期(0天)、基质分泌期(10天)、矿化期(24天)三个阶段;2.提取诱导培基培养0天、10天、24天的MC3T3-E1细胞gDNA,进行甲基化芯片杂交。获得三个不同分化阶段的DNA甲基化谱。增殖期高甲基化基因50个,低甲基化基因93个,基质分泌期高甲基化基因96个,低甲基化基因43个,矿化期高甲基化基因52个,低甲基化基因147个。这些差异甲基化基因主要涉及程序性细胞死亡、转录调控、代谢、转运以及信号转导等广泛的生物学过程。MassARRAY DNA甲基化定量分析结果与甲基化芯片结果吻合。基因启动子区域DNA甲基化抑制Camk1d, Bmpr1b, Fbln7, Itga3, Pias2, Pcdha12, Mdm4, Tmem54 mRNA的表达,去甲基化药物RG108可促进细胞增殖,干预细胞后,DNA高甲基化基因mRNA表达明显增高。
     结论:培养0天、10天、24天的MC3T3-E1细胞可以代表其增殖期、基质分泌期、矿化期三个阶段。对此三个阶段细胞进行gDNA甲基化芯片杂交,获得了三个不同分化阶段的DNA甲基化谱。差异甲基化基因涉及广泛的生物学过程。基因启动子区域DNA甲基化负性调控成骨相关基因表达,去甲基化药物RG108可促进细胞增殖,促进DNA高甲基化基因的表达。
     目的:Taurine广泛分布于哺乳动物血浆以及组织中,是哺乳动物体内中最重要的游离beta-氨基酸。我们之前的研究发现Taurine可抑制破骨细胞的分化,但具体机制尚不十分清楚。本研究以成骨细胞与前破骨细胞共培养模型为研究对象,旨在探讨Taurine是否通过影响成骨细胞OPG与RANKL的表达来抑制破骨细胞的分化。
     方法:利用24小时内新生小鼠颅骨和6-8周龄小鼠四肢长骨分别分离,获得成骨细胞和骨髓细胞,将成骨细胞与骨髓细胞进行共培养,同时给予不同浓度Taurine干预。共培养6天后进行破骨细胞抗酒石酸酸性磷酸酶(TRACP)染色鉴定。同时采用real-time PCR检测Taurine对成骨细胞OPG和RANKL表达的影响。
     结果:Taurine可抑制成骨细胞/骨髓细胞共培养诱导的破骨细胞分化,且与浓度相关。然而Taurine不影响成骨细胞OPG和RANKL的表达。
     结论:Taurine可浓度依赖性抑制成骨细胞/骨髓细胞共培养诱导的破骨细胞分化,此作用与成骨细胞OPG和RANKL的表达无关。
     目的:我们之前的研究发现单核细胞系RAW264.7诱导的破骨细胞表达功能性TAUT (taurine transporter),并且Taurine可抑制其分化。但二者之间是否相关尚不清楚,在其他来源的破骨细胞的情况也尚不了解。本研究旨在探讨M-CSF和RANKL诱导骨髓来源巨噬细胞所获得的破骨细胞是否同样表达TAUT,其分化是否也可被Taurine抑制,进一步阻断TAUT后Taurine对破骨细胞的作用是否仍存在。
     方法:利用M-CSF和RANKL诱导骨髓来源巨噬细胞获得破骨细胞同时予不同浓度Taurine干预,TRACP染色计数破骨细胞鉴定分化情况。提取骨髓巨噬细胞来源破骨细胞的RNA,进行RT-PCR,检测TAUT mRNA在破骨细胞的表达情况。使用免疫细胞化学方法检测TAUT蛋白的表达。TAUT siRNA干扰RAW264.7细胞,Western blot检测干扰后TAUT蛋白合成的情况。同时[3H]taurine摄取实验评估干扰后TAUT蛋白的功能。予Taurine干预TAUTsiRNA干扰组和对照组,TRACP染色并计数破骨细胞再次检测Taurine对破骨细胞分化的作用。
     结果:M-CSF和RANKL诱导骨髓来源巨噬细胞获得破骨细胞中,有TAUT mRNA以及TAUT蛋白的表达。Taurine干预可显著抑制该来源破骨细胞的分化。siRNA干扰TAUT后,TAUT蛋白表达及功能均明显下降,并且Taurine失去对破骨细胞分化的抑制作用。
     结论:M-CSF、RANKL诱导骨髓来源巨噬细胞获得的破骨细胞有功能性TAUT表达,Taurine可抑制其分化。阻断TAUT表达后,Taurine失去对破骨细胞分化的抑制作用。
Objective:Construction of the methylation profile of MC3T3-E1 cell line during it's proliferation, extracellular matrix maturation and mineralization stage. Analysis of the effect of mRNA expression caused by DNA methylation and demethylation.
     Methods:MC3T3-E1 cell line was cultured with medium contain ascorbic acid and (3-Glycerophosphate disodium. The mRNA expression of type I collagen (Collal), osteocalcin(Ocn), osteopontin(Opn), alkaline phosphatase (ALP) after cultured for 0 day,10day,24day were validated by real-time PCR. The morphology of cell was observed and the characteristic mineralized node staining was performed. gDNA of MC3T3-E1 cell line after cultured for 0 day, lOday,24day were extracted, and methylation microarray was performed to obtain the methylation profile of the three stages. Hyper-and hypo-methylated genes were chosen for stage-differential expression analysis. Differentially expressed genes were counted according to the chromosome distribution. By using DAVID online gene function and classification tool, the differentially expressed genes were analyzed for gene function classification and annotation. Validation of the profile result with the DNA methylation quantitative analysis of MassARRAY technology were carried out. The relationship between DNA methylation and gene expression is further confirmed with Real-time PCR for the differentially expressed genes. The DNA methyltransferase inhibitor RG108 was applied to intervene the MC3T3-E1 of proliferation stage, MTT and Real-time PCR of the differentially expressed genes were followed, and control group(with out RG108) were also carried out to validate its potential relationship.
     Result:
     1.The Real-time PCR result showed Colla1 expression of day 24 significantly increased compared to day 0 and day 10 after cultured with medium contain ascorbic acid,β-Glycerophosphate disodium of MC3T3-E1 cell line. The highest ALP expression was examined during day 10.The expression of Opn and Ocn is significantly increased in time series. The morphology of MC3T3-E1 in day 0 showed its spindle-shape whereas in day 10 it showed the "pavement stone" characteristics. After cultured for 22 days the cell grew to form multiple layers. Typical mineralized node could be seen with Von Kossa Staining after day 24. The differentiation stage of MC3T3-E1 could be classified as proliferation stage(day 0), extracellular matrix maturation stage (day 10) and mineralization stage(day 24) based on the expression of Colla1, ALP, Ocn and Opn.
     2. gDNA of the MC3T3-E1 of 3 stages were extracted to perform DNA methylation microarray profile. The hyper-methylated genes of proliferation stage, extracellular matrix maturation stage and mineralization stage counted 50,96 and 52, respectively. The hypo-methylated genes of the 3 stage counted 93,43, and 147, respectively. These differentially expressed genes were mainly involved in biological processes such as cell death, transcription regulation, metabolism, transport and signal transduction. Camkld, Bmprlb, Fbln7, Itga3, Pias2, Pcdhal2, Mdm4, Tmem54 mRNA expression were negatively correlated with methylation statue. Under the intervention of DNA methyltransferase inhibitor RG108, the hypermethylated genes expression were significantly upregulated.
     Conclusion:Cultured MC3T3-E1 cell line in day 0, day 10 and day 24 could represent the stage of proliferation, extracellular matrix maturation and mineralization stage, respectively. DNA methylation microarray captured the DNA methylation profile of the 3 stages. Analysis of the profiles showed the differentially expressed hyper-and hypo-methylated genes are involved in board range of biological process and function. During the differentiation process of MC3T3-E1 cell line, The methylation of promoter region caused down-regulation of the osteogenesis-related gene. RG108, the DNA methyltransferase inhibitor, could promote the proliferation of MC3T3-E1 cell line and upregulate the expression of DNA hypermethylated genes.
     Objective:Taurine is widely distributed in mammalian plasma and tissues, it is the most important free beta-amino acids in mammals. Our previous studies have found that Taurine could inhibit osteoclastogenesis, but the exact mechanism is still unknown. In this study, osteoblasts and bone marrow cells were co-cultured, in order to investigate whether Taurine inhibits osteoclastogenesis by affecting the expression of OPG and RANKL in osteoblasts.
     Methods:Skull of 24 hour newborn mouse and long bone of 6-8week aged mouse were isolated for osteoblast and bone marrow cell, respectively.The osteoblast and bone marrow cells were then co-cultured with different concentrations of Taurine for 6 days TRACP staining were performed for validation and counting of the osteoclasts. The expression of OPG and RANKL in osteoblast were then validated by real-time PCR
     Results:Taurine dose-relatively inhibited osteoclastogenesis in co-culture of osteoblasts and bone marrow cells, but Taurine showed no influential effect to the expression of OPG and RANKL in osteoblasts.
     Conclusion:Taurine inhibits osteoclastogenesis in a dose-dependent manner in co-culture of osteoblast and bone marrow cell. This inhibitory effect had no relationship with respect of OPG and RANKL in osteoblast.
     Objective:Our previous study found that RAW264.7 monocyte cell line expressed functional TAUT(taurine transporter), and Taurine could inhibit its differentiation. However, the relevance between the two is not clear. In this study, mature osteoclasts were obtained from M-CSF and RANKL induced bone marrow-derived macrophages, TAUT mRNA and Protein expression was measured by RT-PCR and immunocytochemistry. TAUT was blocked and then measured the Taurine effect on osteoclasts.
     Methods:Mature osteoclasts were obtained from M-CSF and RANKL induced bone marrow-derived macrophages. TAUT mRNA and Protein expression was measured by RT-PCR and Immunocytochemistry. RAW264.7 is transfected with siRNA of TAUT. TAUT Protein expression was measured by western blot and TAUT function with or without siRNA interference were then measured by [3H] taurine uptake examination. TRACP staining were applied for counting the number of osteoclasts.
     Results:M-CSF and RANKL induced bone marrow-derived macrophages expressed TAUT mRNA and TAUT protein. Taurine intervention could significantly inhibit osteoclastogenes. while TAUT siRNA relieved this effect.
     Conclusion:Taurine played important role in bone homeostasis by inhibiting osteoclastogenesis directly through TAUT. Taurine lost the ability to inhibit osteoclastogenesis when TAUT expression was blocked.
引文
[1]Komori T, H Yagi, S Nomura, et al. Targeted disruption of Cbfal results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell, 1997,89(5):755-64.
    [2]Otto F, A P Thornell, T Crompton, et al. Cbfal, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell,1997,89(5):765-71.
    [3]de Crombrugghe B, V Lefebvre, R R Behringer, et al. Transcriptional mechanisms of chondrocyte differentiatioN Matrix biology:journal of the International Society for Matrix Biology,2000,19(5):389-94.
    [4]Tontonoz P B M Spiegelman, Fat and beyond:the diverse biology of PPARgamma. Annual review of biochemistry,2008,77:289-312.
    [5]Tapscott S J, The circuitry of a master switch:Myod and the regulation of skeletal muscle gene transcription. Development (Cambridge, England),2005, 132(12):2685-95.
    [6]Sabatakos G, N A Sims, J Chen, et al. Overexpression of DeltaFosB transcription factor(s) increases bone formation and inhibits adipogenesis. Nature medicine,2000, 6(9):985-90.
    [7]Jochum W, J P David, C Elliott, et al. Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nature medicine,2000, 6(9):980-4.
    [8]Kato M, M S Patel, R Levasseur, et al. Cbfal-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. The Journal of cell biology,2002,157(2):303-14.
    [9]Nakashima K, X Zhou, G Kunkel, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell,2002,108(1):17-29.
    [10]Zhang C, K Cho, Y Huang, et al. Inhibition of Wnt signaling by the osteoblast-specific transcription factor Osterix. Proceedings of the National Academy of Sciences of the United States of America,2008,105(19):6936-41.
    [11]Yang X G Karsenty, ATF4, the osteoblast accumulation of which is determined post-translationally, can induce osteoblast-specific gene expression in non-osteoblastic cells. The Journal of biological chemistry,2004,279(45):47109-14.
    [12]Yang X, K Matsuda, P Bialek, et al. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry Syndrome. Cell,2004, 117(3):387-98.
    [13]Xiao G, D Jiang, C Ge, et al. Cooperative interactions between activating transcription factor 4 and Runx2/Cbfal stimulate osteoblast-specific osteocalcin gene expression. The Journal of biological chemistry,2005,280(35):30689-96.
    [14]Afzal F, J Pratap, K Ito, et al. Smad function and intranuclear targeting share a Runx2 motif required for osteogenic lineage induction and BMP2 responsive transcription. Journal of cellular physiology,2005,204(1):63-72.
    [15]Javed A, F Afzal, J-S Bae, et al. Specific residues of RUNX2 are obligatory for formation of BMP2-induced RUNX2-SMAD complex to promote osteoblast differentiation. Cells, tissues, organs,2009,189(1-4):133-7.
    [16]Bourgeois P, A L Bolcato-Bellemin, J M Danse, et al. The variable expressivity and incomplete penetrance of the twist-null heterozygous mouse phenotype resemble those of human Saethre-Chotzen syndrome. Human molecular genetics,1998, 7(6):945-57.
    [17]el Ghouzzi V, M Le Merrer, F Perrin-Schmitt, et al. Mutations of the TWIST gene in the Saethre-Chotzen syndrome. Nature genetics,1997,15(1):42-6.
    [18]Howard T D, W A Paznekas, E D Green, et al. Ortiz Garcia Mutations in TWIST, a basic helix-loop-helix transcription factor, in Saethre-Chotzen syndrome.1997,15.. 36-41.
    [19]McCabe L R, C Banerjee, R Kundu, et al. Developmental expression and activities of specific fos and jun proteins are functionally related to osteoblast maturation:role of Fra-2 and Jun D during differentiation. Endocrinology,1996,137(10):4398-408.
    [20]Grigoriadis A E, Z Q Wang, M G Cecchini, et al. c-Fos:a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science (New York, NY),1994,266(5184):443-8.
    [21]Wu M, E Hesse, F Morvan, et al. Zfp521 antagonizes Runx2, delays osteoblast differentiation in vitro, and promotes bone formation in vivo. Bone,2009, 44(4):528-36.
    [22]Nakamura N K Takenaga, Hypomethylation of the metastasis-associated S100A4 gene correlates with gene activation in human colon adenocarcinoma cell lines. Clinical & experimental metastasis,1998,16(5):471-9.
    [23]Akiyama Y, C Maesawa, S Ogasawara, et al. Cell-type-specific repression of the maspin gene is disrupted frequently by demethylation at the promoter region in gastric intestinal metaplasia and cancer cells. The American journal of pathology,2003, 163(5):1911-9.
    [24]Costello J F, Aberrant CpG-island methylation has a non-random and tumor-type-specific patterns. Nature Genet 2000, (25):132-138.
    [25]谢小虎,周文华,基因组印记与疾病研究进展.生命科学,2008,20(3):438-41
    [26]Lalande M, Imprints of disease at GNAS 1. J Clin Invest,2001,107(7):793-4.
    [27]Hayward B E, A Barlier, M Korbonits, et al. Imprinting of the G(s)alpha gene GNAS1 in the pathogenesis of acromegaly. The Journal of clinical investigation,2001, 107(6):31-6.
    [28]Liu J, J G Nealon L S Weinstein, Distinct patterns of abnormal GNAS imprinting in familial and sporadic pseudohypoparathyroidism type IB Human molecular genetics,2005,14(1):95-102.
    [29]Everett C M N W Wood, Trinucleotide repeats and neurodegenerative disease. Brain,2004,127:2385-2405.
    [30]Crawford D C, J M Acuna S L Sherman, FMR1 and the fragile X syndrome: human genome epidemiology review. Genet Med,2001,3:359-371.
    [31]Oberle I, F Rousseau, D Heitz, et al. Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome. Science (New York, NY),1991, 252(5009):1097-1102.
    [32]Richardson B, DNA methylation and autoimmune disease. Clinical immunology (Orlando, Fla.),2003,109(1):72-9.
    [33]Quddus J, K J Johnson, J Gavalchin, et al. Treating activated CD4+T cells with either of two distinct DNA methyltransferase inhibitors,5-azacytidine or procainamide, is sufficient to cause a lupus-like disease in syngeneic mice. The Journal of clinical investigation,1993,92(1):38-53.
    [34]Lu Q, Demethylation of ITGAL (CD 11 a) regulatory sequences in systemic lupus erythematosus. Arthritis Rheum,2003,46:1282-1291.
    [35]Oelke K, Q Lu, D Richardson, et al. Overexpression of CD70 and overstimulation of IgG synthesis by lupus T cells and T cells treated with DNA methylation inhibitors. Arthritis and rheumatism,2004,50(6):1850-60.
    [36]Hansen R S, C Wijmenga, P Luo, et al. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proceedings of the National Academy of Sciences of the United States of America,1999,96(25):14412-7.
    [37]Xu G L, T H Bestor, D Bourc'his, et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature,1999,402(6758):187-91.
    [38]Ryhanen S, A Pirskanen, T Jaaskelainen, et al. State of methylation of the human osteocalcin gene in bone-derived and other types of cells. J Cell Biochem,1997, 66(3):404-12.
    [39]Villagra A, J Gutierrez, R Paredes, et al. Reduced CpG methylation is associated with transcriptional activation of the bone-specific rat osteocalcin gene in osteoblasts. J Cell Biochem,2002,85(1):112-22.
    [40]Locklin R M, R O Oreffo J T Triffitt, Modulation of osteogenic differentiation in human skeletal cells in Vitro by 5-azacytidine. Cell Biol Int,1998,22(3):207-15.
    [41]Kitazawa S R Kitazawa, Epigenetic control of mouse receptor activator of NF-kappa B ligand gene expression. Biochem Biophys Res Commun,2002, 293(1):126-31.
    [42]Kitazawa R S Kitazawa, Methylation status of a single CpG locus 3 bases upstream of TATA-box of receptor activator of nuclear factor-kappaB ligand (RANKL) gene promoter modulates cell-and tissue-specific RANKL expression and osteoclastogenesis. Mol Endocrinol,2007,21(1):148-58.
    [43]Penolazzi L, E Lambertini, S Giordano, et al. Methylation analysis of the promoter F of estrogen receptor alpha gene:effects on the level of transcription on human osteoblastic cells. J Steroid Biochem Mol Biol,2004,91(1-2):1-9.
    [44]Lee J Y, Y M Lee, M J Kim, et al. Methylation of the mouse DIx5 and Osx gene promoters regulates cell type-specific gene expression. Mol Cells,2006,22(2):182-8.
    [45]Ohyama Y, T Kusada, T Yamasaki, et al. Extensive methylation of CpG island of CYP24 gene in osteoblastic ROS 17/2.8 cells. Nucleic Acids Res Suppl,2002, 2):249-50.
    [46]Kansara M, M Tsang, L Kodjabachian, et al. Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice. J Clin Invest,2009,119(4):837-51.
    [47]Kang M I, H S Kim, Y C Jung, et al. Transitional CpG methylation between promoters and retroelements of tissue-specific genes during human mesenchymal cell differentiation. J Cell Biochem,2007,102(1):224-39.
    [48]Li Y, G Meng Q N Guo, Changes in genomic imprinting and gene expression associated with transformation in a model of human osteosarcoma. Exp Mol Pathol, 2008,84(3):234-9.
    [49]Sadikovic B, M Yoshimoto, K Al-Romaih, et al. In vitro analysis of integrated global high-resolution DNA methylation profiling with genomic imbalance and gene expression in osteosarcoma. PLoS One,2008,3(7):e2834.
    [50]Al-Romaih K, B Sadikovic, M Yoshimoto, et al. Decitabine-induced demethylation of 5'CpG island in GADD45A leads to apoptosis in osteosarcoma cells. Neoplasia, 2008,10(5):471-80.
    [51]Sudo H, H A Kodama, Y Amagai, et al. In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. The Journal of cell biology,1983,96(1):191-8.
    [52]Nakatani Y, M Tsunoi, Y Hakeda, et al. Effects of parathyroid hormone on cAMP production and alkaline phosphatase activity in osteoblastic clone MC3T3-E1 cells. Biochem Biophys Res Commun,1984,123(3):894-8.
    [53]Hakeda Y, Y Nakatani, M Hiramatsu, et al. Inductive effects of prostaglandins on alkaline phosphatase in osteoblastic cells, clone MC3T3-E1. Journal of biochemistry, 1985,97(1):97-104.
    [54]Alford A I, S P Terkhorn, A B Reddy, et al. Thrombospondin-2 regulates matrix mineralization in MC3T3-E1 pre-osteoblasts. Bone,2010,46(2):464-71.
    [55]Lee Y C, C F Huang, M Murshed, et al. Src family kinase/abl inhibitor dasatinib suppresses proliferation and enhances differentiation of osteoblasts. Oncogene,2010, [Epub ahead of print]
    [56]Yang J Y, J Y Jung, S W Cho, et al. Chloride intracellular channel 1 regulates osteoblast differentiation. Bone,2009,45(6):1175-85.
    [57]Miwa M, O Kozawa, H Tokuda, et al. Effects of hypergravity on proliferation and differentiation of osteoblast-like cells. Bone Miner,1991,14(1):15-25.
    [58]Thrailkill K M, S R Siddhanti, J L Fowlkes, et al. Differentiation of MC3T3-E1 osteoblasts is associated with temporal changes in the expression of IGF-I and IGFBPs. Bone,1995,17(3):307-13.
    [59]Kasai T, K Bandow, H Suzuki, et al. Osteoblast differentiation is functionally associated with decreased AMP kinase activity. J Cell Physiol,2009,221 (3):740-9.
    [60]Yamasaki K H Hagiwara, Excess iron inhibits osteoblast metabolism. Toxicol Lett, 2009,191(2-3):211-5.
    [61]Kamon M, R Zhao K Sakamoto, Green tea polyphenol (-)-epigallocatechin gallate suppressed the differentiation of murine osteoblastic MC3T3-E1 cells. Cell Biol Int, 2010,34(1):109-16.
    [62]Usui Y, T Uematsu, T Uchihashi, et al. Inorganic Polyphosphate Induces Osteoblastic Differentiation. J Dent Res,2010, [Epub ahead of print]
    [63]Park S H, N X Nhiem, P V Kiem, et al. A new norlupane triterpene from the leaves of Acanthopanax koreanum increases the differentiation of osteoblastic MC3T3-E1 cells. Arch Pharm Res,2010,33(1):75-80.
    [64]Yen P H, P V Kiem, N X Nhiem, et al. A new monoterpene glycoside from the roots of Paeonia lactiflora increases the differentiation of osteoblastic MC3T3-E1 cells. Arch Pharm Res,2007,30(10):1179-85.
    [65]Oya K, Y Tanaka, Y Moriyama, et al. Differences in the bone differentiation properties of MC3T3-E1 cells on polished bulk and sputter-deposited titanium specimens. J Biomed Mater Res A,2010, [Epub ahead of print]
    [66]Hiura K, K Sumitani, T Kawata, et al. Mouse osteoblastic cells (MC3T3-E1) at different stages of differentiation have opposite effects on osteoclastic cell formation. Endocrinology,1991,128(3):1630-7.
    [67]Hitomi K, Y Torii N Tsukagoshi, Increase in the activity of alkaline phosphatase by L-ascorbic acid 2-phosphate in a human osteoblast cell line, HuO-3N1. J Nutr Sci Vitaminol (Tokyo),1992,38(6):535-44.
    [68]Choong P F, T J Martin K W Ng, Effects of ascorbic acid, calcitriol, and retinoic acid on the differentiation of preosteoblasts. J Orthop Res,1993, 11(5):638-47.
    [69]Torii Y, K Hitomi N Tsukagoshi, L-ascorbic acid 2-phosphate promotes osteoblastic differentiation of MC3T3-E1 mediated by accumulation of type I collagen. J Nutr Sci Vitaminol (Tokyo),1994,40(3):229-38.
    [70]Franceschi R T, B S Iyer Y Cui, Effects of ascorbic acid on collagen matrix formation and osteoblast differentiation in murine MC3T3-E1 cells. J Bone Miner Res, 1994,9(6):843-54.
    [71]Zambuzzi W F, C L Yano, A D Cavagis, et al. Ascorbate-induced osteoblast differentiation recruits distinct MMP-inhibitors:RECK and TIMP-2. Mol Cell Biochem,2009,322(1-2):143-50.
    [72]Choi K M, Y K Seo, H H Yoon, et al. Effect of ascorbic acid on bone marrow-derived mesenchymal stem cell proliferation and differentiation. J Biosci Bioeng,2008,105(6):586-94.
    [73]李玉彬谢利民,诱导MSCs向成骨细胞分化相关因素研究现状.现代生物医学进展,2009,9(17):3371-4.
    [74]Aubin J E, F Liu, L Malaval, et al. Osteoblast and chondroblast differentiation. Bone,1995,17(2 Suppl):77S-83S
    [75]Rodan G A M Noda, Gene expression in osteoblastic cells. Crit Rev Eukaryot Gene Expr,1991, 1(2):85-98.
    [76]孙贝娜,DNA甲基化检测方法的研究进展.生命科学仪器,2009,7:11-4.
    [77]Thu K L, E A Vucic, J Y Kennett, et al. Methylated DNA immunoprecipitation. J Vis Exp,2009,23:3791/935.
    [78]Vucic E A, I M Wilson, J M Campbell, et al. Methylation analysis by DNA immunoprecipitation (MeDIP). Methods Mol Biol,2009,556:141-53.
    [79]Sadikovic B, M Yoshimoto, K Al-Romaih, et al. In vitro analysis of integrated global high-resolution DNA methylation profiling with genomic imbalance and gene expression in osteosarcoma. PLoS One 2008,3(7):e2834.
    [80]Weber M, I Hellmann, M B Stadler, et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet, 2007,39(4):457-66.
    [81]Farthing C R, G Ficz, R K Ng, et al. Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes. PLoS Genet,2008,4(6):e1000116.
    [82]Irizarry R A, C Ladd-Acosta, B Wen, et al. The human colon cancer methylome shows similar hypo-and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet,2009,41(2):178-86.
    [83]Rozenberg J M, A Shlyakhtenko, K Glass, et al. All and only CpG containing sequences are enriched in promoters abundantly bound by RNA polymerase II in multiple tissues. BMC Genomics,2008,9:67.
    [84]Liu Y, Y Balaraman, G Wang, et al. Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation. Epigenetics,2009,4(7):500-11.
    [85]Ikegami K, J Ohgane, S Tanaka, et al. Interplay between DNA methylation, histone modification and chromatin remodeling in stem cells and during development. Int J Dev Biol,2009,53(2-3):203-14.
    [86]秦洁,郭新,桂耀庭等,胚胎干细胞分化过程中的表观遗传调控.生命科学,2007,19(3):316-20
    [87]Tomikawa J, K Fukatsu, S Tanaka, et al. DNA methylation-dependent epigenetic regulation of dimethylarginine dimethylaminohydrolase 2 gene in trophoblast cell lineage. The Journal of biological chemistry,2006,281(17):12163-9.
    [88]Hattori N, K Nishino, Y-G Ko, et al. Epigenetic control of mouse Oct-4 gene expression in embryonic stem cells and trophoblast stem cells. The Journal of biological chemistry,2004,279(17):17063-9.
    [89]Deb-Rinker P, D Ly, A Jezierski, et al. Sequential DNA methylation of the Nanog and Oct-4 upstream regions in human NT2 cells during neuronal differentiation. The Journal of biological chemistry,2005,280(8):6257-60.
    [90]Brueckner B, R Garcia Boy, P Siedlecki, et al. Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res,2005,65(14):6305-11.
    [91]Thomas R K, A C Baker, R M Debiasi, et al. High-throughput oncogene mutation profiling in human canceR Nat Genet,2007,39(3):347-51.
    [92]Coolen M W, A L Statham, M Gardiner-Garden, et al. Genomic profiling of CpG methylation and allelic specificity using quantitative high-throughput mass spectrometry:critical evaluation and improvements. Nucleic Acids Res,2007, 35(18):e119.
    [93]Heijmans B T, D Kremer, E W Tobi, et al. Heritable rather than age-related environmental and stochastic factors dominate variation in DNA methylation of the human IGF2/H19 locus. Hum Mol Genet,2007,16(5):547-54.
    [94]Raval A, S M Tanner, J C Byrd, et al. Downregulation of death-associated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia. Cell,2007,129(5):879-90.
    [95]Richter E, K Masuda, C Cook, et al. A role for DNA methylation in regulating the growth suppressor PMEPA1 gene in prostate cancer. Epigenetics,2007,2(2):100-9.
    [96]Hemberger M, W Dean W Reik, Epigenetic dynamics of stem cells and cell lineage commitment:digging Waddington's canaL Nat Rev Mol Cell Biol,2009,10(8):526-37.
    [97]Shuai K B Liu, Regulation of gene-activation pathways by PI AS proteins in the immune system. Nature reviews. Immunology,2005,5(8):593-605.
    [98]Rosas-Acosta G, M A Langereis, A Deyrieux, et al. Proteins of the PIAS family enhance the sumoylation of the papillomavirus E1 protein. Virology,2005, 331(1):190-203.
    [99]Schmidt D S Miiller, PIAS/SUMO:new partners in transcriptional regulation. Cellular and molecular life sciences:CMLS,2003,60(12):2561-74.
    [100]冼志勇 李.飞.,邹亚光等,PIAS2蛋白在不同病理分型的无精子症患者睾丸组织中的表达.第二军医大学学报,2009,30(7);780-2.
    [101]Hay R T, SUMO:a history of modification. Molecular cell,2005,18(1):1-12.
    [102]Johnson E S, Protein modification by SUMO Annual review of biochemistry, 2004,73(355-82.
    [103]Seeler J-S A Dejean, Nuclear and unclear functions of SUMO Nature reviews. Molecular cell biology,2003,4(9):690-9.
    [104]Gostissa M, A Hengstermann, V Fogal, et al. Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1. The EMBO journal,1999,18(22):6462-71.
    [105]Johnson E S G Blobel, Cell cycle-regulated attachment of the ubiquitin-related protein SUMO to the yeast septins. The Journal of cell biology,1999,147(5):981-94.
    [106]Poukka H, U Karvonen, O0A Janne, et al. Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1). Proceedings of the National Academy of Sciences of the United States of America,2000,97(26):14145-50.
    [107]Rodriguez M S, J M Desterro, S Lain, et al. SUMO-1 modification activates the transcriptional response of p53. The EMBO journal,1999,18(22):6455-61.
    [108]Takahashi K, T Taira, T Niki, et al. DJ-1 positively regulates the androgen receptor by impairing the binding of PIASx alpha to the receptor. The Journal of biological chemistry,2001,276(40):37556-63.
    [109]Liu B, J Liao, X Rao, et al. Inhibition of Statl-mediated gene activation by PIAS1. Proceedings of the National Academy of Sciences of the United States of America,1998,95(18):10626-31.
    [110]Chung C D, J Liao, B Liu, et al. Specific inhibition of Stat3 signal transduction by PIAS3. Science (New York, NY),1997,278(5344):1803-5.
    [111]Moilanen A M, U Karvonen, H Poukka, et al. A testis-specific androgen receptor coregulator that belongs to a novel family of nuclear proteins. The Journal of biological chemistry,1999,274(6):3700-4.
    [112]Kotaja N, S Aittomaki,0 Silvennoinen, et al. ARIP3 (androgen receptor-interacting protein 3) and other PIAS (protein inhibitor of activated STAT) proteins differ in their ability to modulate steroid receptor-dependent transcriptional activation. Molecular endocrinology (Baltimore, Md.),2000,14(12):1986-2000.
    [113]Tan J, S H Hall, K G Hamil, et al. Protein inhibitor of activated STAT-1 (signal transducer and activator of transcription-1) is a nuclear receptor coregulator expressed in human testis. Molecular endocrinology (Baltimore, Md.),2000,14(1):14-26.
    [114]Wu L, H Wu, L Ma, et al. Miz a novel zinc finger transcription factor that interacts with Msx2 and enhances its affinity for DNA Mech Dev,1997,65(1-2):3-17.
    [115]Liu B, S Mink, K A Wong, et al. PIAS1 selectively inhibits interferon-inducible genes and is important in innate immunity. Nature immunology, 2004,5(9):891-8.
    [116]Santti H, L Mikkonen, A Anand, et al. Disruption of the murine PIASx gene results in reduced testis weight. Journal of molecular endocrinology,2005, 34(3):645-54.
    [117]Ali M M, T Yoshizawa, O Ishibashi, et al. PIASxbeta is a key regulator of osterix transcriptional activity and matrix mineralization in osteoblasts. J Cell Sci, 2007,120(Pt 15):2565-73.
    [118]Danen E H A Sonnenberg, Integrins in regulation of tissue development and function. J Pathol,2003,201(4):632-41.
    [119]Stupack D G D A Cheresh, Get a ligand, get a life:integrins, signaling and cell survivaL Journal of cell science,2002,115(Pt 19):3729-38.
    [120]Giancotti F G E Ruoslahti, Integrin signaling. Science (New York, NY), 1999,285(5430):1028-32.
    [121]Varis A, M Wolf, O Monni, et al. Targets of gene amplification and overexpression at 17q in gastric canceR Cancer Res,2002,62(9):2625-9.
    [122]Hourihan R N, G C O'Sullivan J G Morgan, Transcriptional gene expression profiles of oesophageal adenocarcinoma and normal oesophageal tissues. Anticancer Res,2003,23(1A):161-5.
    [123]Kurokawa A, M Nagata, N Kitamura, et al. Diagnostic value of integrin alpha3, beta4, and beta5 gene expression levels for the clinical outcome of tongue squamous cell carcinoma. Cancer,2008,112(6):1272-81.
    [124]Boelens M C, A van den Berg, I Vogelzang, et al. Differential expression and distribution of epithelial adhesion molecules in non-small cell lung cancer and normal bronchus. J Clin Pathol,2007,60(6):608-14.
    [125]余希杰,杨志明,马骏荣,成骨细胞的细胞社会学特性.中国修复重建外科杂志,1998年,12(6):350-4
    [126]Sinha R K R S Tuan, Regulation of human osteoblast integrin expression by orthopedic implant materials. Bone,1996,18(5):451-7.
    [127]De Arcangelis A, M Mark, J Kreidberg, et al. Synergistic activities of alpha3 and alpha6 integrins are required during apical ectodermal ridge formation and organogenesis in the mouse. Development (Cambridge, England),1999, 126(17):3957-68.
    [128]de Vega S, T Iwamoto, T Nakamura, et al. TM14 is a new member of the fibulin family (fibulin-7) that interacts with extracellular matrix molecules and is active for cell binding. J Biol Chem,2007,282(42):30878-88.
    [129]de Vega S, T Iwamoto Y Yamada, Fibulins:multiple roles in matrix structures and tissue functions. Cell Mol Life Sci,2009,66(11-12):1890-902.
    [130]章军辉,陈永强,骨形态发生蛋白分子信号转导的研究进展.国外医学·骨科学分册,2003,24(4):235-7.
    [131]Zhao M, S E Harris, D Horn, et al. Bone morphogenetic protein receptor signaling is necessary for normal murine post natal bone formation J Cell Biol,2002, 157(6):1049-60.
    [132]Hay E, J Lemonnier,O Fromigue, et al. Bone morphogenetic protein receptor IB signaling mediates apoptosis independently of differentiation in osteoblastic cells. J Biol Chem,2004,279(3):1650-8.
    [133]Wu Q, T Zhang, J F Cheng, et al. Comparative DNA sequence analysis of mouse and human protocadherin gene clusters. Genome Res,2001,11(3):389-404.
    [134]李文革,徐莘香,细胞黏附与骨发生.中国骨伤,2004,17(5):316-8.
    [135]Yagi T, Clustered protocadherin family. Dev Growth Differ,2008,50 Suppl 1S131-40.
    [136]Esumi S, N Kakazu, Y Taguchi, et al. Monoallelic yet combinatorial expression of variable exons of the protocadherin-alpha gene cluster in single neurons. Nat Genet,2005,37(2):171-6.
    [137]Dallosso A R, A L Hancock, M Szemes, et al. Frequent long-range epigenetic silencing of protocadherin gene clusters on chromosome 5q31 in Wilms1 tumor PLoS Genet,2009,5(11):e1000745.
    [138]Novak P, T Jensen, M M Oshiro, et al. Agglomerative epigenetic aberrations are a common event in human breast canceR Cancer Res,2008,68(20):8616-25.
    [139]Yamada T, M Suzuki, H Satoh, et al. Effects of PU 1-induced mouse calcium-calmodulin-dependent kinase I-like kinase (CKLiK) on apoptosis of murine erythroleukemia cells. Exp Cell Res,2004,294(1):39-50.
    [140]Gaines P, J Lamoureux, A Marisetty, et al. A cascade of Ca(2+)/calmodulin-dependent protein kinases regulates the differentiation and functional activation of murine neutrophils. Exp Hematol,2008,36(7):832-44.
    [141]Sakagami H, A Kamata, H Nishimura, et al. Prominent expression and activity-dependent nuclear translocation of Ca2+/calmodulin-dependent protein kinase Idelta in hippocampal neurons. Eur J Neurosci,2005,22(11):2697-707.
    [142]Stresemann C, B Brueckner, T Musch, et al. Functional diversity of DNA methyltransferase inhibitors in human cancer cell lines. Cancer Res,2006, 66(5):2794-800.
    [1]Zaidi M, H C Blair, B S Moonga, et al. Osteoclastogenesis, bone resorption, and osteoclast-based therapeutics. Journal of bone and mineral research:the official journal of the American Society for Bone and Mineral Research,2003,18(4):599-609.
    [2]Datta H K, W F Ng, J A Walker, et al. The cell biology of bone metabolism. Journal of clinical pathology,2008,61(5):577-87.
    [3]Hofbauer L C A E Heufelder, Role of receptor activator of nuclear factor-kappaB ligand and osteoprotegerin in bone cell biology. Journal of molecular medicine (Berlin, Germany),2001,79(5-6):243-53.
    [4]Khosla S, Minireview:the OPG/RANKL/RANK system Endocrinology,2001, 142(5050-5055.
    [5]Kong Y Y, H Yoshida, I Sarosi, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature, 1999,397(6717):315-23.
    [6]Lacey D L, E Timms, H L Tan, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation Cell,1998,93(2):165-76.
    [7]Wiktor-Jedrzejczak W, A Bartocci, A W Ferrante, et al. Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proceedings of the National Academy of Sciences of the United States of America, 1990,87(12):4828-32.
    [8]Wiktor-Jedrzejczak W, E Urbanowska, S L Aukerman, et al. Correction by CSF-1 of defects in the osteopetrotic op/op mouse suggests local, developmental, and humoral requirements for this growth factor. Experimental hematology,1991,19(10):1049-54.
    [9]Udagawa N, N Takahashi, H Yasuda, et al. Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function Endocrinology,2000,141(9):3478-84.
    [10]Hakeda Y, Y Kobayashi, K Yamaguchi, et al. Osteoclastogenesis inhibitory factor (OCIF) directly inhibits bone-resorbing activity of isolated mature osteoclasts. Biochem Biophys Res Commun,1998,251(3):796-801.
    [11]Wright C E, H H Tallan, Y Y Lin, et al. Taurine:biological update. Annual review of biochemistry,1986,55(427-53.
    [12]Lambert I, Regulation of the cellular content of the organic osmolyte taurine in mammalian cells. Neurochem Res,2004,29(27-63.
    [13]D'Eufemia P, R Finocchiaro, A Zambrano, et al. Reduction of plasma taurine level in children affected by osteogenesis imperfecta during bisphosphonate therapy. Biomed Pharmacother,2007,61(235-240.
    [14]Terauchi A, A Nakazaw, K Johkura, et al. Immunohistochemical localization of taurine in various tissues of the mouse. Amino acids,1998,15(1-2):151-60.
    [15]Gupta R C S-J Kim, Taurine, analogues and bone:a growing relationshiP Advances in experimental medicine and biology,2003,526(323-8.
    [16]Gupta R C, T Win S Bittner, Taurine analogues; a new class of therapeutics: retrospect and prospects. Current medicinal chemistry,2005,12(17):2021-39.
    [17]Cheong S H K J Chang, The preventive effect of fermented milk supplement containing tomato (lycopersion esculentum) and taurine on bone loss in ovariectomized rats. Advances in experimental medicine and biology,2009,643(333-40.
    [18]Choi M-J N M DiMarco, The effects of dietary taurine supplementation on bone mineral density in ovariectomized rats. Advances in experimental medicine and biology,2009,643(341-9.
    [19]Koide M, N Okahashi, R Tanaka, et al. Inhibition of experimental bone resorption and osteoclast formation and survival by 2-aminoethanesulphonic acid. Archives of oral biology,1999,44(9):711-9.
    [20]Yasutomi C, H Nakamuta, T Fujita, et al. [Anti-osteopenic effect of taurine: possible involvement of activated MEK-ERK-Cbfal signaling]. Nippon yakurigaku zasshi. Folia pharmacologica Japonica,2002,120(1):114P-115P
    [21]Park S, H Kim S J Kim, Stimulation of ERK2 by taurine with enhanced alkaline phosphatase activity and collagen synthesis in osteoblast-like UMR-106 cells. Biochemical pharmacology,2001,62(8):1107-11.
    [22]Kum K-Y, J-H Park, Y-J Yoo, et al. The inhibitory effect of alendronate and taurine on osteoclast differentiation mediated by Porphyromonas gingivalis sonicates in vitro. Journal of endodontics,2003,29(1):28-30.
    [23]Yuan L Q, H Xie, X H Luo, et al. Taurine transporter is expressed in osteoblasts. Amino acids,2006,31(2):157-63.
    [24]Yuan L Q, Y Lu, X H Luo, et al. Taurine promotes connective tissue growth factor (CTGF) expression in osteoblasts through the ERK signal pathway. Amino acids,2007, 32(3):425-30.
    [25]Dolder S, W Hofstetter, A Wetterwald, et al. Effect of monoterpenes on the formation and activation of osteoclasts in vitro. J Bone Miner Res,2006,21(4):647-55.
    [26]Kwak H B, S W Lee, Y J Li, et al. Inhibition of osteoclast differentiation and bone resorption by a novel lysophosphatidylcholine derivative, SCOH Biochem Pharmacol, 2004,67(7):1239-48.
    [27]Yavropoulou M P J G Yovos, Osteoclastogenesis-current knowledge and future perspectives. J Musculoskelet Neuronal Interact,2008,8(3):204-16.
    [28]Tondravi M M, S R McKercher, K Anderson, et al. Osteopetrosis in mice lacking haematopoietic transcription factor PU 1. Nature,1997,386(6620):81-4.
    [29]Hu R, S M Sharma, A Bronisz, et al. PU 1 recruit corepressors to osteoclast-specific genes in committed myeloid progenitors. Mol Cell Biol,2007, 27(4018-27.
    [30]So H, J Rho, D Jeong, et al. Microphthalmia transcription factor and PU 1 synergistically induce the leukocyte receptor osteoclast-associated receptor gene expression. J Biol Chem,2003,278(26):24209-16.
    [31]Miyamoto T, O Ohneda, F Arai, et al. Bifurcation of osteoclasts and dendritic cells from common progenitors. Blood,2001,98(8):2544-54.
    [32]Dai X-M, G R Ryan, A J Hapel, et al. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood,2002,99(1):111-20.
    [33]Takayanagi H, S Kim, T Koga, et al. Induction and activation of the transcription factor NFATcl (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Developmental cell,2002,3(6):889-901.
    [34]Lange P F, L Wartosch, T J Jentsch, et al. ClC-7 requires Ostm1 as a beta-subunit to support bone resorption and lysosomal function. Nature,2006,440(7081):220-3.
    [35]Gelb B D, GPShi, H A Chapman, et al. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science (New York, NY),1996,273(5279):1236-8.
    [36]Chambers T J C J Dunn, The effect of parathyroid hormone, 1,25-dihydroxycholecalciferol and prostaglandins on the cytoplasmic activity of isolated osteoclasts. The Journal of pathology,1982,137(3):193-203.
    [37]李斌斌,于世凤,庞淑珍,两种破骨细胞培养方法的比较及其吸收骨质的动态观察.北京大学学报(医学版),2005,37(5):536-41.
    [38]Burger E H, J W Van der Meer, J S van de Gevel, et al. In vitro formation of osteoclasts from long-term cultures of bone marrow mononuclear phagocytes. The Journal of experimental medicine,1982,156(6):1604-14.
    [39]袁凌青,TAURINE对骨代谢作用的研究.博士学位论文2006.
    [40]Militante J D J B Lombardini, Taurine stimulation of calcium uptake in the retina: mechanism of action. Advances in experimental medicine and biology,2003, (526):547-54.
    [41]Pasantes-Morales H, O Quesada J Moran, Taurine:an osmolyte in mammalian tissues. Advances in experimental medicine and biology,1998,442:209-17.
    [42]Huxtable R, Physiological actions of taurine. Physiol Rev,1992,72:101-163.
    [43]Boyle W J, W S Simonet D L Lacey, Osteoclast differentiation and activation. Nature,2003,423(6937):337-42.
    [44]Bar-Shavit Z, The osteoclast:a multinucleated, hematopoietic-origin, bone-resorbing osteoimmune celL J Cell Biochem,2007,102(5):1130-9.
    [45]Weir E C, C W Lowik, I Paliwal, et al. Colony stimulating factor-1 plays a role in osteoclast formation and function in bone resorption induced by parathyroid hormone and parathyroid hormone-related protein. Journal of bone and mineral research:the official journal of the American Society for Bone and Mineral Research,1996, 11 (10):1474-81.
    [46]Yao Z, P Li, Q Zhang, et al. Tumor necrosis factor-alpha increases circulating osteoclast precursor numbers by promoting their proliferation and differentiation in the bone marrow through up-regulation of c-Fms expression. The Journal of biological chemistry,2006,281(17):11846-55.
    [47]Uchida S, H M Kwon, A Yamauchi, et al. Molecular cloning of the cDNA for an MDCK cell Na(+)-and Cl(-)-dependent taurine transporter that is regulated by hypertonicity. Proceedings of the National Academy of Sciences of the United States of America,1992,89(17):8230-4.
    [48]Jhiang S M, L Fithian, P Smanik, et al. Cloning of the human taurine transporter and characterization of taurine uptake in thyroid cells. FEBS letters,1993, 318(2):139-44.
    [49]Ramamoorthy S, F H Leibach, V B Mahesh, et al. Functional characterization and chromosomal localization of a cloned taurine transporter from human placenta. The Biochemical journal,1994,300 (Pt 3):893-900.
    [50]Heller-Stilb B, C van Roeyen, K Rascher, et al. Disruption of the taurine transporter gene (taut) leads to retinal degeneration in mice. The FASEB journal official publication of the Federation of American Societies for Experimental Biology, 2002,16(2):231-3.
    [51]Warskulat U, E Borsch, R Reinehr, et al. Chronic liver disease is triggered by taurine transporter knockout in the mouse. The FASEB journal:official publication of the Federation of American Societies for Experimental Biology,2006,20(3):574-6.
    [52]Warskulat U, B Heller-Stilb, E Oermann, et al. Phenotype of the taurine transporter knockout mouse. Methods in enzymology,2007,428:439-58.
    [53]Lang P A, U Warskulat, B Heller-Stilb, et al. Blunted apoptosis of erythrocytes from taurine transporter deficient mice. Cellular physiology and biochemistry international journal of experimental cellular physiology, biochemistry, and pharmacology,2003,13(6):337-46.
    [54]Fire A, S Xu, M K Montgomery, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature,1998,391(6669):806-11.
    [1]Yoder J A, C P Walsh T H Bestor, Cytosine methylation and the ecology of intragenomic parasites. Trends in genetics:TIG,1997,13(8):335-40.
    [2]Bird A, DNA methylation patterns and epigenetic memory. Genes & development,2002,16(1):6-21.
    [3]Riggs A D, X inactivation, differentiation, and DNA methylation. Cytogenetics and cell genetics,1975,14(1):9-25.
    [4]Holliday R J E Pugh, DNA modification mechanisms and gene activity during development. Science (New York, NY),1975,187(4173):226-32.
    [5]Goll M G T H Bestor, Eukaryotic cytosine methyltransferases. Annu Rev Biochem,2005,74:481-514.
    [6]Okano M, D W Bell, D A Haber, et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell,1999,99(3):247-57.
    [7]Hu Y-G, R Hirasawa, J-L Hu, et al. Regulation of DNA methylation activity through Dnmt3L promoter methylation by Dnmt3 enzymes in embryonic development. Human molecular genetics,2008,17(17):2654-64.
    [8]Bestor T, A Laudano, R Mattaliano, et al. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. Journal of molecular biology,1988,203(4):971-83.
    [9]Pradhan S, A Bacolla, R D Wells, et al. Recombinant human DNA (cytosine-5) methyltransferase. I Expression, purification, and comparison of de novo and maintenance methylation. The Journal of biological chemistry,1999, 274(46):33002-10.
    [10]Bestor T H V M Ingram, Two DNA methyltransferases from murine erythroleukemia cells:purification, sequence specificity, and mode of interaction with DNA Proceedings of the National Academy of Sciences of the United States of America,1983,80(18):5559-63.
    [11]Hermann A, R Goyal A Jeltsch, The Dnmtl DNA-(cytosine-C5)-methyltran-sferase methylates DNA processively with high preference for hemimethylated target sites. The Journal of biological chemistry,2004,279(46):48350-9.
    [12]Chuang L S, H I Ian, T W Koh, et al. Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science (New York, NY),1997,277(5334):1996-2000.
    [13]Robertson K D A P Wolffe, DNA methylation in health and disease. Nature reviews. Genetics,2000, 1(1):11-9.
    [14]Panning B R Jaenisch, DNA hypomethylation can activate Xist expression and silence X-linked genes. Genes & development,1996,10(16):1991-2002.
    [15]Li E, T H Bestor R Jaenisch, Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell,1992,69(6):915-26.
    [16]Chen T, S Hevi, F Gay, et al. Complete inactivation of DNMT1 leads to mitotic catastrophe in human cancer cells. Nature genetics,2007,39(3):391-6.
    [17]Robertson K D, DNA methylation and human disease.Nat Rev Genet.2005 Aug;6(8):597-610.
    [18]Feinberg A P B Tycko, The history of cancer epigenetics. Nature reviews. Cancer, 2004.4(2):143-53.
    [19]Widschwendter M, G Jiang, C Woods, et al. DNA hypomethylation and ovarian cancer biology. Cancer research,2004,64(13):4472-80.
    [20]Nakamura N K Takenaga, Hypomethylation of the metastasis-associated S100A4 gene correlates with gene activation in human colon adenocarcinoma cell lines. Clinical & experimental metastasis,1998,16(5):471-9.
    [21]Akiyama Y, C Maesawa, S Ogasawara, et al. Cell-type-specific repression of the maspin gene is disrupted frequently by demethylation at the promoter region in gastric intestinal metaplasia and cancer cells. The American journal of pathology, 2003,163(5):1911-9.
    [22]Song F, J F Smith, M T Kimura, et al. Association of tissue-specific differentially methylated regions (TDMs) with differential gene expression. Proceedings of the National Academy of Sciences of the United States of America,2005, 102(9):3336-41.
    [23]Strichman-AlmashanuL Z, R SLee, P O Onyango, et al. A genome-wide screen for normally methylated human CpG islands that can identify novel imprinted: genes. Genome research,2002,12(4):543-54.
    [24]Chan AO, Broaddus RR, Houlihan PS, et al. CpG island methylation in aberrant crypt foci of the colorectum. The American journal of pathology,2002, 160(5):1823-30.
    [25]Costello J F, Aberrant CpG-island methylation has a non-random and tumor-type-specific patterns. Nature Genet 2000,25:132-138.
    [26]Feinberg A P, H Cui R Ohlsson, DNA methylation and genomic imprinting: insights from cancer into epigenetic mechanisms. Seminars in cancer biology, 2002,12(5):389-98.
    [27]纪冬梅冯.云.,与IVF/ICS I相关基因印记疾病研究进展.中国优生与遗传杂志,2009,17(5):9-13.
    [28]Barlow D P, Gametic imprinting in mammals. Science (New York, NY),1995, 270(5242):1610-3.
    [29]谢小虎周文华,基因组印记与疾病研究进展.生命科学,2008,20(3):438-41
    [30]Lalande M, Imprints of disease at GNAS1. J Clin Invest,2001,107(7):793-4.
    [31]Hayward B E, A Barlier, M Korbonits, et al. Imprinting of the G(s)alpha gene GNAS1 in the pathogenesis of acromegaly. The Journal of clinical investigation, 2001,107(6):31-6.
    [32]Liu J, J G Nealon L S Weinstein, Distinct patterns of abnormal GNAS imprinting in familial and sporadic pseudohypoparathyroidism type IB Human molecular genetics,2005,14(1):95-102.
    [33]Everett C M N W Wood, Trinucleotide repeats and neurodegenerative disease. Brain,2004,127:2385-2405.
    [34]van Overveld P G M, R J F L Lemmers, L A Sandkuijl, et al. Hypomethylation of D4Z4 in 4q-linked and non-4q-linked facioscapulohumeral muscular dystrophy. Nature genetics,2003,35(4):315-7.
    [35]李东至廖.灿.,脆性x综合征.中国优生与遗传杂志2005,13(5):121-4.
    [36]Hagerman R J, M Leehey, W Heinrichs, et al. Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of fragile X Neurology,2001, 57(1):127-30.
    [37]Crawford D C, J M Acuna S L Sherman, FMR1 and the fragile X syndrome: human genome epidemiology review. Genet Med,2001,3:359-371.
    [38]Oberle I, F Rousseau, D Heitz, et al. Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome. Science (New York, NY), 1991,252(5009):1097-1102.
    [39]Coffee B, F Zhang, S Ceman, et al. Histone modifications depict an aberrantly heterochromatinized FMR1 gene in fragile x syndrome. American journal of human genetics,2002,71(4):923-32.
    [40]Richardson B, DNA methylation and autoimmune disease. Clinical immunology (Orlando, Fla.),2003,109(1):72-9.
    [41]Richardson B, L Scheinbart, J Strahler, et al. Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis and rheumatism,1990,33(11):1665-73.
    [42]Quddus J, K J Johnson, J Gavalchin, et al. Treating activated CD4+ T cells with either of two distinct DNA methyltransferase inhibitors,5-azacytidine or procainamide, is sufficient to cause a lupus-like disease in syngeneic mice. The Journal of clinical investigation,1993,92(1):38-53.
    [43]Lu Q, Demethylation of ITGAL (CD 11 a) regulatory sequences in systemic lupus erythematosus. Arthritis Rheum,2003,46:1282-1291.
    [44]Oelke K, Q Lu, D Richardson, et al. Overexpression of CD70 and overstimulation of IgG synthesis by lupus T cells and T cells treated with DNA methylation inhibitors. Arthritis and rheumatism,2004,50(6):1850-60.
    [45]Smeets D F, U Moog, C M Weemaes, et al. ICF syndrome:a new case and review of the literature. Human genetics,1994,94(3):240-6.
    [46]Franceschini P, S Martino, M Ciocchini, et al. Variability of clinical and immunological phenotype in immunodeficiency-centromeric instability-facial anomalies syndrome. Report of two new patients and review of the literature. European journal of pediatrics,1995,154(10):840-6.
    [47]Tuck-Muller C M, A Narayan, F Tsien, et al. DNA hypomethylation and unusual chromosome instability in cell lines from ICF syndrome patients. Cytogenetics and cell genetics,2000,89(1-2):121-8.
    [48]Hansen R S, C Wijmenga, P Luo, et al. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proceedings of the National Academy of Sciences of the United States of America,1999, 96(25):14412-7.
    [49]Xu G L, T H Bestor, D Bourc'his, et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature,1999,402(6758):187-91.
    [50]Ryhanen S, A Pirskanen, T Jaaskelainen, et al. State of methylation of the human osteocalcin gene in bone-derived and other types of cells. J Cell Biochem,1997, 66(3):404-12.
    [51]Locklin R M, R O Oreffo J T Triffitt, Modulation ofosteogenic differentiation in human skeletal cells in Vitro by 5-azacytidine. Cell Biol Int,1998,22(3):207-15.
    [52]Kitazawa S R Kitazawa, Epigenetic control of mouse receptor activator of NF-kappa B ligand gene expression. Biochem Biophys Res Commun,2002, 293(1):126-31.
    [53]Kitazawa R S Kitazawa, Methylation status of a single CpG locus 3 bases upstream of TATA-box of receptor activator of nuclear factor-kappaB ligand (RANKL) gene promoter modulates cell-and tissue-specific RANKL expression and osteoclastogenesis. Mol Endocrinol,2007,21(l):148-58.
    [54]Li Y, G Meng Q N Guo, Changes in genomic imprinting and gene expression associated with transformation in a model of human osteosarcoma. Exp Mol Pathol,2008,84(3):234-9.
    [55]Ohyama Y, T Kusada, T Yamasaki, et al. Extensive methylation of CpG island of CYP24 gene in osteoblastic ROS 17/2.8 cells. Nucleic Acids Res Suppl,2002, 2:249-50.
    [56]Penolazzi L, E Lambertini, S Giordano, et al. Methylation analysis of the promoter F of estrogen receptor alpha gene:effects on the level of transcription on human osteoblastic cells. J Steroid Biochem Mol Biol,2004,91(1-2):1-9.
    [57]Lee J Y, Y M Lee, M J Kim, et al. Methylation of the mouse DIx5 and Osx gene promoters regulates cell type-specific gene expression. Mol Cells,2006, 22(2):182-8.
    [58]Kansara M, M Tsang, L Kodjabachian, et al. Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice. J Clin Invest,2009,119(4):837-51.
    [59]Kang M I, H S Kim, Y C Jung, et al. Transitional CpG methylation between promoters and retroelements of tissue-specific genes during human mesenchymal cell differentiation. J Cell Biochem,2007,102(l):224-39.
    [60]Sadikovic B, M Yoshimoto, K Al-Romaih, et al. In vitro analysis of integrated global high-resolution DNA methylation profiling with genomic imbalance and gene expression in osteosarcoma. PLoS One,2008,3(7):e2834.
    [61]Al-Romaih K, B Sadikovic, M Yoshimoto, et al. Decitabine-induced demethylation of 5'CpG island in GADD45A leads to apoptosis in osteosarcoma cells. Neoplasia,2008,10(5):471-80.
    [62]Vaes B L, C Lute, S P van der Woning, et al. Inhibition of methylation decreases osteoblast differentiation via a non-DNA-dependent methylation mechanism. Bone,2010,46(2):514-23.
    [1]Datta H K, WFNg, J A Walker, et al. The cell biology of bone metabolism. Journal of clinical pathology,2008,61(5):577-87.
    [2]Yavropoulou M P J G Yovos, Osteoclastogenesis-current knowledge and future perspectives. J Musculoskelet Neuronal Interact,2008,8(3):204-16.
    [3]徐智芳王宏伟.,转录因子PU1在造血分化中的作用.医学分子生物学杂志,2004,1(5):285-7.
    [4]Tondravi M M, S R McKercher, K Anderson, et al. Osteopetrosis in mice lacking haematopoietic transcription factor PU 1. Nature,1997,386(6620):81-4.
    [5]Dahl R, J C Walsh, D Lancki, et al. Regulation of macrophage and neutrophil cell fates by the PU 1:C/EBPalpha ratio and granulocyte colony-stimulating factor. Nat Immunol,2003,4(10):1029-36.
    [6]Kwon O H, C K Lee, Y I Lee, et al. The hematopoietic transcription factor PU 1 regulates RANK gene expression in myeloid progenitors. Biochem Biophys Res Commun,2005,335:437-46.
    [7]Kawaguchi N M Noda, Mitf is expressed in osteoclast progenitors in vitro. Experimental cell research,2000,260(2):284-91.
    [8]Hu R, S M Sharma, A Bronisz, et al. PU 1 recruit corepressors to osteoclast-specific genes in committed myeloid progenitors. Mol Cell Biol,2007,27:P 4018-27.
    [9]So H, J Rho, D Jeong, et al. Microphthalmia transcription factor and PU 1 synergistically induce the leukocyte receptor osteoclast-associated receptor gene expression. J Biol Chem,2003,278(26):24209-16.
    [10]Meadows N A, S M Sharma, G J Faulkner, et al. The expression of Clcn7 and Ostml in osteoclasts is coregulated by microphthalmia transcription factor. The Journal of biological chemistry,2007,282(3):1891-904.
    [11]Lange P F, L Wartosch, T J Jentsch, et al. C1C-7 requires Ostml as a beta-subunit to support bone resorption and lysosomal function. Nature,2006,440(7081):220-3.
    [12]Miyamoto T, O Ohneda, F Arai, et al. Bifurcation of osteoclasts and dendritic cells from common progenitors. Blood,2001,98(8):2544-54.
    [13]Anderson D M, E Maraskovsky, W L Billingsley, et al.Ahomologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature,1997, 390(6656):175-9.
    [14]Grigoriadis A E, Z Q Wang, M G Cecchini, et al. c-Fos:a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science (New York, NY),1994,266(5184):443-8.
    [15]Yao Z, P Li, Q Zhang, et al. Tumor necrosis factor-alpha increases circulating osteoclast precursor numbers by promoting their proliferation and differentiation in the bone marrow through up-regulation of c-Fms expression. The Journal of biological chemistry,2006,281(17):11846-55.
    [16]Weir E C, C W Lowik, I Paliwal, et al. Colony stimulating factor-1 plays a role in osteoclast formation and function in bone resorption induced by parathyroid hormone and parathyroid hormone-related protein. Journal of bone and mineral research:the official journal of the American Society for Bone and Mineral Research,1996, 11(10):1474-81.
    [17]Dai X-M, G R Ryan, A J Hapel, et al. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood,2002,99(1):111-20.
    [18]Kong Y Y, U Feige, I Sarosi, et al. Activated T cells regulate bone loss and joint destruction in adj uvant arthritis through osteoprotegerin ligand. Nature,1999, 402(6759):304-9.
    [19]廖二元,代谢性骨病学.2002:人民卫生出版社.:209-41.
    [20]Udagawa N, N Takahashi, H Yasuda, et al. Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function. Endocrinology,2000,141(9):3478-84.
    [21]Hakeda Y, Y Kobayashi, K Yamaguchi, et al. Osteoclastogenesis inhibitory factor (OCIF) directly inhibits bone-resorbing activity of isolated mature osteoclasts. Biochem Biophys Res Commun,1998,251(3):796-801.
    [22]Whyte M P, S E Obrecht, P M Finnegan, et al. Osteoprotegerin deficiency and juvenile Paget's disease. The New England journal of medicine,2002,347(3):175-84.
    [23]Lerner U H, Osteoclast formation and resorption. Matrix biology:journal of the International Society for Matrix Biology,2000,19(2):107-20.
    [24]Wei S, H Kitaura, P Zhou, et al. IL-1 mediates TNF-induced osteoclastogenesis. The Journal of clinical investigation,2005,115(2):282-90.
    [25]Hsu H, D L Lacey, C R Dunstan, et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proceedings of the National Academy of Sciences of the United States of America,1999,96(7):3540-5.
    [26]Shaw J P, P J Utz, D B Durand, et al. Identification of a putative regulator of early T cell activation genes. Science,1988,241 (4862):202-5.
    [27]Takayanagi H, S Kim, T Koga, et al. Induction and activation of the transcription factor NFATcl (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Developmental cell,2002,3(6):889-901.
    [28]Matsumoto M, M Kogawa, S Wada, et al. Essential role of p38 mitogen-activated protein kinase in cathepsin K gene expression during osteoclastogenesis through association of NFATcl and PU 1. The Journal of biological chemistry,2004, 279(44):45969-79.
    [29]Kim M S, C J Day N A Morrison, MCP-1 is induced by receptor activator of nuclear factor-{kappa}B ligand, promotes human osteoclast fusion, and rescues granulocyte macrophage colony-stimulating factor suppression of osteoclast formation. The Journal of biological chemistry,2005,280(16):16163-9.
    [30]Kim K, S H Lee, J Ha Kim, et al. NFATcl induces osteoclast fusion via up-regulation of Atp6v0d2 and the dendritic cell-specific transmembrane protein (DC-STAMP). Mol Endocrinol,2008,22(1):176-85.
    [31]McHugh K P, Z Shen, T N Crotti, et al. Role of cell-matrix interactions in osteoclast differentiation. Adv Exp Med Biol,2007,602:P 107-11.
    [32]Sakai H, Y Kobayashi, E Sakai, et al. Cell adhesion is a prerequisite for osteoclast survivaL Biochem Biophys Res Commun,2000,270(2):550-6.
    [33]Faccio R, D V Novack, A Zallone, et al. Dynamic changes in the osteoclast cytoskeleton in response to growth factors and cell attachment are controlled by beta3 integrin. The Journal of cell biology,2003,162(3):499-509.
    [34]Destaing O, F Saltel, J C Geminard, et al. Podosomes display actin turnover and dynamic self-organization in osteoclasts expressing actin-green fluorescent protein. Mol Biol Cell,2003,14(2):407-16.
    [35]McHugh K P, K Hodivala-Dilke, M H Zheng, et al. Mice lacking beta3 integrins are osteosclerotic because of dysfunctional osteoclasts. J Clin Invest,2000, 105(4):433-40.
    [36]晁爱军,杨福军,αvβ3整合素信号转导与破骨细胞研究进展.国外医学内分泌学分册,2005,25(5):327-9.
    [37]Murphy M G, K Cerchio, S A Stoch, et al. Effect of L-000845704, an alphaVbeta3 integrin antagonist, on markers of bone turnover and bone mineral density in postmenopausal osteoporotic women. The Journal of clinical endocrinology and metabolism,2005,90(4):2022-8.
    [38]Chambers T J, Regulation of the differentiation and function of osteoclasts. J Pathol,2000,192(1):4-13.
    [39]Mattsson J P, P H Schlesinger, D J Keeling, et al. Isolation and reconstitution of a vacuolar-type proton pump of osteoclast membranes. The Journal of biological chemistry,1994,269(40):24979-82.
    [40]Blair H C, S L Teitelbaum, R Ghiselli, et al. Osteoclastic bone resorption by a polarized vacuolar proton pumP Science (New York, NY),1989,245(4920):855-7.
    [41]Frattini A, P J Orchard, C Sobacchi, et al. Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nature genetics,2000,25(3):343-6.
    [42]Teti A, H C Blair, S L Teitelbaum, et al. Cytoplasmic pH regulation and chloride/bicarbonate exchange in avian osteoclasts. The Journal of clinical investigation,1989,83(1):227-33.
    [43]Schlesinger P H, H C Blair, S L Teitelbaum, et al. Characterization of the osteoclast ruffled border chloride channel and its role in bone resorption. The Journal of biological chemistry,1997,272(30):18636-43.
    [44]Kornak U, D Kasper, M R Bosl, et al. Loss of the C1C-7 chloride channel leads to osteopetrosis in mice and man. Cell,2001,104(2):205-15.
    [45]Blair H C, A J Kahn, E C Crouch, et al. Isolated osteoclasts resorb the organic and inorganic components of bone. The Journal of cell biology,1986,102(4):1164-72.
    [46]Gelb B D, G P Shi, H A Chapman, et al. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science (New York, NY),1996,273(5279):1236-8.
    [47]Bollerslev J, S C Marks, S Pockwinse, et al. Ultrastructural investigations of bone resorptive cells in two types of autosomal dominant osteopetrosis. Bone,1993, 14(6):865-9.
    [48]Bollerslev J, T Steiniche, F Melsen, et al. Structural and histomorphometric studies of iliac crest trabecular and cortical bone in autosomal dominant osteopetrosis:a study of two radiological types. Bone,1989,10(1):19-24.
    [49]Bollerslev J, Autosomal dominant osteopetrosis:bone metabolism and epidemiological, clinical, and hormonal aspects. Endocrine reviews,1989,10(1):45-67.
    [50]Bollerslev J P E Andersen, Radiological, biochemical and hereditary evidence of two types of autosomal dominant osteopetrosis. Bone,1988,9(1):7-13.
    [51]Brockstedt H, J Bollerslev, F Melsen, et al. Cortical bone remodeling in autosomal dominant osteopetrosis:a study of two different phenotypes. Bone,1996,18(1):67-72.
    [52]Cleiren E,O Benichou, E Van Hul, et al. Albers-Schonberg disease (autosomal dominant osteopetrosis, type Ⅱ) results from mutations in the ClCN7 chloride channel gene. Human molecular genetics,2001,10(25):2861-7.
    [53]Henriksen K, J Gram, S Schaller, et al. Characterization of osteoclasts from patients harboring a G215R mutation in ClC-7 causing autosomal dominant osteopetrosis type Ⅱ The American Journal of Pathology,2004,164(5):1537-45.
    [54]Alatalo S L, K K Ivaska, S G Waguespack, et al. Osteoclast-derived serum tartrate-resistant acid phosphatase 5b in Albers-Schonberg disease (type Ⅱ autosomal dominant osteopetrosis). Clinical chemistry,2004,50(5):883-90.
    [55]Del Fattore A, B Peruzzi, N Rucci, et al. Clinical, genetic, and cellular analysis of 49 osteopetrotic patients:implications for diagnosis and treatment. Journal of medical genetics,2006,43(4):315-25.
    [56]Kim Henriksen a, Anita V Neutzsky-Wulff a, Lynda F Bonewald b, Morten A Karsdal a, Local communication on and within bone controls bone remodeling, bone, 2009, (44):1026-1033
    [57]Helfrich M H, Osteoclast diseases. Microscopy research and technique,2003, 61(6):514-32.
    [58]Marzia M, N A Sims, S Voit, et al. Decreased c-Src expression enhances osteoblast differentiation and bone formation. The Journal of cell biology,2000,151 (2):311-20.
    [59]Demiralp B, H-L Chen, A J Koh, et al. Anabolic actions of parathyroid hormone during bone growth are dependent on c-fos. Endocrinology,2002,143(10):4038-47.
    [60]Neutzsky-Wulff A V, M A Karsdal K Henriksen, Characterization of the bone phenotype in C1C-7-deficient mice. Calcified tissue international,2008,83(6):425-37.
    [61]Dai X-M, X-H Zong, M P Akhter, et al. Osteoclast deficiency results in disorganized matrix, reduced mineralization, and abnormal osteoblast behavior in developing bone. Journal of bone and mineral research:the official journal of the American Society for Bone and Mineral Research,2004,19(9):1441-51.
    [62]Sakagami N, N Amizuka, M Li, et al. Reduced osteoblastic population and defective mineralization in osteopetrotic (op/op) mice. Micron (Oxford, England 1993),2005,36(7-8):688-95.
    [63]Lian J B S C Marks, Osteopetrosis in the rat:coexistence of reductions in osteocalcin and bone resorption. Endocrinology,1990,126(2):955-62.
    [64]Tuukkanen J, A Koivukangas, T Jamsa, et al. Mineral density and bone strength are dissociated in long bones of rat osteopetrotic mutations. Journal of bone and mineral research:the official journal of the American Society for Bone and Mineral Research, 2000,15(10):1905-11.
    [65]Koga T, M Inui, K Inoue, et al. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature,2004,428(6984):758-63.
    [66]Mocsai A, M B Humphrey, J A Ziffle, et al. Van The immunomodulatory adapter proteins DAP 12 and Fc receptor gamma-chain (FcRgamma) regulate development of functional osteoclasts through the Syk tyrosine kinase. Proc Natl Acad,2004, 101:6158-63.
    [67]Nataf S, A Anginot, C Vuaillat, et al. Brain and bone damage in KARAP/DAP12 loss-of-function mice correlate with alterations in microglia and osteoclast lineages. The American Journal of Pathology,2005,166(l):275-86.
    [68]Koh A J, B Demiralp, K G Neiva, et al. Cells of the osteoclast lineage as mediators of the anabolic actions of parathyroid hormone in bone. Endocrinology,2005, 146(11):4584-96.
    [69]Weinstein R S, R L Jilka, A M Parfitt, et al. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. The Journal of clinical investigation, 1998,102(2):274-82.
    [70]Aubin J E, Osteoprogenitor cell frequency in rat bone marrow stromal populations: role for heterotypic cell-cell interactions in osteoblast differentiation. Journal of cellular biochemistry,1999,72(3):396-410.
    [71]Purpura K A, J E Aubin P W Zandstra, Sustained in vitro expansion of bone progenitors is cell density dependent. Stem cells (Dayton, Ohio),2004,22(1):39-50.
    [72]Kim H-J, H Zhao, H Kitaura, et al. Glucocorticoids suppress bone formation via the osteoclast. The Journal of clinical investigation,2006,116(8):2152-60.
    [73]Kong Y Y, H Yoshida, I Sarosi, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature, 1999,397(6717):315-23.
    [74]Lacey D L, E Timms, H L Tan, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell,1998,93(2):165-76.
    [75]Wiktor-Jedrzejczak W, A Bartocci, A W Ferrante, et al. Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proceedings of the National Academy of Sciences of the United States of America, 1990,87(12):4828-32.
    [76]Wiktor-Jedrzejczak W, E Urbanowska, S L Aukerman, et al. Correction by CSF-1 of defects in the osteopetrotic op/op mouse suggests local, developmental, and humoral requirements for this growth factor. Experimental hematology,1991,19(10):1049-54.
    [77]Boyle W J, W S Simonet D L Lacey, Osteoclast differentiation and activation. Nature,2003,423(6937):337-42.
    [78]Morony S, C Capparelli, R Lee, et al. A chimeric form of osteoprotegerin inhibits hypercalcemia and bone resorption induced by IL-1 beta, TNF-alpha, PTH, PTHrP, and 1,25(OH)2D3. Journal of bone and mineral research:the official journal of the American Society for Bone and Mineral Research,1999,14(9):1478-85.
    [79]Lee S K J A Lorenzo, Parathyroid hormone stimulates TRANCE and inhibits osteoprotegerin messenger ribonucleic acid expression in murine bone marrow cultures: correlation with osteoclast-like cell formation. Endocrinology,1999,140(8):3552-61.
    [80]Rodan G A T J Martin, Therapeutic approaches to bone diseases. Science (New York, NY),2000,289(5484):1508-14.
    [81]Martin T J, J M Quinn, M T Gillespie, et al. Mechanisms involved in skeletal anabolic therapies. Ann N Y Acad Sci,2006,1068:458-70.
    [82]Tanaka Y, A Maruo, K Fujii, et al. Intercellular adhesion molecule 1 discriminates functionally different populations of human osteoblasts:characteristic involvement of cell cycle regulators. Journal of bone and mineral research:the official journal of the American Society for Bone and Mineral Research,2000,15(10):1912-23.
    [83]Everts V, J M Delaisse, W Korper, et al. The bone lining cell:its role in cleaning Howship's lacunae and initiating bone formation. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research,2002, 17(1):77-90.
    [84]Otto F, A P Thornell, T Crompton, et al. Cbfal, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell,1997,89(5):765-71.
    [85]Hoshi K, T Komori H Ozawa, Morphological characterization of skeletal cells in Cbfal-deficient mice. Bone,1999,25(6):639-51.
    [86]Corral D A, M Amling, M Priemel, et al. Dissociation between bone resorption and bone formation in osteopenic transgenic mice. Proceedings of the National Academy of Sciences of the United States of America,1998,95(23):13835-40.
    [87]Thomas G P, S U Baker, J A Eisman, et al. Changing RANKL/OPG mRNA expression in differentiating murine primary osteoblasts. The Journal of endocrinology, 2001,170(2):451-60.
    [88]Gori F, L C Hofbauer, C R Dunstan, et al. The expression of osteoprotegerin and RANK ligand and the support of osteoclast formation by stromal-osteoblast lineage cells is developmentally regulated. Endocrinology,2000,141(12):4768-76.
    [89]Horwood N J, J Elliott, T J Martin, et al. Osteotropic agents regulate the expression of osteoclast differentiation factor and osteoprotegerin in osteoblastic stromal cells. Endocrinology,1998,139(11):4743-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700