大鼠乳腺癌CT灌注成像与肿瘤病理分级及微血管密度的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     建立大鼠乳腺癌模型,研究诱发性大鼠乳腺癌CT平扫、CT增强和CT灌注成像(CT perfusion imaging, CTPI)表现,探讨CTPI与肿瘤病理分级、组织类型和微血管密度(microvascular vessel density, MVD)的相关性,进一步明确CTPI对乳腺癌的诊断价值。
     方法:
     清洁级饲养40天龄Wistar雌性大鼠35只,体重在110~140 g之间。取芝麻油100 ml,置于60℃恒温水浴箱加热10分钟,将1 g二甲基苯蒽(DMBA)加入其中搅拌直至溶解,35只大鼠分4批分别用10 mg/ml的DMBA新鲜溶液进行灌胃,一周后,同样的方法与剂量进行第二次灌胃,按肿瘤诱发的时间不同随机分为A(10-15周)、B(16-20周)、C(21-25周)3组。
     将诱发肿块的大鼠腹腔注射6 ml/kg水合氯醛麻醉,四肢仰卧位固定于固定板四角,切开腹股沟皮肤,暴露股静脉,24 G静脉留置针穿刺并妥善固定,观察并记录大鼠乳腺肿块诱发情况。将大鼠固定板置于CT扫描床,定位线调至肿块中心位置,扫描范围将肿块完全包裹,分别进行64排螺旋CT平扫、CT增强扫描和CTPI检查,扫描数据传送至CT专用AW 4.3图像后处理工作站,采用其预装的CT perfusion 3软件中的body tumor软件处理数据,得到CTPI参数血流量(blood flow, BF)、血容量(blood volume, BV)、平均通过时间(mean transit time, MTT)、表面通透性(permeability surface, PS),并计算时间密度曲线(time-desity curve, TDC)。
     扫描完毕后,灌注法固定标本,取乳腺肿瘤组织进行HE染色、Ⅷ因子相关抗原免疫组化染色(SABC法)和免疫荧光染色,观察乳腺肿瘤病理类型,采用热点法计数MVD,低倍镜下(×100)寻找3个高密度血管区(热点),3个视野分别在高倍镜下(×200)计数,以其平均数表示微血管密度。
     结果:
     35只大鼠中30只大鼠成功诱发乳腺肿块,其中乳腺增生性疾病8只,乳腺癌22只,乳腺肿瘤和增生性疾病总的诱发成功率为85.7%,乳腺癌诱发成功率为62.9%。乳腺增生性疾病均为单发,22只乳腺癌有5只诱发2个肿块,且均为恶性。肿块最小的为0.2×0.3 cm,最大的为3.6×2.7 cm,乳腺增生性疾病肿块平均大小为(1.19±0.28)×(1.39±0.28)cm,乳腺癌平均大小为(2.27±0.17)×(1.56±0.12) cm,肿块<2 cm时,恶性率为50%,肿块2~3 cm时恶性率为60%,当肿块>3 cm时恶性率达到100%,其恶性率有统计学差异(P<0.05)。22只大鼠乳腺癌按组织类型分,包括浸润性导管癌6只,浸润性小叶癌6只,其他类型腺癌10只;按分化程度分,包括高分化癌1只,中分化癌15只,低分化癌6只。
     大鼠乳腺癌平扫CT均值为62.54±4.42 Hu,多表现为软组织密度肿块,肿块形态不规则或呈分叶状,部分肿块密度不均匀,其中5个较大肿块中央处可见液化坏死区。恶性程度高的肿块表现为浸润性、不均衡生长,边界不清,毛刺征少见,所有肿块均未见钙化。增强扫描CT均值为101.31±5.33 Hu,与平扫CT值比较平均升高38.77±1.79 Hu,主要表现为均匀强化或环状不均匀强化,少数肿块表现为弥散分布的斑点或小斑片强化灶,动态增强表现符合“快进快出”的特点,即动脉期病灶迅速强化,延迟2 S后强化程度消退较快。
     TDC曲线类型分析,流出型(5只大鼠)和平台型(4只大鼠)的乳腺肿瘤全部为乳腺癌,平坦型TDC(2只大鼠)全部为乳腺增生性疾病,19只大鼠表现为流入型TDC,其中乳腺癌占68.4%(13只),乳腺增生性疾病占31.6%(6只),乳腺癌与乳腺增生性疾病TDC曲线类型之间有显著性差异(P<0.05)。
     乳腺癌中央区与边缘区的BF、BV、MTT、PS分别为20.00±44.45 ml/min/100g,151.72±93.43 ml/min/100g;0.80±1.09 ml/100g,9.55±7.88 ml/100g;9.67±10.48 sec,2.43±1.64 sec;6.55±9.64 ml/min/100g,15.70±12.19 ml/min/100g。乳腺癌组呈边缘高灌注表现,BF、BV、PS均高于中央区,MTT低于中央区,差异均有统计学意义(P<0.05)。中分化和低分化乳腺癌BF、BV、MTT、PS分别为115.30±15.46 ml/min/100g,256.52±132.19 ml/min/100g;9.76±9.00 ml/100g,10.35±4.56 ml/100g;2.49±1.90 sec,2.42±1.00 sec;13.86±8.91 ml/min/100g,22.68±17.12 ml/min/100g。乳腺增生性疾病的BF、BV、MTT、PS分别为42.96±32.42 ml/min/100g, 2.17±1.36 ml/100g,4.89±5.78 sec,8.45±6.23 ml/min/100g。乳腺癌BF、BV显著高于乳腺增生性疾病(P<0.05),BF、BV在不同分化程度肿瘤之间有显著差异(P<0.05);乳腺癌MTT显著低于乳腺增生性疾病(P<0.05),但在不同分化程度肿瘤之间无显著差异(P>0.05),乳腺癌与乳腺增生性疾病的PS无显著性差异(P>0.05)。不同组织类型灌注参数之间无显著相差(P>0.05)。乳腺癌BF、BV、PS与MVD的相关性随肿瘤分化程度的降低呈升高趋势,两者之间呈显著正相关(r=0.701,P=0.000;r=0.441,P=0.015;r=0.521,P=0.003)。
     结论:
     1.二甲基苯蒽(DMBA)灌胃大鼠乳腺癌诱发成功率高,多发生于第一、二对乳腺,大鼠诱发性乳腺癌是CT灌注成像研究适合的动物模型。
     2.乳腺肿瘤CT平扫表现为形态不规则或呈分叶状的软组织密度影,所有肿块均未见钙化。增强后明显不均匀强化,动态增强表现符合“快进快出”的特点,与人乳腺癌CT平扫及增强表现相似。
     3.乳腺癌TDC曲线多表现为流出型和平台型,根据TDC曲线类型可进一步判断大鼠乳腺肿块良恶性。
     4.乳腺癌BF、BV高于乳腺增生性疾病,呈高灌注表现,可以作为乳腺肿块良恶性诊断和肿瘤分化程度的参考指标。乳腺癌MTT显著低于乳腺增生性疾病(P<0.05),乳腺癌与乳腺增生性疾病PS无显著性差异(P>0.05)。
     5.乳腺癌BF、BV、PS与MVD的相关性随肿瘤分化程度的降低呈升高趋势,两者之间呈显著正相关,CT灌注成像有助于反映肿瘤组织血管化程度。
Objective
     Establish animal model of rat breast cancer and study the induced rat breast cancer CT scan, CT enhancement and CT perfusion imaging (CTPI) performance, investigate the correlation of CTPI with tumor grade, histological type microvascular vessel density (MVD), and further identify the diagnostic value of CTPI on breast cancer.
     Methods
     Thirty-five female Wistar rats were arranged, with the age of 40 days and the weight of 100~140 g. 100 ml sesame oil was heated in 60℃thermostatic waterbath for 10 mins. Added 1 g 7, 12-dimethylben(a)anthracene (DMBA) into the heated sesame oil and stired to dissolve. Thirty-five rats were divided into 3 groups by the induced time of breast cancer, included A (10~15 weeks), B (15~20 weeks), and C (20~25 weeks). Each rat was administrated intragastrically with 10 mg/ml DMBA.
     The induced rats were anesthetized by intraperitoneal injection of 6 ml/kg chloral hydrate, fixed on the fixing plate. Inguinal skin was slitted to paracentesis the femoral vein by 24 G intravenous catheter needle. Fixing plate was put in CT scanner table and localized appropriately. Each rat was performed 64-slice spiral CT routine scan, enhanced scan and CTPI. Scanning data was delivered to CT exclusive image post-processing workstation of AW 4.3, and post-processed by body tumor software installed in CT perfusion 3 to obtain CTPI parameters of blood flow (BF), blood volume (BV), mean transit time (MTT), permeability surface (PS), as well as time density curve (TDC).
     After CT examination and perfusion-fixation procedure, tissues of breast tumor were performed HE stain and FactorⅧrelated antigen immunohistochemisty (SABC method) and immunofluorescence to observe the pathological type of tumors. Initially, 3 hyperdense vascular area (hotspot) were chosen under low power lens (×100), and then calculated under high power lens (×200). The average data was obtained to evaluate MVD.
     Results
     Thirty breast tumors were successfully induced in 35 rats, 8 were benign and 22 were malignant. The total achievement ratio of induced breast lump was 85.7%, and the achievement ratio of induced breast cancer was 62.9%. All lumps of breast proliferative disease were solitary, 5 in 22 of breast cancer were induced two lesion of malignant lump. The size of tumor between 0.2×0.3 cm and 3.6×2.7 cm, the mean size of breast proliferative lump was (1.19±0.28)×(1.39±0.28) cm, and the mean size of breast cancer was (2.27±0.17)×(1.56±0.12) cm. When the size of lump small than 2 cm, the malignant ratio was 50 %; between 2 and 3 cm, the ratio was 60 %; large than 3 cm, the ratio was 100 %. There was significant difference between each other (P<0.05). The pathological type of breast cancer included infiltrating ductal breast cancer (n=6), infiltrating lobular carcinoma (n=6), and other types of adenocarcinoma (n=10). The differentiation of breast cancer included well differentiated (n=1), moderately differentiated (n=15) and poorly differentiated (n=6). The mean CT value of breast cancer was 62.53±4.42 Hu, showed as soft tissue. The morphology of tumor was irregular or lobulated. The density of some tumor was asymmetrical, and showed central necrosis in 5 comparatively large tumors. The high degree malignant tumor showed invasive growth, obscure boundary,few spicule sign and none calcification. The mean CT value of breast cancer was 101.31±5.33 Hu in CT enhanced scanning, 38.77±1.79 Hu higher than CT routine scanning. It showed that well-distributed enhancement or circularity uneven enhancement, and some showed dispersed spots or small patches enhanced lesions, accorded with“quick-in-quick-out”feature.
     Both outflow-type (5 rats) and platform-type (4 rats) TDC were malignant, flat-type (2 rats) TDC were benign. 19 rats showed inflow-type TDC, included 68.4% (13 rats) malignant and 31.6% (6 rats) benign. The type of TDC had significant differences (P<0.05) between benign and malignant.
     The BF、BV、MTT and PS of breast cancer central region and marginal region were 20.00±44.45 ml/min/100g,151.72±93.43 ml/min/100g;0.80±1.09 ml/100g,9.55±7.88 ml/100g;9.67±10.48 sec,2.43±1.64 sec;6.55±9.64 ml/min/100g,15.70±12.19 ml/min/100g. Breast cancer showed marginal hypertransfusion, BF, BV and PS were higher than centre area, MTT lower than centre area, and it had significant difference (P<0.05). The BF、BV、MTT and PS of moderately differentiated and poorly differentiated breast cancer were 115.30±15.46 ml/min/100g, 256.52±132.19 ml/min/100g; 9.76±9.00 ml/100g, 10.35±4.56 ml/100g; 2.49±1.90 sec, 2.42±1.00 sec; 13.86±8.91 ml/min/100g, 22.68±17.12 ml/min/100g. And The BF、BV、MTT and PS of breast proliferative disease were 42.96±32.42 ml/min/100g, 2.17±1.36 ml/100g, 4.89±5.78 sec, 8.45±6.23 ml/min/100g. BF and BV of malignant were higher than benign (P<0.05), and varied by the tissue differentiation (P<0.05). MTT of malignant was lower than benign (P<0.05), but showed no significant differences by malignant differentiation (P>0.05). There was no significant difference of PS between malignant and benign (P>0.05). The positive correlation of MVD with BF, BV and PS heightened while the differentiation decreased (P<0.05). The positive correlation of MVD with BF, BV and PS heightened while the differentiation decreased (P<0.05).
     Conclusion
     ⑴Induced rat breast cancer is a suitable model for CT perfusion study.⑵CT routine scanning of rat breast cancer showed the same feature of human breast cancer, included character of irregular morphology, lobulated, soft tissue liked density, obvious enhancement and“quick-in-quick-out”.⑶Breast cancer TDC always showed outflow-type and platform-type, it can help to different the benign and malignant breast tumor.⑷BF and BV of breast cancer are higher than benign and skeletal muscles. It can be used as reference index for diagnosis and differential diagnosis of breast cancer.⑸CTPI is conducive to reflect tumor differentiation, and closely associated with microvascular vessel density of tumor.
引文
1. Anderson BO, Shyyan R, Eniu A, et al. Breast cancer in limited resource countries: an overview of the breast health global initiative 2005 guidelines[J]. Breast J, 2006, 12 (Suppl 1): S3-15.
    2.陈宇.彩色多普勒超声与钼靶X线联合应用对乳腺癌的诊断价值[J].中国现代医学杂志, 2006, 16(4): 602- 605.
    3.叶兆祥,宋秀宇,肖建宇. CT灌注成像在乳腺良、恶性病变诊断中的应用[J].中华放射学杂志, 2005, 39(10): 1050- 1054.
    4.何和清.钼靶X线对乳腺癌的诊断及分析[J].中国现代医学杂志, 2004, 14(5): 134-135.
    5.代丽萍,高曼.乳腺钼靶X线摄影筛查早期乳腺癌调查[J].中国公共卫生, 2005, 21(5): 573.
    6.张雪鹏,孙泽民,张文杰.乳腺肿物MRI检查的临床诊断及应用研究[J].实用癌症志, 2000, 15(6): 642-644.
    7.汪晓红. MRI技术在鉴别乳腺良恶性病变方面的价值[J].国外医学临床放射学册, 2004, 27(2): 90-93.
    8. Sazza R, Gordon C, Jayson. Molecular imaging of antiangiogenic agents[J]. Oncologist, 2005, 10(2): 92-103.
    9. Miles KA. Perfusion CT for the assessment of tumor vascularity: which protocol? [J]. Br J Radiol, 2003, 76: 36-42.
    10. Dushyant V, Sahani MD, Sanjeeva P. Assessing tumor perfusion and treatment response in rectal cancer with multisection CT: initial observations[J]. Radiology, 2005, 234(3): 785-792.
    11.赵志清,罗帝林,王建华,等.乳腺癌的多层螺旋CT灌注成像研究[J].中国现代医学杂志, 2009, 3(19): 912-914.
    12.王建华,赵志清,罗帝林,等. MSCT灌注成像在乳腺肿瘤诊断中的应用[J].中华全科医学, 2008, 8(6): 856-857.
    13. Liu Y, Bellomi M, Gatti G, et al. Accuracy of computed tomography perfusion in assessing metastatic involvement of enlarged axillary lymph nodes in patients withbreast cancer[J]. Breast Cancer Res, 2007, 9(4): 1-7.
    14. Hirasawa H, Tsushima Y, Hirasawa S, et al. Perfusion CT of breast carcinoma:arterial perfusion of nonscirrhous carcinoma was higher than that of scirrhous carcinoma[J]. Acad Radiol, 2007, 14(5): 547- 552.
    15.祖德贵,刘庆伟,葛全序,等.乳腺病变CT灌注和血流特征及临床意义探讨[J].中华放射学杂志, 2006, 40(9): 957-961.
    16. Talang NT, Kurihara H, Wong GY, et al. Proneoplastic transforma-tion in mouse mammary tissue :identification and validation of inter mediated biomader for chemoprevention [J]. Anticancer Res, 1991, 11(3): 10-21.
    17. Manna S, Chakraborty T, Ghosh B, et al. Dietary fish oil associated with increased apoptosis and modulated expression of Bax and Bcl-2 during 7,12-dimethylbenz (alpha) anthracene-induced mammary carcinogenesis in rats[J]. Prostaglandins Leukot Essent Fatty Acids, 2008, 79(1-2): 5-14.
    18. Tang HB, Ren YP, Zhang J, et al. Correlation of insulin like growth factor-1( IGF-1) to angiogenesis of breast cancer in IGF-1- deficient mice[J]. Ai Zheng, 2007, 26(11): 1215-1220.
    19. Tsubura A, Shikata N, Inui T, et al. Morphological and biological characteristics of mammary tumors induced by the direct application of DMBA powder to rat mammary glands[J]. Virchows Arch, 1998, 414(1): 1-7.
    20. Larief LSM, Labric C, et al. Inhibitory effect of a steroidal antiestrogen on estrone stimulatel growth of 7 ,12-dimetheylabenz (a) anthracene (DMBA) induced mammary carcinoma in the rat[J]. Breast Cancer Res, 1995, 3(3): 237-244.
    21. Mukhopadhyay S, Mukherjee S, Das SK. Increased expression of peripheral benzodiazepine receptor (PBR) in dimethylbenz [a] anthracene-induced mammary tumors in rats[J]. Glycoconj J, 2006, 23(3/4): 199-207.
    22. Parikh RR, Gildener-Leapman N, Narendran A, et al. Prevention of N-methyl-N-nitrosourea-induced breast cancer byα-Fetoprotein (AFP)-derived peptide, a peptide derived from the active site of AFP [J]. Clin Cancer Res, 2005, 11(23): 8512-8520.
    23.王峰,马忠兵,方允治,等.乳腺癌癌前病变大鼠模型的建立[J].中国现代普通外科进展, 2009, 5(12): 387-390.
    24. Tavassoli FA, Devilee P. WHO classification of tumors. Pathology & genetics tumors of the breast and female genital organs[J]. Lyon IARC Presg, 2003, 10(5): 129.
    25.李静蔚,宋爱莉,张敬涛,等. DMBA诱导大鼠乳腺癌癌前病变的组织病理学研究[J].中华中医药学, 2008, 3(26): 505-508.
    26.鲍润贤,主编.中华影像医学乳腺卷[M].北京:人民卫生出版社, 2002, 29.
    27.蔡玉琴,张璟,张帆,等.乳腺癌影像学检查现状与研究进展[J].中国全科医学, 2009, 7(12): 1228-1231.
    28. Eastwood JD, Lev MH, Azhari T, et al. CT perfusion scanning with deconvolution analysis : pilot study in patients with acute middle cerebral artery stroke[J]. Radiology, 2002, 222 (1): 227-236.
    29.赵艳萍,文智,阿里甫·依马木,等.多层螺旋CT动态增强扫描对乳腺疾病诊断的价值[J].新疆医科大学学报, 2009, 32(1): 68-71.
    30.李艳丽,周顺科,刘军,等. MSCT灌注成像诊断乳腺癌[J].中国医学影像技术, 2009, 25(9): 1573-1576.
    31.马宜传,付凯,孙景秋,等. CT灌注成像在脑星形细胞瘤术前分级中的应用[J].蚌埠医学院学报, 2009, 34(6): 526-528.
    32.梁颖,罗德红,吴宁,等.颈部恶性淋巴结的多层螺旋CT关注研究[J].中华放射学杂志, 2004, 38(11): 1193-1197.
    33. Bisdas S, Baghi M, Smolarz A, et al. Quantitative measurements of perfusion and permeability of oropharyngeal and oral cavity cancer, recurrent disease, and associated lymph nodes using first pass contrast-enhanced computed tomography studies[J]. Invest Radiol, 2007, 42(3): 172-179.
    34. Hermans R, Meijerink M, Bogaert WV, et al. Tumor perfusion rate determined noninvasively by dynamic computed tomography predicts outcome in head and neck cancer after radiotherapy[J]. Int J Radiat Oncol Biol Phys, 2003, 57(5): 1351-1356.
    35. Purdie TG, Henderson E, Lee TY. Functional CT imaging of angiogenesis in rabbit VX2 soft tissue tumor[J]. Phs Med boil, 2001, 46: 3161-3175.
    36. Miles KA. Ideal contrast medium bolus for perfusion measurement in dynamic lung CT[J]. Radiol, 1998, 209(2): 583-85.
    37.姜慧杰,徐克,韩铭钧,等. CT灌注成像对兔肝肿瘤模型血管生成的定量研究[J].中国医学影像技术, 2006, 22(11): 1625-1628.
    38.张建华,漆剑频,黄文华,等.脑胶质瘤CT灌注成像与VEGF表达的对照研究[J].中国医学影像技术, 2007, 23(7): 982-985.
    39. Lzzo L, Stasolla A, Basso L, et al. Characterization of tumoral lesions of the breast: preliminary experience with multislice spiral CT[J]. Exp Clin Cancer Res, 2005, 24(2): 209-215.
    40. Weidner N, Semple J P, Welch WR, et al. Tumor angiogenesis and metastasis correlation in invasive breast carcinoma [J]. N Engl J Med, 1991, 324(1) : 1-8.
    41.王丽辉,王波,李连宏,等.乳腺癌VEGF、MMP-9及COX-2蛋白表达与淋巴道转移和血管生成的相关性[J].临床与实验病理学杂志, 2008, 24(2): 154-157.
    42. Swensen SJ, BrownLR, Colby TV, et al. Lung nodule enhancement at CT:prospective findings[J]. Radiology, 1996, 201: 447-455.
    43. Tateishi U, Nishihara H, Watanabe S, et al. Tumor angiogenesis and dynamic CT in lung adenocarcinoma:Radiologic–pathologic correlation[J]. J Comput Assist Tomogr, 2001, 25(1): 23-27.
    44. Jinzaki M, Tanimoto A, Mukai M, et al. Double-phase helical CT of small renal parenchymal neoplasms:correlation with pathologic findings and tumor angiogenesis[J]. Comput Assist Tomogr, 2000, 24(6): 835-842.
    45.程祝忠,许国辉,黄娟.胰腺癌CT灌注成像表现及其生物学相关性研究[J].四川大学学报, 2009, 40(3): 521-524.
    46.李树玲,主编.乳腺肿瘤学[M].北京:科学技术文献出版社, 2000, 49.
    47.张毅,周艳,郭美琴,等.全乳大切片观察新辅助化疗后乳腺癌浸润生长特征变化[J].第三军医大学学报, 2007, 29(21): 2083-2085.
    48. [李蓉,陆晔,潘湘涛,等.乳腺癌组织Epo/ Epo- R表达和MVD关系及其临床意义[J].医学信息, 2009, 12(22): 2713-2716.
    49. Hakime A, Peddi H, Hines-Peralta AU, et al. CT perfusion for determination of pharmacologically mediated blood flow changes In an animal tumor model[J]. Radiology. 2007, 243(3): 712-719.
    1. Anderson BO, Shyyan R, Eniu A, et al. Breast cancer in limited resource countries :an overview of the breast health global initiative 2005guidelines[J]. Breast J, 2006, 12(suppl1): S3-15.
    2. Holger, Pettersson.放射学综合性教科书[M].瑞典:The NICER Institute出版社, 1995, 663.
    3.鲍润贤..中华影像医学乳腺卷[M].北京:人民卫生出版社, 2002, 122.
    4.谭郁彬,张乃鑫.外科诊断病理学[M].天津:天津科学技术出版社,2000, 797.
    5. Smith Bindman R, Miglioretti DL, Lurie N, et al. Dose utilization of screening mammography explain racial and ethnic differences in breast cancer ? [J]. Ann Intern Med, 2006, 144(8): 541-553.
    6.赵志清,罗帝林,王建华,等.乳腺癌的多层螺旋CT灌注成像研究[J].中国现代医学杂志, 2009, 19(06): 912-914.
    7.叶兆祥,宋秀宇,肖建宇. CT灌注成像在乳腺良、恶性病变诊断中的应用[J].中华放射学杂志, 2005, 39(10): 1050-1054.
    8.王丰富,戚洪波,徐启怀,等.多层螺旋CT乳腺检查方法与应用价值探讨[J].医学影像学杂志, 2007, 17(3): 266-268.
    9. Tozaki M. Diagnosis of breast cancer: MDCT versus MRI[J]. Breast Cancer, 2008, 15(3): 205-211.
    10. Inoue T, Tamaki Y, Hamada S, et al. Usefulness of three-dimensional multidetector-row CT images for preoperative evaluation of tumor extension in primary breast cancer patients[J]. Breast Cancer Res Treat, 2005, 89(2): 119-125.
    11.李桂萍,王胜林,李汉如,等.乳腺良恶性病变CT表现[J].实用放射学杂志, 2003, 19 (10): 875-878.
    12.张辉,邹利光,逄鑫,等. CT/MRI诊断乳腺癌的比较研究[J].华南国防医学杂志, 2009, 23(3): 31-33.
    13. Takeuchi M, Yamashita A, Ohgi K, et al. Breast multidetector-row CT with histopathologic correlation[J]. Nippon Igaku Hoshasen Gakkai Zasshi, 2004, 64(8): 557-563.
    14.杨文,刘文亚,党军,等.多层螺旋CT多种成像技术在乳腺疾病检查中的应用[J].新疆医科大学学报, 2007, 30(1): 66-68.
    15. Hagay C, Cherel PJP, de Maulmont CE, et al. Contrast- enhanced CT:value for diagnosing local breast cancer recurrence after conservative treatment[J]. Radiology, 1996, 200(3): 631- 638.
    16. Fontanini G, Lucchi M, Vignati S, et al. Angiogenesis as a prognostic indicator of survival in nonsmall cell lung carcinoma: a prospective study[J]. J Natl Cancer Inst, 1997,89 (12): 881 - 886.
    17. Eastwood JD, Lev MH, Azhari T, et al. CT perfusion scanning with deconvolution analysis: pilot study in patients with acute middle cerebral artery stroke[J]. Radiology, 2002, 222 (1): 227-236.
    18. Cenic A, Nabavi DG, Craen RA, et al. Dynamic CT measurement of cerebral blood flow :a validation study[J]. Am J Neuroradiol, 1999, 20(1): 63-73.
    19.雷振,席焕久. MSCT灌注成像对乳腺肿块良恶性的评价[J].中国妇幼保健, 2008, 2309: 1190-1193.
    20.朱明霞,罗天友,欧阳羽,等. 64层螺旋CT灌注成像在乳腺疾病中的初步应用[J].放射学实践, 2008, 23(2): 141-145.
    21.赵艳萍,文智,阿里甫·依马木,等.多层螺旋CT动态增强扫描对乳腺疾病诊断的价值[J].新疆医科大学学报, 2009, 32(1): 68-71.
    22.钱民,黄淑馨,段承祥.乳腺肿块的动态CT扫描[J].临床放射学杂志, 1997, 16(4): 217-219.
    23. VanDijko CF , Brasch RC , Robert s TP , et al . Mammary carcinoma model : correlation of macromolecular cont rast enhanced MR imaging characterizations of tumor microvasculature and histologic capillary density [J] . Radiology , 1996 , 198 : 813-818.
    24.李树玲.乳腺肿瘤学[M].北京:科学技术文献出版社, 2000: 49-52.
    25. Hermans R, MeijerinkM, BogaertWV, et al. Tumor perfusion rate determined noninvasively by dynamic computed tomography predicts outcome in head - and - neck cancer after radiotherapy[J]. Radiat Oncol Bio Phys, 2003, 57(5): 1351-1356.
    26. Sibala JL, Chang CHJ, Fritz, et al. Computed tomography in detection and diagnosis of breast cancer[J]. Cancer, 1980, 46(4): 939-946.
    27. Chang CHJ, Nesbit DE, Fisher DR, et al. Computed tomographic mammography using a conventional body scanner [J]. AJ R, 1982, 138: 553-558.
    28. Gisvold JJ, Reese DF, Karsell PR. Computed tomographic mammography(CTM ) [J]. AJ R, 1979, 133: 1143-1149.
    29. Hagay C, Cherel J P, Maulmont CE, et al. Contrast enhanced CT: Value for diagnosing local breast cancer recurrence after conservative t reatment [J]. Radiology, 1996, 200: 631-638.
    30. Sardanelli F, Calabrese M, Zandrino F, et al. Dynamic helical CT of breast tumors[J]. J Comput Assist Tomogr, 1998, 22(3): 398-407.
    31.张世科,关天明. 64层螺旋CT对乳腺肿块性质的诊断价值[J].现代医院, 2009, 11(9): 48-49.
    32.杨扬. CT灌注成像在乳腺肿瘤中的临床应用价值[J].医学影像学杂志, 2007, 17(4): 407-409.
    33. Miles KA. Functional computed tomography in oncology[J]. Europ J Cancer 2002 , 38(16): 2079 - 2084.
    34.王毅,王建,巫北海,等.大鼠C6脑胶质瘤CT灌注成像及其与MVD的相关性研究[J].现代生物医学进展, 2009, 3(17): 58-61.
    35.周景玮,陈克敏,刘林祥,等. CT灌注技术在乳腺肿瘤研究中的应用[J].实用医技杂志, 2006,13(20): 3558-3561.
    36.刘福强,张云亭,刘松龄,等.动态螺旋CT检查对乳腺疾病的诊断价值[J].临床放射学杂志, 2003, 22(5): 380-385.
    37.张涛,王建,汤日杰,等.老年乳腺肿块增强CT扫描的强化特征和强化时相探讨[J].中国老年学杂志, 2002, 22 (9): 374-376.
    38. Sinha S, Sinha U. Functional magnetic resonance of human breast tumors : diffusion and perfusion imaging[J]. Ann N Y Acad Sci, 2002, 980(1): 95-115.
    39.张静,袁小东,田建明,等.乳腺肿块MSCT灌注研究[J].放射学实践, 2005, 20(8): 659-661.
    40. Tadahiko S, Sadako A-T, Miwa Y, et al. Usefulness of preoperative multidetector-row computed tomography in evaluating the extent of invasive lobular carcinomain patients with or without neoadjuvant chemotherapy[J]. Breast Cancer, 2009, 16(1): 30-36.
    41. Akashi T, Takashi F. The use of contrast enhanced computed tomography beforeneoadjuvant chemotherapy to identify patients likely to be treated safely with breast conserving surgery[J]. Ann Surg, 2004, 239(2): 238-243.
    42. Tozaki M, Yanashita A, Kawakami M, et al. Diagnosis of breast cancer extent using dynamic multi detector row CT: correlation between MPR imaging and pathological crosssections[J]. Nippon Acta Radio, 2000, 60(11): 560-567.
    43. Miles KA, Griffiths. MR. Perfusion CT: a worthwhile enhancement[J]. Br J Radiol, 2003, 76 (4): 220-231.
    44.叶兆祥,肖建宇,鲍润贤,等.乳腺癌腋下淋巴结CT测定与病理对照[J].中国肿瘤临床, 2004, 31(22): 1287-1289.
    45. Suga K, Yamamoto S, Tangoku A, et al. Breast sentinel lymph node navigation with three dimensional interstitial multideted torrow computed tomographic lymphography[J]. Invest Radiol, 2005, 40(6): 336-342.
    46. Uematsu T, SanoM , Homma K. In vitro high resolution helical CT of small axillary lymph nodes in patients with breast cancer:Correlation of CT and histology[J]. AJR, 2001, 176(4): 1069-1074.
    47.修建军,李传福,刘庆伟.乳腺癌腋窝淋巴结转移的CT评价[J].中华放射学杂志, 2005, 39(2): 169-172.
    48. Tangpku A, Yamamoto S, Suga K, et al. Sentinel lymph node biopsy using computed tomography lymphography in patients with breast cancer[J]. Surgery, 2004, 135(3): 258-265.
    49. Kim SM, Park JM. Computed tomography of the breast-Abnormal findings with mammographic and sonographic correlation[J]. J Comput Assist Tomogr, 2003, 27(5): 761-770.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700