G蛋白偶联受体GPR48在小鼠骨发育中的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.GPR48在骨骼发育中的功能研究
     脊椎动物骨骼系统发育需要两个完全不同的过程:胚胎发育过程和出生后发育过程。在胚胎发育过程中,大部分骨骼形成的主要途径是通过软骨内骨化,即间质细胞分化成软骨细胞并最终被成骨细胞取代。而出生后发育过程主要是骨质重建和维持,即成骨细胞不断地产生骨而破骨细胞吸收骨。所有这些过程都由复杂的信号调控网络所控制。
     本文研究一个G蛋白偶联受体GPR48/LGR4,它是一个孤儿受体,属于糖蛋白荷尔蒙含有富含亮氨酸重复序列亚家族。目前还没有找到该受体的配体。G蛋白偶联受体含有7个跨膜结构域,它能将细胞外的信号传导通过其介导的3个异构体Gα,β,γ启动细胞内的级联信号从而使细胞外的信号转化成细胞的应答,但该基因是否与骨骼系统发育有关尚不得而知。我们利用小鼠基因敲除的方法来研究G蛋白偶联受体GPR48在骨质发育中的生物学功能。研究表明,基因敲除GPR48小鼠的胚胎骨形成比野生型小鼠迟缓,我们用Von kossa染色GPR48野生型和突变型小鼠胚胎E14.5期、E16.5期和E18.5期。可以观察到GPR48~(-/-)突变小鼠骨矿化明显延迟。通过原位杂交和免疫组化实验,我们发现了三个标记基因:college typeⅡ;Indlan hedgehog,和转录因子sex9,比较野生型和突变小鼠无明显差异,这表明GPR48敲除小鼠的软骨细胞增殖和肥大分化早期的正常进程未受影响。但是,软骨细胞肥大标志基因oolα1(X)在GPR48~(-/-)突变小鼠中分离明显比野生型晚,这说明敲除GPR48延迟了长骨软骨细胞的终末成熟。而出生后的骨形成也严重受到影响包括骨密度,骨体积,骨形成率和类骨质都下降,包括骨体积/组织体积、骨小梁厚度、骨小梁数目、矿物附着率、骨形成的动态指数反映出由于骨矿化沉积率和矿化表面的减少导致骨形成率减少了2成,,而骨小梁间隙则显著增加。而这些骨骼发育和功能上的表型缺陷和另外一个基因的敲除小鼠--ATF4敲除小鼠在骨骼发育中的表型非常相似。通过real-time PCR,Western Blot和原位杂交,我们发现在GPR48基因敲除小鼠中ATF4的表达确实显著下降。通过生物化学和信号途径分析,发现GPR48能通过cAiVlP-PKA-CREB信号途径来调节ATF4的启动子,从而调节ATF4基因的表达。而ATF4在成骨细胞的分化和发育过程中是一个转录因子,它调控的下游骨基质蛋白OCN,BSP和胶原蛋白的合成在GPR48敲除小鼠中也受到影响。证明GPR48能通过ATF4和它的下游基因这个信号途径来参与骨形成。
     2.其它基因的研究工作
     本人还参与了其它基因的研究工作,具体在如下几个方面:
     (1) Apolipoprotein中新短肽选择性抑制c-Src/FAK到ERK信号途径来抑制血管新生和肿瘤生长很多血管新生抑制剂来源于大的血浆蛋白。例如,人类阿朴脂蛋白的kringle5(KV)截短的片断是潜在的抗血管新生分子。然而,是否在KV结构域中存在一个更短的片断能够在血管新生中起作用并伴随肿瘤生长以及它们的作用机制还不清楚。我们选择一个人类aop(a)KV结构域的11个氨基酸的肽段(11肽)用于研究。这个肽段的血管新生的效应通过人类脐静脉内皮细胞(HUVEC)在体外进行测量,而在体内通过鸡胚的绒毛膜(CAM)分析和小鼠的角膜血管新生模型进行测量;我们进一步测量了11肽在移植瘤生长的效应并且它参与血管新生信号途径。在体外,血管新生在迁移(p<0.01),入侵(p<0.01),和管形成分析(p<0.001)中都被11肽抑制。在体内,11肽在CAM分析(p<0.001)和小鼠角膜血管模型(p<0.001)中明显抑制血管新生。11肽并不影响肿瘤细胞的生长,但它抑制移植瘤的生长(p<0.01),并且11肽处理组的存活率高于对照组(100%vs 20%,差异=80%)。另外,11肽选择性阻碍一些蛋白在Cdc42到细胞外信号调控激酶(ERK)信号这个过程中的表达。以上实验表明,11肽在体外和体内抑制血管新生,并且通过选择性阻碍Cdc42到ERK信号途径抑制肿瘤生长,它可能位于KV结构域的关键激活区。
     (2) GCIP在骨骼肌分化和抑制癌症发生中的功能研究骨骼肌的分化是一个高度规则的多步骤过程,研究表明,GCIP在C2C12细胞向肌细胞的分化过程中其mRNA和蛋白表达水平都显著上升,在C2C12细胞系过表达GCIP能激活肌肉特异性基因的表达,并促进肌管的形成。而GCIP的突变体过表达抑制肌肉特异性基因的表达,从而抑制肌肉的发生。并且GCIP能直接与E12,E47和MyoD相互作用。这一结果说明GCIP作为一个新的功能蛋白能在肌肉发生过程中与MyoD/E47异源二聚体形成功能复合物来调节肌肉发生。
     在很多人类癌症中都发现在15号染色体(15q和15q21)纯合体缺失和杂合体缺失现象,包括皮肤癌,乳腺癌,肺癌和膀胱癌。这提示在15号染色体的这个区域存在潜在的抑癌基因。GCIP定位在15号染色体区段(15q15)。我们发现GCIP的表达能强烈抑制很多人类癌症的发生,包括乳腺癌,前列腺癌,和结肠癌。在人类结肠癌中,GCIP的mRNA和蛋白表达降低,而用丁酸钠(sodium butyrate)处理结肠癌细胞SW80能导致GCIP的上调表达。这说明GCIP的功能是在细胞增殖中作为负调节因子。在结肠癌细胞SW80中过表达GCIP能导致有意义的抑制癌细胞克隆的形成,但用siRNA降低GCIP的表达却能启动癌细胞克隆的形成。而且,过表达GCIP能抑制细胞周期蛋白cyclinD1的启动子从而抑制cyclinD1的转录活性。我们的研究表明GCIP作为抑癌基因能抑制癌症的发生。
     (3)本人还参与证明了GPR48能在眼前期发育中通过调控Pitx2来调控眼睛发育;同时在生殖系统中GPR48能通过调控雄性激素受体的表达来调控泌尿生殖系统发育;证明了E_2通过ERα激活KiSS1基因的表达,而ERα则通过结合Sp1/Sp3蛋白并利用Sp1/Sp3识别结合KiSS1基因启动子上的GC富集区来刺激KiSS1基因转录。这有助于我们在分子水平理解类固醇激素对KiSS1的反馈调节作用。另外本人还参与人类ZNF394、ZNF4805NZNP411等基因的克隆、表达和功能研究,这些基因多数在心脏中表达,将是心脏发育相关候选基因。
1. Study on GPR48's function in bone development
     The integrity of the vertebrate skeletal system needs two distinct regulatory processes: the embryonic developmental and postnatal regulatory processes. During the embryonic developmental, the majority of bone formation is via endochondral ossification, as mesenchymal progenitor cells differentiate into chondrocytes that are eventually replaced by osteoblasts. And the postnatal regulatory processes, referred to bone remodeling, bone is constantly regenerated through continuous formation by osteoblasts and resorption by osteoclasts. Both of processes are well controlled by a complex transcriptional network in which the transcription factors ATF4 play essential roles. The bZip factor activating transcription factor 4(ATF4)was recently shown to regulate osteoblast biology. Yang et al., (2004)showed that ATF4 can regulate osteoblast differentiation, typeⅠcollagen synthesis, osteoblast-specific gene BSP and OCN expression, and osteoblast terminal differentiation. ATF4 was shown to regulate osteocalcin gene transcription by binding to its promoter. Mice deficient for ATF4 are runted and harbor low bone mass, and ATF4 can direct physical interact with Runx2, a transcription factor that is essential for osteoblast and hypertrophic chondrocyte differentiation and bone formation during embryogenesis and postnatal life, then modulates Runx2 transcriptional activity.
     G-protein-coupled receptors(GPCRs, or GPRs)containing seven transmembrane domains and transduction extracellular signals can initiates a cascade of intracellular processes through heterotrimeric G-proteins. And among G-proteins, theα-subunit of the stimulatory G-protein, Gsα, which in turn increases synthesis of cAMP by adenylyl cyclases(AC)and activates protein kinases A(PKA). GPCRs form the largest family of cell surface receptors known and defects in GRCR function have the potential consequence to affect GPCR-stimulated biological responses in many pathological situations.
     2. The other genes' work
     I also co-work on other project, show as below,
     (1) A Novel Peptide from Human Apolipoprotein(a) Inhibits Angiogenesis and Tumor Growth via Selectively Blocking c-Src/FAK to ERK Signaling Pathway.
     Many angiogenesis inhibitor are derived from larger plasma proteins. For example, a truncated fragment of kringle 5(KV)domains from human apolipoprotein(a)was potent antiangiogenic molecules. But whether there are shorter fragments in KV domain that can play a role in angiogenesis together with tumor growth and the mechanism involved in these functions have not been shown. Using bioinformatics software, an 11-amino acid peptide(11peptide) in human aop(a)KV domain was selected for study. Angiogenesis effect of this peptide was measured by human umbilical vein endothelial cell(HUVEC)in vitro, and in vivo chicken embryos chorioallantoic membrane(CAM)assay, together with the mouse corneal angiogenesis model; Further we measured the 11 peptide effect on xenograft tumor growth and its role in signaling pathway involved in angiogenesis. Angiogenesis in vitro was inhibited by 11 peptide in migration(p<0.01), invasion(p<0.01), and tube formation assays(p<0.001). In vivo, 11peptide significantly inhibited angiogenesis in CAM assay(p<0.001)and mice corneal vascular models(p<0.001). 11peptie can not affect the growth of tumor cell but inhibit the growth of xenograft tumor(p<0.01), and the survival of 11peptide-treated group was higher than that in control group(100%versus 20%, difference=80%). Also, 11peptide selectively blocked the expression of some proteins in Cdc42 to extracellular signal-regulated kinase(ERK) signals. 11peptide inhibits angiogenesis in vitro, in vivo and suppress tumor growth by selectively blocking Cdc42 to ERK signaling pathway, and may be in the key active region of KV domain.
     (2) GCIP's function in myogenic differentiation and tumor suppressor
     Differentiation of skeletal muscle is a highly ordered multi-step process called myogenesis, which involves the expression of muscle-specific genes, withdrawal of cell cycle and formation of multinucleated myotube. In this study, we show that GCIP/CCNDBP1, a recently identified HLH leucine-rich protein without a predicted basic DNA binding region, regulate muscle specific gene expression and E47/MyoD heterodimerization. GCIP is highly expressed in muscle tissue. Both the mRNA and protein expression levels of GCIP were up-regulated during myogenic differentiation of C2C12 cells. Over-expression of GCIP in C2C12 cells promotes E47/MyoD complex association, activation of muscle specific transcription, and myotube formation during skeletal muscle cell differentiation while the mutant form of GCIP reduced the E47/MyoD heterodimerization and inefficient muscle differentiation. These findings identify a novel pro-myogenic role for the recently identified GCIP/CCNDBP1 protein in forming a functional protein complex with MyoD/E47 heterodimers that are essential for myogenesis.
     Deletions and/or loss of heterozygosity(LOH)on chromosome 15(15q15 and 15q21)has been found in several human tumors, including carcinomas of the colorectum, breast, lung, prostate and bladder, suggesting the presence of potential tumor suppressor gene(s)in this particular region of chromosome 15. GCIP also called CCNDBP1, DIP1 or HHM, localized at chromosome 15q15, is a recently identified helix-loop-helix leucine zipper(HLH-ZIP)protein without a basic region like the Id family of proteins. In this study, we reported that the expression of GCIP was significantly down-regulated in several different human tumors, including breast tumor, prostate tumor and colon tumors. In human colon tumors, both mRNA and protein expression levels of GCIP were decreased significantly compared to the normal tissues. Treatment of colon cancer cells SW480 with sodium butyrate(NaB), which induces colon cancer cell differentiation, can induce the up-regulation of GCIP expression, suggesting that the protein functions as a negative regulator in cell proliferation. Overexpression of GCIP in SW480 colon cancer cell line resulted in a significant inhibition on tumor cell colony formation while silencing of GCIP expression by siRNA can promote cell colony formation. Furthermore, overexpression of GCIP inhibited the transcriptional activity of cyclin D1 promoter and the expression of cyclin D1 protein in the cell. Finally, we demonstrate that GCIP specifically interacts with one of the classⅢHDAC proteins, SirT6, which is important for maintaining genome stability. Together, our data suggest a possible function of GCIP in tumor suppression.
     (3)We also prove that Regulation of Ocular Anterior Segment Dysgenesis(ASD)by GPR48 through PITX2 in eye development and Regulation of genitourinary dysplasia by GPR48 through androgen receptor in reproductive system. We found that E_2 dependent transcriptional activation of the KiSS1 gene is mediated by ERαthrough the interaction of Sp1/Sp3 proteins with GC-rich motifs of KiSS1 promoter, providing a molecular mechanism in our understanding how steroid hormones feedback regulate KISS1 expression in the HPG axis. Identification and characterization of human novel genes including ZNF394, ZNF480 and ZNF411, some of which are expressed in theheart tissue. Through gene knockout method, GPR48/LGR4 has been identified as an orphan GPCR involved in bone and eye development.
引文
[1] T. Pufe, H. Claassen, K.E. Scholz-Ahrens, D. Varoga, W. Drescher, A.T. Franke, C. Wruck, W. Petersen, C. Cellarius, J. Schrezenmeir and C.C. Gluer, Calcif Tissue Int (2007).
    [2] R.K. Aaron, B.D. Boyan, D.M. Ciombor, Z. Schwartz and B.J. Simon, Clin Orthop Relat Res (2004) 30-7.
    [3] J.R. Dwyer, N. Sever, M, Carlson, S.F. Nelson, P.A. Beachy and F. Parhami, J Biol Chem 282 (2007) 8959-68.
    [4] E. Schacht, Z Rheumatol 59 Suppl 1 (2000) 10-20.
    [5] A. Taguchi, M. Ohtsuka, M. Tsuda, T. Nakamoto, I. Kodama, K. Inagaki, T. Noguchi, Y. Kudo, Y. Suei and K. Tanimoto, Dentomaxillofac Radiol 36 (2007) 143-8.
    [6] G. Karsenty, Endocrinology 142 (2001) 2731-3.
    [7] P. Bianco, F.D. Cancedda, M. Riminucci and R. Cancedda, Matrix Biol 17 (1998) 185-92.
    [8] H.M. Kronenberg, Nature 423 (2003) 332-6.
    [9] R. Cancedda, M. Mastrogiacomo, G. Bianchi, A. Derubeis, A. Muraglia and R. Quarto, Novartis Found Symp 249 (2003) 133-43; discussion 143-7, 170-4, 239-41.
    [10] G.M. Quan, J. Ojaimi, Y. Li, V. Kartsogiannis, H. Zhou and P.F. Choong, Calcif Tissue Int 76 (2005) 146-53.
    [11] J. A. Buckwalter and R.R. Cooper, Instr Course Lect 36 (1987) 27-48.
    [12] J. Thyberg and S. Moskalewski, Cell Tissue Res 204 (1979) 77-94.
    [13] R.C. Olney, Med Pediatr Oncol 41 (2003) 228-34.
    [14] G. Karsenty, Nature 423 (2003) 316-8.
    [15] N.N. Batra, Y.J. Li, C.E. Yellowley, L. You, A.M. Malone, C.H. Kim and C.R. Jacobs, J Biomech 38 (2005) 1909-17.
    [16] S.B. Doty, Materwiss Werksttech 35 (2004) 951-61.
    [17] E. Fukuhara, T. Goto, T. Matayoshi, S. Kobayashi and T. Takahashi, Calcif Tissue Int 79 (2006) 443-50.
    [18] E. Polig and W.S. Jee, Calcif Tissue Int 47 (1990) 261-9.
    [19] A. Bruzzaniti and R. Baron, Rev Endocr Metab Disord 7 (2006) 123-39.
    [20] R.J. Byers, J. A. Hoyland and I.P. Braidman, J Endocrinol 168 (2001) 353-62.
    [21] A. Letic-Gavrilovic, R. Scandurra and K. Abe, Dent Mater J 19 (2000) 99-132.
    [22] A. Balduino, S.P. Hurtado, P. Frazao, C.M. Takiya, L.M. Alves, L.E. Nasciutti, M.C. El-Cheikh and R. Borojevic, Cell Tissue Res 319 (2005) 255-66.
    [23] K. Chihara and T. Sugimoto, Horm Res 48 Suppl 5 (1997) 45-9.
    [24] T.A. Linkhart, S. Mohan and D.J. Baylink, Bone 19 (1996) 1S-12S.
    [25] E. Zelzer and B.R. Olsen, Nature 423 (2003) 343-8.
    [26] D. J. Baylink, R.D. Finkelman and S. Mohan, J Bone Miner Res 8 Suppl 2 (1993) S565-72.
    [27] A. Hoffmann and G. Gross, Crit Rev Eukaryot Gene Expr 11 (2001) 23-45.
    [28] C.A. Gersbach, J.M. Le Doux, R.E. Guldberg and A.J. Garcia, Gene Ther 13 (2006) 873-82.
    [29] J.B. Lian, J.L. Stein, G.S. Stein, A.J. van Wijnen, M. Montecino, A. Javed, S. Gutierrez, J. Shen, S.K. Zaidi and H. Drissi, Connect Tissue Res 44 Suppl 1 (2003) 141-8.
    [30] S. Camilleri and F. McDonald, Eur J Oral Sci 114 (2006) 361-73.
    [31] R.T. Franceschi and G. Xiao, J Cell Biochem 88 (2003) 446-54.
    [32] M.B. Goldring, K. Tsuchimochi and K. Ijiri, J Cell Biochem 97 (2006) 33-44.
    [33] Y.L. Li and Z.S. Xiao, Med Hypotheses 68 (2007) 169-75.
    [34] S. Fukumoto, T. Iwamoto, E. Sakai, K. Yuasa, E. Fukumoto, A. Yamada, T. Hasegawa, K. Nonaka and Y. Kato, J Pharmacol Sci 100 (2006) 195-200.
    [35] S.H. Allen, Arthritis Care Res 7 (1994) 205-14.
    [36] T.J. Chambers, Ciba Found Symp 136 (1988) 92-107.
    [37] A. Gal-Moscovici and M.M. Popovtzer, Nephrol Dial Transplant 17 (2002) 620-4.
    [38] A.T. Harder and Y.H. An, J Clin Pharmacol 43 (2003) 807-15.
    [39] J. Lassus, J. Salo, W.A. Jiranek, S. Santavirta, J. Nevalainen, M. Matucci-Cerinic, P. Horak and Y. Konttinen, Clin Orthop Relat Res (1998) 7-15.
    [40] V. Kartsogiannis and K.W. Ng, Mol Cell Endocrinol 228 (2004) 79-102.
    [41] N.C. Partridge, S.R. Bloch and A.T. Pearman, J Cell Biochem 55 (1994) 321-7.
    [42] D.D. Bikle, Rheum Dis Clin North Am 20 (1994) 759-75.
    [43] H.C. Blair and J. L. Carrington, Ann N Y Acad Sci 1068 (2006) 244-9.
    [44] M.K. Andersson, P. Lundberg, A. Ohlin, M.J. Perry, A. Lie, A. Stark and U.H. Lerner, Arthritis Res Ther 9 (2007) R18.
    [45] L.F. Bonewald and G.R. Mundy, Clin Orthop Relat Res (1990) 261-76.
    [46] B.F. Boyce, P. Li, Z. Yao, Q. Zhang, I.R. Badell, E.M. Schwarz, R.J. O'Keefe and L. Xing, Keio J Med 54 (2005) 127-31.
    [47] T. Arnett, Proc Nutr Soc 62 (2003) 511-20.
    [48] S. Kwan Tat, M. Padrines, S. Theoleyre, D. Heymann and Y. Fortun, Cytokine Growth Factor Rev 15 (2004) 49-60.
    [49] R. Cancedda, P. Castagnola, F.D. Cancedda, B. Dozin and R. Quarto, Int J Dev Biol 44 (2000) 707-14.
    [50] S. Ahmad and A. Dray, Curr Opin Investig Drugs 5 (2004) 67-70.
    [51] J. Ballesteros and K. Palczewski, Curr Opin Drug Discov Devel 4 (2001) 561-74.
    [52] J. Bockaert, L. Fagni, A. Dumuis and P. Marin, Pharmacol Ther 103 (2004) 203-21.
    [53] J.E. Aubin, F. Liu, L. Malaval and A.K. Gupta, Bone 17 (1995) 77S-83S.
    [54] T. Gudermann, Novartis Found Symp 239 (2001) 68-79; discussion 80-4, 150-9.
    [55] T. Jackson, Pharmacol Ther 50 (1991) 425-42.
    [56] B. Anliker and J. Chun, Semin Cell Dev Biol 15 (2004) 457-65.
    
    [57] E.M. Hur and K. T. Kim, Cell Signal 14 (2002) 397-405.
    
    [58] M. Bhattacharya, A. V. Babwah and S. S. Ferguson, Biochem Soc Trans 32 (2004) 1040-4.
    
    [59] J. V. Broeck, Arch Insect Biochem Physiol 48 (2001) 1-12.
    [60] M. P. Bos, J. M. Van der Meer, J. H. Feyen and M. P. Herrmann-Erlee, Cell Signal 7 (1995) 617-26.
    
    [61] L. F. Brass, J. A. Hoxie and D. R. Manning, Thromb Haemost 70 (1993) 217-23.■
    [62] T. Tabata and M. Kano, Cerebellum 5 (2006) 127-33.
    
    [63] K. Kuriyama, M. Hirouchi and H. Kimura, Neurochem Res 25 (2000) 1233-9.
    [64] A. Claing and S. A. Laporte, Curr Opin Drug Discov Devel 8 (2005) 585-9.
    [65] H.M. Kronenberg, Ann N Y Acad Sci 1068 (2006) 1-13.
    [66] B. Fermor and T. M. Skerry, J Bone Miner Res 10 (1995) 1935-43.
    [67] P. Esbrit, M. V. Alvarez-Arroyo, F. De Miguel, 0. Martin, M. E. Martinez and C. Caramelo, J Am Soc Nephrol 11 (2000) 1085-92.
    
    [68] D. Yang, J. Guo, P. Divieti and F.R. Bringhurst, Bone 38 (2006) 485-96.
    [69] R. Jemtland, P. Divieti, K. Lee and G. V. Segre, Bone 32 (2003) 611-20.
    [70] E. Schipani and S. Provot, Birth Defects Res C Embryo Today 69 (2003) 352-62.
    [71] R. C. Gensure, T. J. Gardella and H. Juppner, Biochem Biophys Res Commun 328 (2005) 666-78.
    
    [72] C.J. Rosen, Crit Rev Eukaryot Gene Expr 13 (2003) 25-38.
    [73] M. Chorev, Receptors Channels 8 (2002) 219-42.
    
    [74] J. Yaghoobian and T. B. Drueke, Nephrol Dial Transplant. 13 (1998) 580-6.
    [75] S. Y. Hsu, M. Kudo, T. Chen, K. Nakabayashi, A. Bhalla, P. J. van der Spek, M. van Duin and A. J. Hsueh, Mol Endocrinol 14 (2000) 1257-71.
    [76] L. Sun, Y. Peng, A. C. Sharrow, J. Iqbal, Z. Zhang, D. J. Papachristou, S. Zaidi, L. L. Zhu, B. B. Yaroslavskiy, H. Zhou, A. Zallone, M. R. Sairam, T. R. Kumar, W. Bo, J. Braun, L. Cardoso-Landa, M. B. Schaffler, B. S. Moonga, H. C. Blair and M. Zaidi, Cell 125 (2006) 247-60.
    [77] E. Abe, R. C. Marians, W. Yu, X. B. Wu, T. Ando, Y. Li, J. Iqbal, L. Eldeiry, G. Rajendren, H. C. Blair, T. F. Davies and M. Zaidi, Cell 115 (2003) 151-62.
    [78] E. D. Loh, S. R. Broussard, Q. Liu, N. G. Copeland, D. J. Gilbert, N.A. Jenkins and L. F. Kolakowski, Jr., Cytogenet Cell Genet 89 (2000) 2-5.
    [79] G. Van Schoore, F. Mendive, R. Pochet and G. Vassart, Histochem Cell Biol 124 (2005) 35-50.
    
    [80] S. Provot and E. Schipani, Biochem Biophys Res Commun 328 (2005) 658-65.
    [81] V. Lefebvre and P. Smits, Birth Defects Res C Embryo Today 75 (2005) 200-12.
    [82] X. Yang, K. Matsuda, P: Bialek, S. Jacquot, H. C. Masuoka, T. Schinke, L. Li, S. Brancorsini, P. Sassone-Corsi, T. M. Townes, A. Hanauer and G. Karsenty, Cell 117 (2004) 387-98.
    
    [83] D. L. Ellies and R. Krumlauf, Cell 125 (2006) 840-2.
    [84] A. Gal-Moscovici, M. Gal and M. M. Popovtzer, Eur J Clin Invest 35 (2005) 375-9.
    [85] Y. Gao, K. Kitagawa, M. Shimada, C. Uchida, T. Hattori, T. Oda and M. Kitagawa, Hokkaido Igaku Zasshi 81 (2006) 101-5, 107, 109.
    [86] Y. Gao, K. Kitagawa, Y. Hiramatsu, H. Kikuchi, T. Isobe, M. Shimada, C. Uchida, T. Hattori, T. Oda, K. Nakayama, K.I. Nakayama, T. Tanaka, H. Konno and M. Kitagawa, Cancer Res 66 (2006) 11623-31.
    [87] D. Bartsch, M. Ghirardi, P.A. Skehel, K.A. Karl, S.P. Herder, M. Chen, C.H. Bailey and E.R. Kandel, Cell 83 (1995) 979-92.
    [88] H.A. Mohamed, W. Yao, D. Fioravante, P.D. Smolen and J.H. Byrne, J Biol Chem 280 (2005) 27035-43.
    [89] G. Dobreva, M. Chahrour, M. Dautzenberg, L. Chirivella, B. Kanzler, I. Farinas, G. Karsenty and R. Grosschedl, Cell 125 (2006) 971-86.
    [90] H.C. Masuoka and T.M. Townes, Blood 99 (2002) 736-45.
    [91] A.F. Stewart, R. Horst, L.J. Deftos, E.C. Cadman, R. Lang and A.E. Broadus, N Engl J Med 303 (1980) 1377-83.
    [92] N.S. Datta, C. Chen, J.E. Berry and L. K. McCauley, J Bone Miner Res 20 (2005) 1051-64.
    [93] A.M. Ionescu, E.M. Schwarz, C. Vinson, J.E. Puzas, R. Rosier, P.R. Reynolds and R.J. O'Keefe, J Biol Chem 276 (2001) 11639-47.
    [94] W. Huang, U.I. Chung, H.M. Kronenberg and B. de Crombrugghe, Proc Natl Acad Sci U S A 98 (2001) 160-5.
    [95] F. Elefteriou, J.D. Ahn, S. Takeda, M. Starbuck, X. Yang, X. Liu, H. Kondo, W.G. Richards, T.W. Bannon, M. Noda, K. Clement, C. Vaisse and G. Karsenty, Nature 434 (2005) 514-20.
    [96] G. Karsenty and E.F. Wagner, Dey Cell 2 (2002) 389-406.
    [97] B.R. Olsen, A.M. Reginato and W. Wang, Annu Rev Cell Bey Biol 16 (2000) 191-220.
    [98] S.R. George, B.F. O'Dowd and S.P. Lee, Nat Rev Drug Discov 1 (2002) 808-20.
    [99] 李继斌,黎海芪,PTHrP信号途径在软骨内成骨过程中的作用,国外医学·生理、病理科学与临床分册(2002)156-158
    [100] 李剑,魏启幼,PTH/PTHrP对骨代谢调节机制的研究进展,国外医学·生理、病理科学与临床分册(2004)54-57
    [101] 徐道志,詹红生,赵咏芳,成骨细胞分化与骨骼发育的转录因子Cbf α1/Runx2,中医正骨,(2006)61-63
    [102] 于世凤,骨吸收与骨形成,现代康复,5(2001)10-13
    [103] 陈巨莲,Gezhi WEN6,倪汉祥,G蛋白及其偶联信号传导途径的研究进展生物工程学报,17(2001)113-117
    [104] 郭志云,张怀渝,梁龙,G蛋白偶联受体的结构与功能,生命的化学,24(2004)412-414
    [105] 童安莉,陈璐璐,丁桂芝,成骨细胞骨形成机制研究进展CHINESE JOURNAL OF OSTEOPOROSIS 15(1999)60-64

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700