某型航空发动机转子系统动力学特性的有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空发动机转子系统的动力学特性决定着航空发动机工作的可靠性和结构的完整性,因此对航空发动机转子系统的动力学特性进行计算和分析具有重要意义。本文采用有限元方法对一个简单的双转子系统模型的动力学特性进行了计算,分别采用三种有限元建模方法对其进行计算和分析,验证三种建模方法的可行性和计算方法的正确性,从而为某型航空发动机转子系统的合理建模和计算奠定了基础。
     合理地建立发动机转子系统的有限元模型对研究发动机整机振动具有重要意义。本文采用四种有限元建模方法对具有弯扭叶片的转子系统的临界转速进行了计算。通过对计算结果分析发现,叶片简化为质量单元的三维模型和具有弯扭叶片的三维模型的计算结果的误差很小,由此提出了对航空发动机轴和轮盘采用三维模型,叶片采用质量单元的建模方法进行建模,有效兼顾了模型的规模与计算的精度。
     本文提出了对某型航空发动机转子系统建模的方法并对其进行合理建模。在进行临界转速计算之前,首先计算了该发动机支承系统的刚度,然后用APDL语言编制航空发动机双转子系统临界转速的计算程序,用Campbell图法分别得到由低压转子和高压转子为主激励的临界转速和主振型。采用同步响应法分别计算低压转子不平衡和高压转子不平衡引起的响应,得到高、低压转子上各个盘的位移频率响应曲线,同时还得到了高、低压转子为主激励的临界转速,最后对这两种有限元方法计算得到的临界转速进行相互验证。
     本文运用有限元的方法对某型航空发动机转子系统的动力学特性进行了计算和分析。结果表明:论文中采取的各种分析方法是可行的,计算结果是合理的,对研究同类航空发动机转子系统的动力学特性具有一定的参考价值。
The dynamic characteristics of aviation engine rotor system determine the reliability of operation and the integrity of the structure of an aircraft engine. So calculation and analysis of dynamic characteristics of aircraft engine rotor system are of great significance. In this paper, the dynamic characteristics of a simple dual-rotor model are calculated with the finite element method. Three types of finite element modeling methods are used for calculating and analyzing of the dual-rotor system and the feasibility of these methods is verified, so as to lay a foundation for reasonable modeling and calculating of the rotor system of an aircraft engine.
     An appropriate finite element model of engine rotor system is important for further studying the vibration of the engine. Four finite element modeling methods are used to calculate the critical speeds of the rotor system with cambered and twisting blades. Through the analysis of the results, it is found that the calculation results of the 3D model with blades simplified to mass element and the 3D model with cambered and twisting blades agree very well. This paper proposes that shaft and disk of the engine are created by 3D model, and the blades simplified by the mass element effectively take account of calculation accuracy and scale of the model.
     Taking the above mentioned into consideration, this paper proposes a modeling method for the rotor system of an aeroengine,then the model of the system is created reasonably. Before calculating the critical speeds, the stiffness of the support system of the engine is firstly calculated; then the critical speeds of the aeroengine dual-rotor system are calculated using APDL language programs and critical speeds and normal modes excited by the low-pressure rotor and the high-pressure rotor are obtained respectively by Campbell diagram method. The unbalance responses caused by imbalance of the low-pressure rotor and the high-pressure rotor are calculated by synchronization response method, from which the amplitude-frequency response curve of each disk is obtained. At the same time, critical speeds excited by the low-pressure rotor and the high-pressure rotor are obtained. Finally these two types of finite element method are used to mutually verify the critical speeds obtained.
     In this paper, the dynamic characteristics of the rotor system of an aircraft engine are calculated and analyzed using the finite element method. Analysis results show that the calculation method used in this paper works well and can be used to analyze similar aeroengines. The calculation results are reasonable, which have some reference value for analysis of aeroengine vibration.
引文
[1]钟一谔,何衍宗.转子动力学[M].北京:清华大学出版社, 1989.
    [2]宋兆泓.航空发动机典型故障分析[M].北京:北京航空航天大学出版社, 1993.
    [3]方昌德.世界航空发动机手册[M].北京:航空工业出版社. 1996.
    [4]屈维德,唐恒龄.机械振动手册[M].北京:机械工业出版社. 2000.
    [5]张洪飚,李志广.转子动力学及整机振动[M].北京:航空工业出版社, 2000.
    [6] Glasgow, D.A. Stability analysis of rotor-bearing systems using component mode synthesis. Transactions of the ASME, 1980, 102: 352~359
    [7] Gunter, E.J. Unbalance response of a two spool gas turbine engine with squeeze film bearings. ASME, 81-GT-219
    [8] Gunter, E.J. Design of nonlinear squeeze-film dampers for aircraft engines. Journal of Lubrication Technology, 99(1): 57~64
    [9] Kazao, Y, Gunter, E.J. Dynamics of multi-spool gas turbines using the matrix transfer method-theory. International Journal of turbo and Jet engines. (6): 153~161
    [10] Gupta, K. Unbalance response of a dual rotor system: theory and experiment. Journal of Vibration and Acoustics, 1993, 115: 427~435
    [11] Gupta, K. Stability analysis of a dual rotor system by extended transfer matrix method. ASME, 89-GT-194
    [12] Lalanne, M, Ferraris, G, Rotordynamics prediction in Engineering. England: Wiley, 1989.
    [13] Ferraris, G. Prediction of the dynamics behavior of non-symmetric coaxial or counter–rotating rotors. Journal of sound and vibration, 1996, 195(4): 649~666
    [14] Childs D.W. A model transient rotor dynamic model for dual-rotor jet engine systems, Journal of Engineering for Industry, 1974, 98(3): 876~882
    [15] El-shafei A. Stability analysis of inter-shaft squeeze film dampers. Journal of Sound and Vibration, 1991, 148(3): 395~408
    [16] Gupta K. D. Dynamic response of a dual rotor system by extended transfer matrix method. International Conference on Vibrations in Rotating Machinery, 1988: 599~605
    [17]魏德明,任平珍,杨申基.多转子支承系统航空发动机临界转速及不平衡响应计算[J].燃气涡轮试验与研究, 1996(4): 34~37
    [18]赵明,魏德明,任平珍,等.模态综合法计算双转子临界转速研究[J].燃气涡轮试验与研究, 1996(3): 38~49
    [19]任平珍,柴卫东,胡璧刚,等.航空发动机转子热弯曲稳态响应计算方法研究[J].燃气涡轮试验与研究, 1996(3): 27~32
    [20]晏砺堂,王德友.航空双转子发动机动静件碰摩振动特征研究[J].航空动力学报, 1998, 13(2): 173~176
    [21]邓四二,贺凤祥,杨海生,等.航空发动机双转子-滚动轴承耦合系统的动力特性分析[J].航空动力学报, 2010, 25 (10): 2386~2395
    [22]邓四二,腾弘飞,周彦伟等.滚动轴承-双转子系统动态性能分析[J].轴承, 2006(4): 1~4
    [23]项松,王克明.用子结构传递矩阵法计算航空发动机转子-支承系统动力特性[J].沈阳航空工业学院学报. 2005, 22(4): 1~3
    [24]杨玲,王克明,张琼.某型航空发动机整机振动分析[J].沈阳航空工业学院学报. 2008, 25 (5): 9~11
    [25]李笃权,赵明,任平珍.双转子临界转速的简易分析方法和应用[J].沈阳航空工业学院学报. 2003, 20(2): 11~13
    [26]罗贵火,胡绚,杨喜关.反向旋转双转子系统非线性分析[J].振动工程学报. 2009, 22(3): 268~273
    [27]胡绚,罗贵火,高德平.反向旋转双转子稳态响应计算分析与试验[J]. 2007, 22(7): 1044~1049
    [28]胡绚,罗贵火,高德平.反向旋转双转子系统动力特性分析[J].现代机械. 2007(7): 45~49
    [29]冯国全,岳承熙,张连祥.对转式双转子发动机动力特性分析[J].航空发动机, 1993(5): 43~48
    [30]冯国权,张连祥,伊峰.反向旋转双转子发动机稳态不平衡响应分析[J] .哈尔滨工业大学学报, 1998(30): 249~252
    [31] Hsiao-Wei, D. Chiang, Chih-Neng Hsu. Turbomachinery dual rotor-bearing system analysis[J]. ASME GT-2002-30315
    [32] Hsiao-Wei, D. Chiang, Chih-Neng Hsu. Rotor-bearing analysis for turbomachinery single-and dual-rotor systems[J]. Journal of propulsion and power, 2004, 20(6): 1096-1104
    [33]张文.转子动力学理论基础[M].北京:科学出版社, 1990.
    [34]晏砺堂.结构系统动力特性分析[M].北京:北京航空航天大学出版社, 1989.
    [35]孟光.转子动力学研究的回顾与展望.振动工程学报, 2002, 15(1), 1~9
    [36]刘相新,孟宪颐. ANSYS基础与应用教程[M].北京:科学出版社, 2006.
    [37]张谦,曹磊.基于ANSYS的临界转速计算[J].振动工程学报, 2004,17: 234~237
    [38]张利民,王克明,吴志广.利用ANSYS进行转子临界转速计算[J].沈阳航空工业学院学报, 2010, 27(5): 34~37
    [39]韩清凯,于涛,王德友,等.故障转子系统的非线性振动分析与诊断方法[M].北京,科学出版社,2010.
    [40]梅庆.二维有限元模型在燃气轮机转子-支承系统临界转速计算中的应用[J].燃气涡轮试验与研究, 2003,16(3): 42~44
    [41]刘长福,邓明.航空发动机结构分析[M].西安:西北工业大学出版社. 2006.
    [42]张大义,母国新,洪杰.航空发电动机转子支承系统刚度计算中的几个问题[J] .战术导弹技术,2005.
    [43]周明,倪纬斗,于文虎.某单轴式燃气轮机支承刚度计算分析[J].山东电力技术,1998(2): 36~38
    [44]洪杰等.转子支承动刚度对转子动力学特性的影响分析[J].沈阳:航空发动机. 2008(1): 23~27
    [45]李玲玲,王克明.某型航空发动机后支承动刚度的有限元计算[J].沈阳航空工业学院学报,2007, 6(3):5~7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700