滑动轴承支承机电耦联轴系的稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
广泛用于数控机床的电主轴具有结构紧凑、动态精度高等众多优点,已逐渐取代传统结构的变速箱。本文研究轴承-转子系统的动力学问题,主要研究内容包括:1)径向可倾瓦轴承动力系数计算;2)可倾瓦轴承稳态平衡位置搜索;3)轴承—转子系统临界转速确定;4)轴承—转子系统稳定性分析。
     可倾瓦径向滑动轴承动力特性系数的计算主要基于对雷诺方程的求解:首先根据力矩平衡条件确定瓦块摆角,用偏导数法得出各瓦块稳态时的动力系数;然后,考虑瓦块摆动对系数的影响,建立静动坐标间动力系数的关系,计算出可倾瓦轴承动力特性系数。针对可倾瓦轴承稳态平衡位置搜索,提出了一种新式运动极坐标系搜索方法,该方法能有效避免搜索过程中的死循环问题,也适用于其它滑动轴承。
     不平衡磁拉力的存在会改变轴承—转子系统的临界转速,运用专业软件对电主轴进行磁场分析,提取不平衡磁拉力,以更准确计算轴系的动力特性。本文介绍了两种临界转速的计算方法:1)传递矩阵法。用传递矩阵—多项式法计算临界转速,可以容易地将支承的阻尼包含在传递矩阵中,由于状态向量含有8个元素,因此特征方程阶次较高,为提高低阶根的精度,引入时间因子,借助QR法求解复数特征根;Riccati传递矩阵法将两点边值问题转变为一点初值问题,因此保持了较高精度。2)有限元法计算过程。在有限元分析软件中建立轴系的简化模型,考虑陀螺力矩影响,加载后求解,绘制出系统的CAMPBELL图,提取临界转速。本文还简单介绍了模态振型和不平衡响应的计算过程。
     对数衰减率用来度量振幅衰减快慢,反应系统受扰后回复到平衡状态的能力,可以作为衡量轴系稳定性的指标,已被推广到多自由度系统。针对计算的转子系统,本文画出了复特征值对应的对数衰减率曲线,分析了轴系的稳定性。
Motorized spindle widely used in CNC machine tools has the advantages, such as compact structure and higher dynamic accuracy. It is gradually substituting the conventional transmission. Rotor dynamics is studied in this paper. The primary substance is as followings: 1) the calculation of dynamic coefficients of tilting pad journal bearing; 2) an approach searching for the steady-state equilibrium position of tilting-pad journal bearing; 3) the determination of the critical speed of the rotor-bearing system; 4) the stability analysis of a rotor system.
     The calculation of dynamic coefficients is based on solving the Reynolds equation of tilting pad journal bearing. Firstly, the pad rotation angle is determined according to the balance of moment. And the method of partial derivative can be applied to calculate dynamic coefficients of tilting pad journal bearing at the equilibrium position. Then the effect of swing pad on the coefficients is not taken into account. After establishing the transformation relation to the coefficients in static coordinate system, the coefficients of tilting pad journal bearing could be calculated. A new method named dynamic polar coordinate is presented to search the steady-state equilibrium position of journal. The method can avoid effectively never-ending loop in process of search and be easily extended to other types of sliding bearings.
     The existence of unbalanced magnetic pull will change the critical speed of rotor-bearing system. The electromagnetic field of motorized spindle is simulated through the application of professional software, and the unbalanced magnetic pull is calculated for better dynamic analysis. To calculate the critical speeds of rotor system, this paper covers the following aspects: 1) transfer matrix method. The matrix can easily include the damping of support by applying the transfer matrix-polynomial method to calculate the critical speed. 8 elements of state vector lead to higher order in equation inevitably. The time factor is helpful to improve the accuracy of low-order eigenvalues of the system. The shifted QR algorithm is employed for the complex roots of the characteristic equation. Riccati transfer matrix method changes two-point boundary value problem into one-point initial value one. As a result, it improves the precision. 2) the process of calculating in finite-element method. FEM analysis software is used to model the simplified shafting. The effect of gyroscopic moment is taken into account. After Loading and solving, CAMPBELL diagram is drawn to obtain the critical speeds. This paper also introduces the calculation of mode and unbalance response.
     The logarithmic decrement represents the declining rate of amplitude and reflects the ability of perturbed system to return to equilibrium states. It could be used as the measure indices of the stability of spindle, which has been extended to multi-freedom degree system. The logarithmic decrement curve that corresponds to complex eigenvalues is shown in this paper. The stability analysis of the spindle is made finally.
引文
[1]郑惠萍.大型旋转机械中非线性因素综述.河北科技大学学报,1999,20(3):82~86.
    [2]孟庆国,陈予恕.基金重大项目“大型旋转机械非线性动力学问题”中期成果总结.力学进展,2001(2):304~306.
    [3] N. N. Bhujappa, M.G. Basanagouda. Dynamic Reynolds equation for micropolar fluid lubrication of porous slider bearings. Journal of Marine Science and Technology, 2008, 16(3): 182~190.
    [4]魏民祥,马利峰.建立可倾瓦轴承动态雷诺方程的一种新方法.机械科学与技术,1998,17(6):933~934.
    [5] Ladislav P?st, Jan Kozánek. Evolutive and nonlinear vibrations of rotor on aerodynamic bearings. Nonlinear Dynamics, 2007, 50(4): 829–840.
    [6] R. Tiwari, A.W. Lees, M.I. Friswell. Identification of dynamic bearing parameters: a review. Shock and Vibration Digest, 2004, 36(2): 99~124.
    [7] Christian Brecher, Christoph Baum, Markus Winterschladen et al. Simulation of dynamic effects on hydrostatic bearings and membrane restrictors. Prod. Eng. Res. Devel, 2007, 1(4): 415~420.
    [8]朱均.滑动轴承油膜非线性动力学分析.太原重型机械学院学报,2004,25(增刊):4~7.
    [9]陈峻华,袁慧,陈凌珊等.径向可倾瓦轴承润滑参数的分析方法及应用.广东工业大学学报,1999,16(1):35~38.
    [10]陆永忠,廖道训,黄其柏.多层油膜阻尼转子系统动力学建模方法的研究.华中理工大学学报,2000,28(1):18~19,22.
    [11]王正.Riccati传递矩阵法的奇点及其消除方法.振动与冲击,1987 (2):74~78.
    [12]顾家柳.传递矩阵一直接积分法及其应用.航空学报,1983,4(4):48~56.
    [13]黄太平.转子动力学中传递矩阵阻抗耦合法.航空动力学报.1988,3(4):315~318.
    [14]黄太平.多转子系统振动的子系统分析方法——阻抗耦合法与分振型综合法.振动工程学报.1988,3(l):30~40.
    [15]杨建刚,高亹.改进传递矩阵法计算转子系统不平衡响应和灵敏度.机械工程学报,2001,37(6):109~l12.
    [16] J. W. Zu, Z. Ji. An improved transfer matrix method for steady-state analysis of nonlinear rotor-bearing systems. Journal of Engineering for Gas Turbines and Power, 2002, 124(2): 303~310.
    [17] R. Turaga, A. S. Sekhar, B. C. Majumdar. stability analysis of a rigid rotor supported on hydrodynamic journal bearings with rough surfaces using the stochastic finite element method. Journal of Engineering Tribology, 1998, 212(2): 121~130.
    [18]李志刚,张直明.大自由度的转子-滑动轴承系统非线性动力学分析.上海大学学报,1995,1(6):640~650.
    [19] Eduardo Paiva Okabe, Katia Lucchesi Cavalca. Rotordynamic analysis of systems with a non-linear model of tilting pad bearings including turbulence effects. Nonlinear Dyn., 2009, 57(4): 481~495.
    [20] J. B. Zhen, G. Meng. Bifurcation and chaos response of nonlinear crack rotors. international journal of bifurcation & chaos. 2007, 50(3): 483~509.
    [21]陈长江,郭丽娟,萧汝峰等.数控机床用高速电主轴振动原因分析.现代零部件,2005(10):40~41.
    [22]伍良生,周亮,肖毅川.GDH512电主轴振动特性分析.制造技术与机床,2010(2):21~25.
    [23]高尚晗,孟光.机床主轴系统动力学特性研究进展.振动与冲击,2007,26(6):103~108.
    [24]王丽萍,乔广,郑铁生.可倾瓦径向滑动轴承完整动特性系数的分析模型.计算力学学报,2008,25(6): 921~926.
    [25]樊红朝,杨建玺,崔勤建.动压油膜轴承研究现状与应用.轴承,2003(2):1~3
    [26] (英)O.平克斯,B.斯德因李希特.流体动力润滑理论.北京:机械工业出版社,1980.
    [27]宋强,孙逢春,马金奎.滑动轴承油膜参数识别及稳定性研究综述,润滑与密封,2002(4):40~43.
    [28]付忠广.滑动轴承油膜动力特性分析及实验研究:(硕士学位论文).北京:华北电力大学,2010.
    [29]张直明.滑动轴承的流体动力润滑理论.北京:高等教育出版社,1986.
    [30]西安交通大学轴承研究组.活支瓦块径向滑动轴承的研究.西安交通大学学报,1976(2):39~67.
    [31]董长善.可倾瓦径向轴承的使用和配制.石油化工设备技术,1981(2):58~62.
    [32]徐贤忠.可倾瓦径向滑动轴承的性能计算.润滑与密封,1995(4):25~28.
    [33]袁小阳,朱均.不平衡转子—滑动轴承系统稳定性的非线性研究.振动与冲击,1996,15(1):71~76.
    [34]王熙哲,袁小阳,朱均等.动静压可倾瓦轴承支点结构的研究.制造技术与机床,1997(6):24~26.
    [35]陈予恕.非线性转子-轴承系统的分叉.振动工程学报.1996,9(3):266~275.
    [36]杨金福,刘占生,谢永波等.关于Reynolds方程求解的动态边界条件研究.黑龙江电力.2004,26(5):346~349.
    [37]陈伯贤,裘祖干,张慧生.流体润滑理论及其应用.北京:机械工业出版社,1991.
    [38]张青雷,卢修连,朱均.边界条件对滑动轴承性能的影响.润滑与密封,2002(5):12~16.
    [39]王金铭.数值分析.大连:大连理工大学出版社,2008.
    [40]张铁,闫家斌.数值分析.北京:冶金工业出版社,2001.
    [41]赵永辉.离心式压缩机转子-轴承系统临界转速计算:(硕士学位论文).沈阳:沈阳工业大学,2006.
    [42]朱礼进,张可喜.推力可倾瓦轴承支点的优化设计.润滑与密封,2004,166(6):58~62.
    [43]方跃法.滑动轴承动力系数计算的压力扰动法.现代机械,1997(4):35~38.
    [44]黄亭亭,唐锡宽.可倾瓦块滑动轴承动力特性系数的计算及分析.第二次全国摩擦磨损润滑学术会议论文集,机械工业出版社,1982:116~128.
    [45]闻邦椿,顾家柳,夏松波等.高等转子动力学.北京:机械工业出版社,2001:81~110.
    [46]周军波,丁毓峰.基于轴系稳定性分析的滑动轴承优化设计.机械制造,2010,48(8):41~44.
    [47]帅旗,吴鹿鸣,陈治勇.三油叶轴承静载平衡位置求解.机械工程与自动化,2006(2):119~121.
    [48]富玮瑛,殷达章,董富庆等.高速五块可倾瓦轴承的性能试验.热力透平,1986(3):15~23.
    [49]郑龙席,李晓丰,秦卫阳.计算转子临界转速的两种方法及对比分析.风机技术,2009(6):35~38.
    [50]虞烈,刘恒.轴承-转子系统动力学.西安:西安交通大学出版社,2001.
    [51]孟光.转子动力学研究的回顾与展望.振动工程学报,2002,15(1):1~9.
    [52] Chao-Yang Tsai, Shyh-Chin Huang. Transfer matrix for rotor coupler with parallel misalignment. Journal of Mechanical Science and Technology. 2009, 23(5): 1383~1395.
    [53]钟一谔,何衍宗,王正等.转子动力学.北京:清华大学出版社,1987.
    [54]刘保国,桑广伟.动力响应问题的摄动Riccati传递矩阵方法.机械科学与技术,2007,26(5):589~594.
    [55]孟杰,陈小安.电主轴动力学分析的传递矩阵法.机械设计,2008,25(7):37~40.
    [56] Shenbo Yu, Shi Jiao, Jing Yuan et al. Calculation of rotor critical speeds from permanent magnet synchronous machine. 2010 International Conference on Electrical and Control Engineering, Wuhan, 2010: 3439~3442.
    [57] D.Kim, J.W.David. An improved method for stability and damped critical speeds of rotor-bearing systems. J.of Vibration and Acoustics Trans ASME, 1990, 112(1): 112~119.
    [58]袁明顺,郭永宁.实高次代数方程的求解与数值计算.中国科技信息,2008(21):48~49.
    [59]徐士良.计算机常用算法.第二版.北京:清华大学出版社,1995.
    [60] P.N.Bansal, R.G.Kirk. Stability and damped critical speeds of rotor-bearing systems. J.of Eng.for Industry Trans. ASME, 1975, 97(11): 1325~1332.
    [61]刘贵杰,刘思汉.转子系统临界转速计算方法评述.山东轻工业学院学报, 1993,7(4):59~68.
    [62]李啸天,韩振南.基于ANSYS软件的转子系统临界转速及模态分析.机械管理开发,2010,25(3):184~185.
    [63]周朝暾,汪希平,严慧艳.主动电磁轴承转子系统振动模态的分析研究.机械科学与技术,2004,23(10):1163~1165,1197.
    [64]沈小要,赵玫,荆建平.超超临界汽轮机转子系统的稳定性计算.汽轮机技术,2006,48(4):250~253.
    [65]王黎,韩磊,韩清凯等.各向异性支承的分布质量转子系统的稳定性分析.机械设计,2008,25(5):15~17.
    [66]王跃方,胡家炘,黄丽华等.中型高速电机柔性轴动力特性的计算.中小型电机,1994,21(5):10~13.
    [67]夏亮.单边磁拉力对电机转轴挠度影响的计算.防爆电机,2009,44(2):49~50.
    [68]陈世坤.电机设计.北京:机械工业出版社,2000.
    [69]戴曙.机床滚动轴承应用手册.北京:机械工业出版社,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700