持续气道正压水平对动态肺过度充气时呼吸力学及中枢驱动的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:呼气流速受限(EFL)是导致动态肺过度充气(DPH)和内源性呼气末正压(PEEPi)的重要机制。DPH和PEEPi可增加吸气阈值负荷、降低吸气肌(尤其是膈肌)功能,导致吸气肌努力增加和中枢-机械-通气失偶联,加重呼吸困难。加用适当水平的外源性呼气末正压(PEEPe)可以减少慢性阻塞性肺疾病(COPD)机械通气患者的吸气肌努力,降低呼吸功耗,改善人机协调性。但PEEPe水平对呼吸力学,尤其是中枢-机械-通气偶联的影响仍有待进一步研究。
     研究目的:在健康受试者中使用呼气限流器建立EFL模型,模拟COPD的病理生理学变化,探讨不同的持续气道正压(CPAP)水平对EFL时呼气末肺容量(EELV)、中枢-机械-通气偶联和呼吸困难等方面的综合影响。
     方法:通过深慢呼吸法获得受试者胸壁及肺静态顺应性曲线,构建肺和胸部压力容积曲线(Campbell)图;使用呼气限流器模拟EFL,比较限流前后肺容量/流量、呼吸力学指标及膈肌肌电、中枢-机械-通气偶联的变化;在限流基础上使用CPAP,采集不同压力水平时受试者上述指标的变化,比较不同CPAP水平对上述指标的影响。
     结果:
     1.COPD病理生理模型的建立:
     加用限流器后,受试者出现呼吸困难,并表现与COPD相似的病理生理学变化,如气流受限,动态肺过度充气(深吸气量(IC)减小,P<0.001),出现静态内源性呼气末正压(PEEPi,stat为4.94±1.33 cmH_2O),辅助呼吸肌动用增加(潮气呼吸时食道压与跨膈压变化的比值(△Pes/△Pdi)增高,P<0.05),中枢驱动增加(RMSdi和RMSdi%增高,P<0.01),中枢-机械-通气偶联恶化(VT/RMS、VT/△Pes下降,P<0.01;△Pdi /RMS,P<0.05)。然而,也存在与COPD患者不一样的变化,表现为潮气量(VT)有增加趋势(从0.74±0.11L增加到1.03±0.27L,P>0.05),呼吸频率(RR)减慢(P<0.01)。
     2.CPAP对COPD模型的呼吸力学的影响:
     在此COPD模型中,随CPAP水平的增加,呼气末肺容量的变化值(ΔEELVx)及其占限流后深吸气量(ICx)的百分比(ΔEELVx /ICx%)呈S型曲线变化,在CPAP小于PEEPi,stat的73.95%时增加较缓,当CPAP超过此界限值后,随CPAP升高明显增加;RMSdi及RMSdi%也有上升;中枢—机械-通气偶联指标--潮气量与膈肌电活动强度比值(VT/RMS)、分钟通气量与膈肌电活动强度比值(VE/RMS)、跨膈压与膈肌电活动强度比值(ΔPdi/RMS)、潮气量与跨膈压比值(VT/ΔPdi)、潮气量与食道吸气负压比值(VT/ΔPes)均有降低趋势,但组间比较均无统计学意义。
     3.各项评价指标间的相关及回归关系:
     随着CPAP的逐渐递增,反映呼吸中枢驱动的指标,膈肌肌电活动强度占最大活动强度的百分比(RMSdi%)和平均吸气流速(VT/Ti)的增加,与实验中气促评分(Borg)呈正相关,与IC负相关;而反映中枢-机械-通气偶联的指标,包括VT/ΔPes、ΔPdi/RMS、VT/RMS,与Borg评分呈负相关,与IC正相关。反映流量触发所需要的膈肌活动的指标--RMSdi在吸气开始至流速达40ml/s的积分值与所达到容积的比值(ΣRMS/V)与IC、VT/ΔPes、ΔPdi/RMS、VT/RMS呈负相关,提示吸气起始段膈肌肌电积分值也能很好反映中枢驱动变化。以Borg评分为因变量,对多个自变量进行逐步选择后得5个预测因子:RMSdi%、ΔPdi/RMS、VT/RMS、ΔPes、VT/Ti,其决定系数(R~2)为0.614;以ΔEELVx或IC为因变量,逐步选择后得到2个预测因子:CPAP/PEEPi,stat、呼气时间(Te),其R~2分别为0.666和0.718。
     结论:
     1.使用限流器能造成呼气流速受限,导致动态肺过度充气和PEEPi形成,成功建立正常受试者COPD模型。此模型可引起呼吸肌努力增加、辅助呼吸肌动用,呼吸中枢驱动增强,中枢-机械-通气偶联恶化,出现呼吸困难。
     2.在正常受试者COPD模型中,随着CPAP水平递增,呼气末肺容量呈非线性的增加,在CPAP小于PEEPi,stat的73.95%时呼气末肺容量增加较轻微,当CPAP超过此界限值后,CPAP水平的增加导致明显的呼气末肺容量的增加。CPAP并不能改善中枢-机械-通气偶联。此研究结果不支持采用中枢-机械-通气偶联来指导CPAP的合理设置。CPAP(PEEP)水平的设置应该更加重视呼气末肺容量的监控和患者呼吸困难的情况。
BACKGROUND: Expiratory flow limitation(EFL) is the main mechanism leading to dynamic pulmonary hyperinflation(DPH)and intrinsic positive end-expiratory pressure(PEEPi).DPH and PEEPi lead to increased inspiratory threshold load and impaired inspiratory muscle function (especially the diaphragm), resulting in increased inspiratory muscle efforts and impaired central drive mechanical and ventilation coupling, which is an important mechanism of dyspnea. Appropriate setting of extrinsic PEEP(PEEPe) can decrease inspiratory effort and work of breathing, improve patient-ventilator synchrony in severe COPD patients with PEEPi and treated with mechanical ventilation. The effects of level of PEEPe on respiratory mechanics, especially on central drive mechanical and ventilation coupling, demand further investigation.
     OBJECTIVE: To investigate the levels of PEEPe on end expiratory lung volume, central drive mechanical and ventilation coupling purpose, dyspnea and other respiratory mechanics parameters on the COPD model of induced with expiratory flow limitation in normal volunteerer.
     METHODS: The static pressure volume curves of the lung and chest wall (Campbell diagram) were established with slow deep respiratory manoeuvre. Expiratory flow limitator was employed to induce COPD model with expiratory flow limitation and dynanmic hyperinflation. After the model establishment, the changes of end expiratory lung volume, respiratory flow, diaphragm electromyogram, central drive mechanical and ventilation coupling, as well as other respiratory mechanics parameters were evaluated to elucidate the effects of COPD model on respiratory mechanics. Upon this model, incremental CPAP level was applied to investigate the effects of CPAP level on the above mentioned respiratory mechanics parameters.
     RESULTS:
     1. The establishment of pathophysiological model of COPD.
     After the application of flow restrictor, the subjects become dyspnic, and develop the pathophysiological changes similar to COPD, such as flow limitation,dynamic pulmonary hyperinflation (inspiratory capacity(IC) decrease,P<0.001), static PEEPi(PEEPi,stat were 4.94±1.33 cmH_2O), increased use of accessory respiratory muscle(elevated ratio of tidal Pes to Pdi swing(△Pes/△Pdi),P<0.05). There were also increase of central driver(root mean square of diaphragm electromyogram, RMSdi)、percentage of RMSdi to maximal RMSdi (RMSdi%) (P<0.01)and deterioration of central drive mechanical and ventilation coupling (decreased VT/RMS、VT/△Pes,P<0.01;△Pdi/RMS decrease,P<0.05). However, there were also some changes different from those in COPD, such as the tendency of elevated tidal volume (VT)(increased from 0.74±0.11L to 1.03±0.27L, P>0.05), decreased respiratory rate(RR) (P< 0.01).
     2. Effects of CPAP on respiratory mechanics in COPD.
     In this COPD model, as the increment of CPAP level, the change of EELV (ΔEELVx) and its percentage to inspiratory capacity (ΔEELVx/ICx%) increases in a S-shaped curve. In the range of CPAP level less than 73.95% of PEEPi,stat, there is slight impact on EELV. However, when CPAP level is over this critical value, the impact on EELV increased markedly. The parameters representing central drive mechanical and ventilation coupling including VT/RMS, VE/RMS,ΔPdi/RMS, VT/ΔPdi, VT/ΔPes all were shown to have the tendency of decreasing with no significance difference among groups.
     3. The correlation and relationship between different indexes.
     As the increase of CPAP level, there were increased in parameters representing respiratory central drive, including RMSdi% and mean inspiratory flow(VT/Ti), which are positively related to Borg index and negatively related to IC. The parameters representing central drive mechanical and ventilation coupling, including VT/ΔPes、ΔPdi/RMS、VT/RMS were negatively related to Borg index and positively to IC. The parameter representing diaphragmatic muscle activity to achieve inspiratory flow trigger of common ventilators,the integrals of RMS from the beginning to the time of inspiratory flow of 40ml/s normalized by volume(ΣRMS/V)was negatively related to IC,VT/ΔPes,ΔPdi/RMS and VT/RMS and positively related to the RMSdi% and the Borg index, indicating this parameter in the early inspiration can also adequately reflect the changes of respiratory central drive. Let the Borg index as the dependent variable, stepwise multiple factors regression analysis revealed five related factors, including RMSdi%、ΔPdi/RMS、VT/RMS、ΔPes、VT/Ti,with coefficient of determination(R~2)of 0.614. Let theΔEELVx or IC as the dependent variables, it was shown that CPAP/PEEPi,stat and Te were related factors with R~2 of 0.666 and 0.718 respectively.
     CONCLUSION:
     1. The COPD model was successfully established with flow restrictor in normal volunterers, with the presentation of dynamic pulmonary hyperinflation and PEEPi. It was observed in this model that there were increased respiratory effort, respiratory central drive, use of accessory respiratory muscle and dyspnea, as well as the deterioration of central drive mechanical and ventilation coupling.
     2. In this COPD model, as the increment of CPAP level, the change of EELV (ΔEELVx) and its percentage to inspiratory capacity (ΔEELVx/ICx%) increases in a S-shaped curve. In the range of CPAP level less than 73.95% of PEEPi,stat, there is slight impact on EELV. However, when CPAP level is over this critical value, the impact on EELV increased markedly. CPAP can not improve the central drive mechanical ventilation coupling. These results did not support the use of central drive mechanical and ventilation coupling to guide the rational setting CPAP level.More attention should be paid to the monitoring EELV and the patients’dyspnea in the titration of CPAP (PEEP) level in COPD.
引文
[1] O'Donnell DE, Banzett RB, Carrieri-Kohlman V, et al.. Pathophysiology of dyspnea in chronic obstructive pulmonary disease: a roundtable. Proc Am Thorac Soc. 2007. 4(2): 145-68.
    [2] Hyatt RE. Expiratory flow limitation. J Appl Physiol. 1983. 55(1 Pt 1): 1-7.
    [3] Fishman A, Martinez F, Naunheim K, et al.. A randomized trial comparing lung-volume-reduction surgery with medical therapy for severe emphysema. N Engl J Med. 2003. 348(21): 2059-73.
    [4] Rossi A, Polese G, Brandi G, Conti G. Intrinsic positive end-expiratory pressure (PEEPi). Intensive Care Med. 1995. 21(6): 522-36.
    [5]俞森洋.现代机械通气的监护和临床应用. 2000.北京.中国协和医科大学出版社. 175-191.
    [6] O’Donnell DE. Mechanisms of Dyspnea in COPD. In:Donald A. Mahler DEO ed. Dyspnea - Mechanisms, Measurement, and Management. 2005. Taylor & Francis Group. 29-58.
    [7] O'Donnell DE, Bertley JC, Chau LK, Webb KA. Qualitative aspects of exertional breathlessness in chronic airflow limitation: pathophysiologic mechanisms. Am J Respir Crit Care Med. 1997. 155(1): 109-15.
    [8] Joseph Milic-Emili AK. Clinical assessment of control of breathing. In:Robert A Stockley SIR, Klaus Rabe BC eds. Chronic Obstructive Pulmonary Disease. 2007. Blackwell Publishing Ltd. 63-74.
    [9] O’Donnell DE. Exercise. In:Calverley P MB, Rennard S PN eds. Chronic obstructive pulmonary disease. 2003. London. Edward Arnold Publishers. 243–269.
    [10] Appendini L, Purro A, Patessio A, et al.. Partitioning of inspiratory muscle workload and pressure assistance in ventilator-dependent COPD patients. Am J Respir Crit Care Med. 1996. 154(5): 1301-9.
    [11] Brochard L. Intrinsic (or auto-) positive end-expiratory pressure during spontaneous or assisted ventilation. Intensive Care Med. 2002. 28(11): 1552-4.
    [12] Coussa ML, Guerin C, Eissa NT, et al.. Partitioning of work of breathing in mechanically ventilated COPD patients. J Appl Physiol. 1993. 75(4): 1711-9.
    [13] Zakynthinos SG, Vassilakopoulos T, Roussos C. The load of inspiratory muscles in patients needing mechanical ventilation. Am J Respir Crit Care Med. 1995. 152(4 Pt 1): 1248-55.
    [14] Marini JJ. Should PEEP be used in airflow obstruction. Am Rev Respir Dis. 1989. 140(1): 1-3.
    [15] Murciano D, Aubier M, Bussi S, Derenne JP, Pariente R, Milic-Emili J. Comparison of esophageal, tracheal, and mouth occlusion pressure in patients with chronic obstructive pulmonary disease during acute respiratory failure. Am Rev Respir Dis. 1982. 126(5): 837-41.
    [16] De Troyer A. Effect of hyperinflation on the diaphragm. Eur Respir J. 1997. 10(3): 708-13.
    [17] Decramer M. Hyperinflation and respiratory muscle interaction. Eur Respir J. 1997. 10(4): 934-41.
    [18] Robert M. Senior JJA. Chronic obstructive pulmonary disease: Epidemiology, Pathophysiology, and Pathogenesis. In:Grippi APFAEAFA ed. Fishman’s pulmonary diseases and disorders. 2008. The McGraw-Hill Companies, Inc. 175-191.
    [19] Macklem PT, Macklem DM, De Troyer A. A model of inspiratory muscle mechanics. J Appl Physiol. 1983. 55(2): 547-57.
    [20] Chen RC, Yan S. Perceived inspiratory difficulty during inspiratory threshold and hyperinflationary loadings. Am J Respir Crit Care Med. 1999. 159(3): 720-7.
    [21] Yan S. Sensation of inspiratory difficulty during inspiratory threshold and hyperinflationary loadings. Effect of inspiratory muscle strength. Am J Respir Crit Care Med. 1999. 160(5 Pt 1): 1544-9.
    [22] Puente-Maestu L, Stringer WW. Hyperinflation and its management in COPD. Int J Chron Obstruct Pulmon Dis. 2006. 1(4): 381-400.
    [23]中华医学会重症医学分会.慢性阻塞性肺疾病急性加重患者机械通气指南(2007).中华急诊医学杂志. 2007. 16(4): 350-7.
    [24] Ranieri VM, Giuliani R, Cinnella G, et al.. Physiologic effects of positive end-expiratorypressure in patients with chronic obstructive pulmonary disease during acute ventilatory failure and controlled mechanical ventilation. Am Rev Respir Dis. 1993. 147(1): 5-13.
    [25] Appendini L, Patessio A, Zanaboni S, et al.. Physiologic effects of positive end-expiratory pressure and mask pressure support during exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1994. 149(5): 1069-76.
    [26] Tobin MJ, Lodato RF. PEEP, auto-PEEP, and waterfalls. Chest. 1989. 96(3): 449-51.
    [27]秦朝辉,陈荣昌,钟南山.慢性阻塞性肺疾病患者辅助机械通气时呼气末正压水平对呼气末肺容量的影响.中国呼吸与危重监护杂志. 2007. (01): 23-26+44+81-82.
    [28] Marini JJ. Positive end-expiratory pressure in severe airflow obstruction: more than a "one-trick pony". Crit Care Med. 2005. 33(7): 1652-3.
    [29] Kondili E, Alexopoulou C, Prinianakis G, Xirouchaki N, Georgopoulos D. Pattern of lung emptying and expiratory resistance in mechanically ventilated patients with chronic obstructive pulmonary disease. Intensive Care Med. 2004. 30(7): 1311-8.
    [30] O'Donoghue FJ, Catcheside PG, Jordan AS, Bersten AD, McEvoy RD. Effect of CPAP on intrinsic PEEP, inspiratory effort, and lung volume in severe stable COPD. Thorax. 2002. 57(6): 533-9.
    [31]胡志雄. STARLING阻力器的流体动力学研究.中国医学物理学杂志. 1994. (03): 27-30.
    [32] Yan S, Kayser B, Tobiasz M, Sliwinski P. Comparison of static and dynamic intrinsic positive end-expiratory pressure using the Campbell diagram. Am J Respir Crit Care Med. 1996. 154(4 Pt 1): 938-44.
    [33] Yan S, Kayser B. Differential inspiratory muscle pressure contributions to breathing during dynamic hyperinflation. Am J Respir Crit Care Med. 1997. 156(2 Pt 1): 497-503.
    [34] Iandelli I, Aliverti A, Kayser B, et al.. Determinants of exercise performance in normal men with externally imposed expiratory flow limitation. J Appl Physiol. 2002. 92(5): 1943-52.
    [35] Aliverti A, Kayser B, Macklem PT. A human model of the pathophysiology of chronic obstructive pulmonary disease. Respirology. 2007. 12(4): 478-85.
    [36] Pepe PE, Marini JJ. Occult positive end-expiratory pressure in mechanically ventilated patients with airflow obstruction: the auto-PEEP effect. Am Rev Respir Dis. 1982. 126(1): 166-70.
    [37] Maltais F, Reissmann H, Navalesi P, et al.. Comparison of static and dynamic measurements of intrinsic PEEP in mechanically ventilated patients. Am J Respir Crit Care Med. 1994. 150(5 Pt 1): 1318-24.
    [38] Jubran A, Laghi F, Mazur M, et al.. Partitioning of lung and chest-wall mechanics before and after lung-volume-reduction surgery. Am J Respir Crit Care Med. 1998. 158(1): 306-10.
    [39]秦朝辉,陈荣昌,钟南山.内源性呼气末正压的测定方法.国外医学呼吸系统分册. 2004. 24(3): 113-115.
    [40] Zakynthinos SG, Vassilakopoulos T, Zakynthinos E, Mavrommatis A, Roussos C. Contribution of expiratory muscle pressure to dynamic intrinsic positive end-expiratory pressure: validation using the Campbell diagram. Am J Respir Crit Care Med. 2000. 162(5): 1633-40.
    [41] Blanch L, Bernabe F, Lucangelo U. Measurement of air trapping, intrinsic positive end-expiratory pressure, and dynamic hyperinflation in mechanically ventilated patients. Respir Care. 2005. 50(1): 110-23; discussion 123-4.
    [42] Edgardo D’Angelo. Statics of the Respiratory System. In:Qutayba Hamid JS, Martin J eds. Physiologic Basis of Respiratory Disease. Ontario. BC Decker Inc. 15-25.
    [43] O'Donnell DE, Lam M, Webb KA. Measurement of symptoms, lung hyperinflation, and endurance during exercise in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1998. 158(5 Pt 1): 1557-65.
    [44] Konno K, Mead J. Measurement of the separate volume changes of rib cage and abdomen during breathing. J Appl Physiol. 1967. 22(3): 407-22.
    [45] Sackner MA, Watson H, Belsito AS, et al.. Calibration of respiratory inductive plethysmograph during natural breathing. J Appl Physiol. 1989. 66(1): 410-20.
    [46] Cala SJ, Kenyon CM, Ferrigno G, et al.. Chest wall and lung volume estimation by optical reflectance motion analysis. J Appl Physiol. 1996. 81(6): 2680-9.
    [47] Dahlqvist M, Alexandersson R, Nielsen J, Hedenstierna G. Single and multiple breath nitrogen wash-out--closing volume and volume of trapped gas for detection of early airway obstruction. Clin Physiol. 1989. 9(4): 389-98.
    [48] Georgopoulos D, Giannouli E, Patakas D. Effects of extrinsic positive end-expiratory pressure on mechanically ventilated patients with chronic obstructive pulmonary disease and dynamic hyperinflation. Intensive Care Med. 1993. 19(4): 197-203.
    [49] Guerin C, Milic-Emili J, Fournier G. Effect of PEEP on work of breathing in mechanically ventilated COPD patients. Intensive Care Med. 2000. 26(9): 1207-14.
    [50] Tan IK, Bhatt SB, Tam YH, Oh TE. Effects of PEEP on dynamic hyperinflation in patients with airflow limitation. Br J Anaesth. 1993. 70(3): 267-72.
    [51] O'Donnell DE, Laveneziana P. The clinical importance of dynamic lung hyperinflation in COPD. COPD. 2006. 3(4): 219-32.
    [52] Vinegar A, Sinnett EE, Leith DE. Dynamic mechanisms determine functional residual capacity in mice, Mus musculus. J Appl Physiol. 1979. 46(5): 867-71.
    [53] Gauthier AP, Verbanck S, Estenne M, Segebarth C, Macklem PT, Paiva M. Three-dimensional reconstruction of the in vivo human diaphragm shape at different lung volumes. J Appl Physiol. 1994. 76(2): 495-506.
    [54] ATS/ERS Statement on respiratory muscle testing. Am J Respir Crit Care Med. 2002. 166(4): 518-624.
    [55] Banzett RB, Inbar GF, Brown R, Goldman M, Rossier A, Mead J. Diaphragm electrical activity during negative lower torso pressure in quadriplegic men. J Appl Physiol. 1981. 51(3): 654-9.
    [56] Cheeseman M, Revelette WR. Phrenic afferent contribution to reflexes elicited by changes in diaphragm length. J Appl Physiol. 1990. 69(2): 640-7.
    [57] Druz WS, Sharp JT. Electrical and mechanical activity of the diaphragm accompanying body position in severe chronic obstructive pulmonary disease. Am Rev Respir Dis. 1982. 125(3): 275-80.
    [58] Green M, Mead J, Sears TA. Muscle activity during chest wall restriction and positive pressure breathing in man. Respir Physiol. 1978. 35(3): 283-300.
    [59] Beck J, Sinderby C, Lindstrom L, Grassino A. Effects of lung volume on diaphragm EMG signal strength during voluntary contractions. J Appl Physiol. 1998. 85(3): 1123-34.
    [1]丁东杰.呼吸中枢与呼吸调节.中华结核和呼吸杂志. 2000. (09): 527-30.
    [2] Feldman JL, Del NCA. Looking for inspiration: new perspectives on respiratory rhythm. Nat Rev Neurosci. 2006. 7(3): 232-42.
    [3] Tests of Ventilatory Control. In:Gibson GJ ed. Clinical Tests of Respiratory Function. 2009. Charon Tec Ltd. 96-103.
    [4] Corne S, Bshouty Z. Basic principles of control of breathing. Respir Care Clin N Am. 2005. 11(2): 147-72.
    [5] Heywood P, Murphy K, Corfield DR, Morrell MJ, Howard RS, Guz A. Control of breathing in man; insights from the 'locked-in' syndrome. Respir Physiol. 1996. 106(1): 13-20.
    [6] Read DJ. A clinical method for assessing the ventilatory response to carbon dioxide. Australas Ann Med. 1967. 16(1): 20-32.
    [7] Rebuck AS, Campbell EJ. A clinical method for assessing the ventilatory response to hypoxia. Am Rev Respir Dis. 1974. 109(3): 345-50.
    [8] Yasushi Akiyama YK. Clinical Assessment of the Respiratory Control System. In:Murray D.Altose YK ed. Control of Breathing in Health and Disease. 1999. New York. Marcel Dekker,Inc. 251-287.
    [9] Hall MJ, Xie A, Rutherford R, Ando S, Floras JS, Bradley TD. Cycle length of periodic breathing in patients with and without heart failure. Am J Respir Crit Care Med. 1996. 154(2 Pt 1): 376-81.
    [10] North JB, Jennett S. Abnormal breathing patterns associated with acute brain damage. Arch Neurol. 1974. 31(5): 338-44.
    [11] Akiyama Y, Aimoto Y, Nishimura M, Takai S, Kawakami Y. Rigid spine syndrome with selective respiratory muscle weakness. Respiration. 1992. 59(1): 48-51.
    [12] Maxwell DL, Cover D, Hughes JM. Effect of respiratory apparatus on timing and depth of breathing in man. Respir Physiol. 1985. 61(2): 255-64.
    [13] Konno K, Mead J. Measurement of the separate volume changes of rib cage and abdomen during breathing. J Appl Physiol. 1967. 22(3): 407-22.
    [14] Yan S, Kayser B, Tobiasz M, Sliwinski P. Comparison of static and dynamic intrinsic positive end-expiratory pressure using the Campbell diagram. Am J Respir Crit Care Med. 1996. 154(4 Pt 1): 938-44.
    [15] Sackner MA, Watson H, Belsito AS, et al.. Calibration of respiratory inductive plethysmograph during natural breathing. J Appl Physiol. 1989. 66(1): 410-20.
    [16] Cala SJ, Kenyon CM, Ferrigno G, et al.. Chest wall and lung volume estimation by optical reflectance motion analysis. J Appl Physiol. 1996. 81(6): 2680-9.
    [17] Jubran A, Tobin MJ. The effect of hyperinflation on rib cage-abdominal motion. Am Rev Respir Dis. 1992. 146(6): 1378-82.
    [18] Stromberg NO, Dahlback GO, Gustafsson PM. Evaluation of various models for respiratory inductance plethysmography calibration. J Appl Physiol. 1993. 74(3): 1206-11.
    [19] Neumann P, Zinserling J, Haase C, Sydow M, Burchardi H. Evaluation of respiratory inductive plethysmography in controlled ventilation: measurement of tidal volume and PEEP-induced changes of end-expiratory lung volume. Chest. 1998. 113(2): 443-51.
    [20] Joseph Milic-Emili AK. Clinical assessment of control of breathing. In:Robert A Stockley SIR, Klaus Rabe BC eds. Chronic Obstructive Pulmonary Disease. 2007. Blackwell Publishing Ltd. 63-74.
    [21] Mitchell RA, Berger AJ. Neural regulation of respiration. Am Rev Respir Dis. 1975. 111(2): 206-24.
    [22] Tobin MJ, Chadha TS, Jenouri G, Birch SJ, Gazeroglu HB, Sackner MA. Breathing patterns. 2. Diseased subjects. Chest. 1983. 84(3): 286-94.
    [23] Mador MJ, Tobin MJ. Effect of alterations in mental activity on the breathing pattern in healthy subjects. Am Rev Respir Dis. 1991. 144(3 Pt 1): 481-7.
    [24] Whitelaw WA, Derenne JP, Milic-Emili J. Occlusion pressure as a measure of respiratory center output in conscious man. Respir Physiol. 1975. 23(2): 181-99.
    [25] Conti G, Antonelli M, Arzano S, Gasparetto A. Measurement of occlusion pressures incritically ill patients. Crit Care. 1997. 1(3): 89-93.
    [26] Whitelaw WA, Derenne JP. Airway occlusion pressure. J Appl Physiol. 1993. 74(4): 1475-83.
    [27] Gribbin HR, Gardiner IT, 3rd HGJ, Gibson GJ, Pride NB. Role of impaired inspiratory muscle function in limiting the ventilatory response to carbon dioxide in chronic airflow obstruction. Clin Sci (Lond). 1983. 64(5): 487-95.
    [28] Milic-Emili J. Recent advances in clinical assessment of control of breathing. Lung. 1982. 160(1): 1-17.
    [29] Marazzini L, Cavestri R, Gori D, Gatti L, Longhini E. Diffference between mouth and esophageal occlusion pressure during CO2 rebreathing in chronic obstructive pulmonary disease. Am Rev Respir Dis. 1978. 118(6): 1027-33.
    [30] Murciano D, Aubier M, Bussi S, Derenne JP, Pariente R, Milic-Emili J. Comparison of esophageal, tracheal, and mouth occlusion pressure in patients with chronic obstructive pulmonary disease during acute respiratory failure. Am Rev Respir Dis. 1982. 126(5): 837-41.
    [31] Elliott MW, Mulvey DA, Green M, Moxham J. An evaluation of P0.1 measured in mouth and oesophagus, during carbon dioxide rebreathing in COPD. Eur Respir J. 1993. 6(7): 1055-9.
    [32] Conti G, Cinnella G, Barboni E, Lemaire F, Harf A, Brochard L. Estimation of occlusion pressure during assisted ventilation in patients with intrinsic PEEP. Am J Respir Crit Care Med. 1996. 154(4 Pt 1): 907-12.
    [33] Yan S, Kayser B, Tobiasz M, Sliwinski P. Comparison of static and dynamic intrinsic positive end-expiratory pressure using the Campbell diagram. Am J Respir Crit Care Med. 1996. 154(4 Pt 1): 938-44.
    [34] Fernandez R, Cabrera J, Calaf N, Benito S. P 0.1/PIMax: an index for assessing respiratory capacity in acute respiratory failure. Intensive Care Med. 1990. 16(3): 175-9.
    [35] Alberti A, Gallo F, Fongaro A, Valenti S, Rossi A. P0.1 is a useful parameter in setting the level of pressure support ventilation. Intensive Care Med. 1995. 21(7): 547-53.
    [36] Iotti GA, Braschi A. Closed-loop support of ventilatory workload: the P0.1 controller. Respir Care Clin N Am. 2001. 7(3): 441-64, ix.
    [37] Mancebo J, Albaladejo P, Touchard D, et al.. Airway occlusion pressure to titrate positive end-expiratory pressure in patients with dynamic hyperinflation. Anesthesiology. 2000. 93(1): 81-90.
    [38] Sassoon CS, Te TT, Mahutte CK, Light RW. Airway occlusion pressure. An important indicator for successful weaning in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis. 1987. 135(1): 107-13.
    [39] Levine S, Gillen M. Diaphragmatic pressure waveform can predict electromyographic signs of diaphragmatic fatigue. J Appl Physiol. 1987. 62(4): 1681-9.
    [40] Lopata M, Evanich MJ, Lourenco RV. Quantification of diaphragmatic EMG response to CO2 rebreathing in humans. J Appl Physiol. 1977. 43(2): 262-70.
    [41] ATS/ERS Statement on respiratory muscle testing. Am J Respir Crit Care Med. 2002. 166(4): 518-624.
    [42] Bolton CF, Grand'Maison F, Parkes A, Shkrum M. Needle electromyography of the diaphragm. Muscle Nerve. 1992. 15(6): 678-81.
    [43] Saadeh PB, Crisafulli CF, Sosner J, Wolf E. Needle electromyography of the diaphragm: a new technique. Muscle Nerve. 1993. 16(1): 15-20.
    [44] Demoule A, Verin E, Locher C, Derenne JP, Similowski T. Validation of surface recordings of the diaphragm response to transcranial magnetic stimulation in humans. J Appl Physiol. 2003. 94(2): 453-61.
    [45] Sinderby C, Friberg S, Comtois N, Grassino A. Chest wall muscle cross talk in canine costal diaphragm electromyogram. J Appl Physiol. 1996. 81(5): 2312-27.
    [46] Grassino AE, Whitelaw WA, Milic-Emili J. Influence of lung volume and electrode position on electromyography of the diaphragm. J Appl Physiol. 1976. 40(6): 971-5.
    [47] Daubenspeck JA, Leiter JC, McGovern JF, Knuth SL, Kobylarz EJ. Diaphragmatic electromyography using a multiple electrode array. J Appl Physiol. 1989. 67(4): 1525-34.
    [48] Sinderby C, Beck J, Spahija J, Weinberg J, Grassino A. Voluntary activation of the human diaphragm in health and disease. J Appl Physiol. 1998. 85(6): 2146-58.
    [49] Beck J, Sinderby C, Lindstrom L, Grassino A. Effects of lung volume on diaphragm EMG signal strength during voluntary contractions. J Appl Physiol. 1998. 85(3): 1123-34.
    [50] Gorini M, Spinelli A, Ginanni R, Duranti R, Gigliotti F, Scano G. Neural respiratory drive and neuromuscular coupling in patients with chronic obstructive pulmonary disease (COPD). Chest. 1990. 98(5): 1179-86.
    [51] De Troyer A, Leeper JB, McKenzie DK, Gandevia SC. Neural drive to the diaphragm in patients with severe COPD. Am J Respir Crit Care Med. 1997. 155(4): 1335-40.
    [52] Gandevia SC, Gorman RB, McKenzie DK, De Troyer A. Effects of increased ventilatory drive on motor unit firing rates in human inspiratory muscles. Am J Respir Crit Care Med. 1999. 160(5 Pt 1): 1598-603.
    [53] Beck J, Sinderby C, Lindstrom L, Grassino A. Crural diaphragm activation during dynamic contractions at various inspiratory flow rates. J Appl Physiol. 1998. 85(2): 451-8.
    [54] Beck J, Gottfried SB, Navalesi P, et al.. Electrical activity of the diaphragm during pressure support ventilation in acute respiratory failure. Am J Respir Crit Care Med. 2001. 164(3): 419-24.
    [55] Sinderby C, Beck J, Spahija J, et al.. Inspiratory muscle unloading by neurally adjusted ventilatory assist during maximal inspiratory efforts in healthy subjects. Chest. 2007. 131(3): 711-7.
    [56] Luo YM, Moxham J. Measurement of neural respiratory drive in patients with COPD. Respir Physiol Neurobiol. 2005. 146(2-3): 165-74.
    [57] Luo YM, Hart N, Mustfa N, Lyall RA, Polkey MI, Moxham J. Effect of diaphragm fatigue on neural respiratory drive. J Appl Physiol. 2001. 90(5): 1691-9.
    [58] Sinderby C, Spahija J, Beck J, et al.. Diaphragm activation during exercise in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001. 163(7): 1637-41.
    [59] Saboisky JP, Gorman RB, De Troyer A, Gandevia SC, Butler JE. Differential activation among five human inspiratory motoneuron pools during tidal breathing. J Appl Physiol. 2007. 102(2): 772-80.
    [60] Saboisky JP, Butler JE, Fogel RB, et al.. Tonic and phasic respiratory drives to human genioglossus motoneurons during breathing. J Neurophysiol. 2006. 95(4): 2213-21.
    [61] Gandevia SC, Hudson AL, Gorman RB, Butler JE, De Troyer A. Spatial distribution of inspiratory drive to the parasternal intercostal muscles in humans. J Physiol. 2006. 573(Pt 1): 263-75.
    [62] De Troyer A, Gorman RB, Gandevia SC. Distribution of inspiratory drive to the external intercostal muscles in humans. J Physiol. 2003. 546(Pt 3): 943-54.
    [63] Butler JE, McKenzie DK, Gandevia SC. Discharge properties and recruitment of human diaphragmatic motor units during voluntary inspiratory tasks. J Physiol. 1999. 518 ( Pt 3): 907-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700