猪血凝性脑脊髓炎病毒呼吸道感染模型的建立及其在体内的动态分布
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪血凝性脑脊髓炎(Porcine hemagglutinating encephalomyelitis)是由血凝性脑脊髓炎病毒(Hemagglutinating encephalomyelitis virus, HEV)引起的仔猪一种以神经症状或者呕吐、衰竭为临床症状的急性、高度接触性传染病,主要感染1-3周龄的仔猪,死亡率可高达20-100%。血清学调查表明HEV感染是呈世界性分布的,给养猪业造成了很大的经济损失,但是迄今为止对HEV的致病性研究不够深入,对HEV在猪体内的动态分布更不清楚,影响了该病毒致病机制的研究,因此,建立一种能模拟感染发病动物临床症状及病理变化的动物模型,以研究该病毒在猪体内的动态分布及感染机制,模型的建立对于HEV的研究和防制具有重要意义。
     本试验选用经HEV抗体检测为阴性的一日龄的仔猪作为实验动物,采用HEV-67N标准毒株为攻毒株,通过滴鼻接种感染仔猪,建立猪血凝性脑脊髓炎病毒感染仔猪的动物模型,结果显示猪血凝性脑脊髓炎病毒可人工感染仔猪,症状比较明显,其临床症状和病理变化与自然发病猪基本一致,病理学组织观察,肺脏、脑出现了明显的病理变化,与HEV典型的病理变化是一致的,模型重复性良好。仔猪接种病毒后分阶段处死,采集病料并做相应处理,然后应用荧光定量RT-PCR和免疫组织化学方法技术来检测病毒在感染动物后不同时间段的分布特征及移行路径。
     根据GenBank报道中HEV-67N毒株S基因序列(AY078417)保守型区域设计了一对特异性引物,通过对反应条件的优化,建立了检测HEV的荧光定量RT-PCR,应用建立的荧光定量RT-PCR检测了各组织病毒的含量,结果显示病毒主要存在于呼吸系统和神经系统中,其他的脏器也有病毒的存在,但是含量相对较少,说明该病毒可以通过呼吸系统传播和具有嗜神经性。
     应用免疫组织化学技术检测了病毒在组织中的动态分布分布情况,结果表明,不同的感染时间各组织脏器内病毒分布是不相同的,结果发现大脑中病毒的阳性信号主要位于大脑皮质部的锥体细胞内,小脑中病毒的阳性信号位于普肯野氏细胞内,肺脏中病毒的阳性信号位于肺泡上皮细胞内,其它组织样本中都没有检测到阳性信号。
Porcine hemagglutinating encephalomyelitis is a kind of piglets disease caused by Hemagglutinating encephalomyelitis virus (HEV), showed neurological symptoms or vomiting and failure as the clinical symptoms of acute and highly contagious disease, mainly affects pigs from 1 to 3 weeks, the mortality rate was up to 20-100%. Serological survey showed that HEV infection was distributed by worldwide, and has caused great economic losses to the pig industry,but until now the studies on the pathogenicity of HEV was not deep enough, the dynamic distribution of the HEV in pigs was not clear,which impact the research of the HEV pathogenesis. So, we establish an animal model which can simulate the clinical symptoms and pathological changes, so that we can study the dynamic distribution and infection mechanisms in pigs.The establishment of this model is very important to HEV research and prevention.
     According to GenBank reported that HEV-67N strain of S gene sequences (AY078417)of conservative region designed a pair of specific primers, established quantitative fluorescence detection HEV RT-PCR, through the optimization of reaction conditions, using the established fluorescence quantitative RT-PCR to detect the virus content of each organization. The result shows that the virus mainly exited in the respiratory system and the nervous system, other organs also have the virus, but the levels was low, indicating that the virus is mainly transmitted through the respiratory system and have neurotropic nature.
     Using the Immunohistochemical technique to detect the distribution of the virus of the organizations, the results showed that within different infection time the distribution of virus in organs of the organizations was different, we also found that the positive signals in the virus of the brain were mainly located in the brain cortex of the pyramidal cells, the positive signals in the cerebellum virus located in the Purkinje cells,the positive signals in lung virus located in the alveolar epithelial cells, and we not found positive signals in other tissue samples.
引文
[1]候云德主编.分子病毒学[M].北京:学苑出版社.1990:381-394.
    [2]殷震,刘景华主编.动物病毒学(第二版)[M].北京科学出版社.1997:681-688.
    [3]徐耀先,周晓峰,刘立德.分子病毒学[M].湖北科学技术出版社.
    [4]Holmes K V. SARS-associated coronavirus [J]. N Engi J Med,2003.348: 1948-1951.
    [5]李普霖.动物病理学[M].长春:吉林科学技术出版社,1994,143-158.
    [6]Hammond, M. M. and P. J. Timoney, An Electron Microscopic Study of Viruses Associated with Canine Gastroenteritis [J].Cornell Vet,1983.73 (1):82-97.
    [7]叶景荣,徐建国.冠状病毒的生物学特性.疾病监测,2005,20(3):160-163.
    [8]Pyrc K, Jebbink MF, Berkhout B, van der Hoek L. Genome structure and transcriptional regulation of human coronavirus NL63[J]. Virol J.2004 Nov 17; 1(1):7.
    [9]Williams GD, Chang RY, Brian DA. A phylogenetically conserved hairpin-type 3' untranslated region pseudo knot functions in coronavirus RNA replication [J].J Virol.1999 Oct; 73(10):8349-55.
    [10]Miller W A, Dreher T W, Hall T C. Synthesis of brome mosaic virus subgenomic RNA in vitro by internal initiation on (-) sense genomic RNA[J].Nature,1985.313:68-70.
    [11]McIntosh K. Coronaviruses:a comparative review [J]. Curr Top Microbiol Immunol,1974,63:85-129.
    [12]Nguyen, V. P. and B. G. Hogue, Coronavirus Envelope Glycoprotein Assembly complexes [J]. Adv. Exp. Med. Boil.1998.440:361-365.
    [13]Haijema, B. J., H. Volders, and P. J. Ro t tier, Switching Species Tropism:an Effective way to anipulate the Feline Coronavirus Genome [J]. J. Virol.2003. 77 (8):4528-4538.
    [14]Brian DA, Baric RS.Coronavirus genome structure and replication [J].Curr Top Microbiol Immunol.2005; 287:1-30.
    [15]金奇.医学分子病毒学[M].北京:科学出版社,2001.
    [16]Sawicki S G, Sawicki D L.A new model for coronavirus transcription. [J] Adv Exp Med Biol,1998.440:215-21915.
    [17]Milleri W Alien, Gennadiy Koev. Minireview:synthesis of subgenomic RNAs by positive-strand RNA viruses [J]. Virology,2000.273,1-8.
    [18]Sit T L, Vaewhongs A A, Lommel S A. RNA-mediated Tran activation of transcription from a viral RNA [J]. Science,1998.281:829-832.
    [19]Tahara, S. M., et al., Coronavirus Translational Regulation, Leader Affects mRNA Efficiency [J].Virology,1994.202 (2):621-630.
    [20]Cavanagh D, Brian DA, Brinton MA, et al.Revison of taxonomy of the coronaviruses.Torovirus and arterivius gene. [J]. Arch Virol,1994,135:221-231.
    [21]De Haan, C. A., et al. Coronavirus Particle Assembly:Primary Structure Requirements of the Membrane Protein [J]. J Virol,1998.72 (8):6838-6850.
    [22]De Haan, C. A., H. V ennema, and P. J. Rottier, Coronavirus Envelope Assembly is Sensitive to Changes in the Terminal Regions of the Viral M Protein[J]. A dv Exp Med Biol,1998.440:367-375.
    [23]Nguyen, V. P. and B. G. Hogue, Protein Interactions During Coronavirus assembly [J]. J. Viro 1.1997.71 (12):9278-9284.
    [24]Enserink M. Calling all corona virologists [J]. Science,2003,300:413.
    [25]赵荣乐,郑光宇.冠状病毒研究进展[J].生物学通报,2003,38(6):3-5.
    [26]Peiris, Lai ST, Poon LL, et al.Coronavirus as a possible cause of severe acute respiratory syndrome [J]. Lancet,2003,361:1319-1325.
    [27]Guan Y, Zheng BJ, He YQ, et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China [J]. Science,2003,302 (5643):276-2781.
    [28]Delmas B, Laude H. Carbohydrate-induced conformational changes strongly modulated the antigenicity of coronavirus TGEV glycol proteins S and M [J]. Virus Res,1991,20:107-120.
    [29]Delmas B, Laude H. Assembly of coronavirus spike protein into trimers and its role in epitope expression [J]. J Virol,1990,64 (11):5367-5375.
    [30]Pulford DJ, Britton P. Expression and cellular localisation of porcine transmissible gastroenteritis virus N and M proteins by recombinant vaccinia viruses [J]. Virus Res,1991,18 (2-3):203-17.
    [31]Spiga O, Bernini A, Ciutti A, Chiellini S, Menciassi N, Finetti F, Causarono V, Anselmi F, Prischi F, Niccolai N. Molecular modeling of S1 and S2 subunits of SARS coronavirus spike glycoprotein [J]. Biochem Biophys Res Commune, 2003 Oct 10,310(1):78-83.
    [32]Wesley RD. The S gene of canine coronavirus, strain UCD-1, is more closely related to the S gene of transmissible gastroenteritis virus than to that of feline infectious peritonitis virus [J]. Virus Res,1999 Jun,61 (2):145-52.
    [33]Herrewegh AA, Smeenk I, Horzinek MC, Rottier PJ, de Groot RJ. Feline coronavirus type Ⅱ strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus [J]. J Virol,1998 May,72(5):4508-14.
    [34]Wang FI, Fleming J, Lai MM. Sequence analysis of the spike protein gene of murine coronavirus variants:study of genetic sites affecting neuropathogenicity [J]. Virology,1992,186:742-749.
    [35]Das Sanna J, Fu L, Hingley S T, Lai M M, Lavi E. Sequence analysis of the S gene of recombinant MHV-2/A59 coronaviruses reveals three candidate mutations associated with demyelination and hepatitis [J]. Neurovirol,2001, (7): 432-436.
    [36]Simkins RA, Weilnau PA, Bias J, Saif LJ. Antigenic variation among transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirus strains detected with monoclonal antibodies to the S protein of TGEV [J]. Am J Vet Res,1992,53(7):1253-8.
    [37]Rottier PJ.The molecular dynamics of feline Coronaviruses [J]. Vet Microbiol, 1999,69(1-2):117-125.
    [38]Vennema H, Rossen JW, Wesseling J, Horzinek MC, Rottier PJ. Genomic organization and expression of the 3'end of the canine and feline enteric Coronaviruses [J].Virology.1992,191(1):134-140.
    [39]Jurgen Schneider-Schaulies. Cellular receptor for viruses:links to tropism and pathogenesis [J].Journal of General Virology.2000.81:1413-1429.
    [40]Kunkel F, Herrler G Structural and functional analysis of the surface protein of human coronavirus OC43 [J].Virology,1993.195:195-202.
    [41]Prabkaran.P, Xiao.X, Dimitrov.D.S.A model of the ACE structure and function as a SARS-CoVreceptor [J].Biochem.Biophys.Res.Commun,2004,314: 235-241.
    [42]Vennema H, Rossen JW, Wesseling J, Horzinek MC, Rottier PJ. Genomic organization and expression of the 3'end of the canine and feline enteric Coronaviruses [J]. Virology,1992,191 (1):134-140.
    [43]Jurgen Schneider-Schaulies. Cellular receptor for viruses:links to tropism and pathogenesis [J]. Journal of General Virology,2000,81:1413-1429.
    [44]Kunkel F, Herrler G Structural and functional analysis of the surface protein of human coronavirus OC43 [J]. Virology,1993,195:195-202.
    [45]Prabkaran. P, Xiao. X, Dimitrov.D.S.A model of the ACE2 structure and function as a SARS-CoV receptor [J]. Biochem Biophys Res Commun,2004, 314:235-241.
    [46]Godet M, Grosclaude J, Delmas B, Laude H. Major receptor-binding and neutralization determinants are located within the same domain of the transmissible gastroenteritis virus (coronavirus) spike protein [J]. J Virol,1994, 68:8008-8016.
    [47]Motokawa K, Hohdatsu T, Aizawa C, Koyama H, Hashimoto H. Molecular cloning and sequence determination of the peplomer protein gene of feline infectious peritonitis virus type I[J]. Arch Virol.1995; 140(3):469-80.
    [48]Ballesteros L, Sanchez C, and Enjuanes L. Two Amino Acid Changes at the N-terninus of TGEV Spike Protein Result in the Loss of EntericTropism [J]. Virology 1997,227(2):378-388.
    [49]Christine K, Graham D, Yolken R. et al. Point Mutations in the S Protein Connect the Sialic Acid Binding Activity with the Enteropathogenicity of TGEV [J]. Journal of Virol 1997,71(4):3285-3287.
    [50]Rest J S, Minjdell DP. SARS associated coronavirus has a recombinant polymerse and coronavirus has a history of host-shifting [J]. Infect Genel Evol, 2003(3):219-225.
    [51]Ballesteros L, Sanchez C, Enjuanes L. Two amino acid changes at the N-terminus of TGEV spike protein result in the loss of enteric tropism [J]. Virology,1997,227 (2):378-388.
    [52]Christine K, Graham D, Yolken R, et al Point mutations in the S protein connects the sialic acid binding activity with the enteropathogenicity of TGEV [J]. J Virol,1997,71 (4):3285-3287.
    [53]Schultze B, Gross N J, Brinhard R and Herrler G. The S protein of Bovine Coronavirus is a hemagglutinin recognizing 9-O-acetylated sialic acid as a receptor determinant [J]. J Virol,1991,11 (65):6232-6237.
    [54]Bingham R W, Madge M H, Tyrrell D A. Haemagglutination by avian infectious bronchitis virus-a coronavirus [J]. J Gen Virol,1975.28:381-390.
    [55]Schultze B, Enjuanes L, Cavanagh D, Herrler G N-acetylneuraminic acid plays a critical role for the haemagglutinating activity of avian infectious bronchitis virus and porcine transmissible gastroenteritis virus[J].Adv Exp Med Biol,1993. 342:305-310.
    [56]Schultze B, Gross N J, Brinhard R and Herrler G. The S protein of Bovine Coronavirus is a hemagglutinin recognizing 9-O-acetylated sialic acid as a receptor determinant [J]. J Virol,1991,11(65):6232-6237.
    [57]Armstrong J, Niemann H, Smeekens S, Rottier P, Warren G. Sequence and topology of a model intracellular membrane protein.E lglycoprotein, from a coronavirus [J]. Nature,1984.308:751-752.
    [58]Raamsman MJ, Locker JK, de Hooge A, de Vries A A, Griffiths G, Vennema H, Rottier PJ. Characterization of the coronavirus mouse hepatitis virus strain A59 small membrane protein E [J]. J Virol.2000 Mar; 74(5):2333-42.
    [59]Enjuanes L. Membrane protein molecules of transmissible gastroenteritis coronavirus also expose the carboxy-terminal region on the external surface of the virion [J]. J Virol,1995 Sep,69 (9):5269-5277.
    [60]Escors D, Ortego J, Laude H, Enjuanes L.The membrane M protein carboxy terminus binds to transmissible gastroenteritis coronavirus core and contributes to core stability[J]. J Virol.2001 Feb; 75(3):1312-24.
    [61]De Haan, C. A., et al., O-glycosylation of the Mouse Hepatitis Coronavirus Membrane Pro tein [J]. Virus Res.,2002.82(1-2):77-81.
    [62]Haan CA, de Wit M, Kuo L, Montalto-Morrison C, Haagmans BL, Weiss SR, Masters PS, Rottier PJ.The glycosylation status of the murine hepatitis coronavirus M protein affects the interferogenic capacity of the virus in vitro and its ability to replicate in the liver but not the brain [J]. Virology.2003 Aug 1; 312(2):395-406.
    [63]Pulford DJ, Britton P. Expression and cellular localisation of porcine transmissible gastroenteritis virus N and Mproteins by recombinant vaccinia viruses [J]. Virus Res,1991,18 (2-3):203-17.
    [64]Liu C, Kokuho T, Kubota T, et al. DNA mediated immunization with encoding the nucleoprotein gene of porcine transmissible gastroenteritis virus [J]. Virus Res,2001,80 (1-2):75-82.
    [65]Holmes KV, Doller EW, Sturman LS. Tunicamycin resistant glycosylation of a coronavirus glycoprotein:demonstration of a novel type of viral glycoprotein [J]. Virology,1981,115:334-344.
    [66]Baudox P, Carrat C, Besnardeau L, et al. Coronavirus pseudoparticle formed with recombinant M and E proteins induce alpha interferon synthesis by leukocytes [J]. J Virol,1998,72:8636-8643.
    [67]Maeda J, Repass JF, Maeda A, et al.Membrane topology of coronavires E protein [J]. Virology,2001,281 (2):163-169.
    [68]Lim KP, Liu DX.The missing link in coronavirus assembly.Retention of the avian coronavirus infectious bronchitis virus envelope protein in the pre-Golgi compartments and physical interaction between the envelope and membrane proteins [J]. J Biol Chem,2001 May 18.276 (20):17515-23.
    [69]Lim KP, Liu DX.The missing link in coronavirus assembly.Retention of the avian coronavirus infectious bronchitis virus nvelope protein in the preGolgi compartments and physica interaction between the envelope and membrane proteins [J]. J Biol Chem,2001,276 (20):17515-17523.
    [70]Delmas B, Gelfi J, and Laude H. Antigenic Structure of Transmissible Gastroenteritis Virus [J]. Journal of Virol.1986,67:1405-1418.
    [71]Enjuanes L. Membrane protein molecules of transmissible gastroenteritis coronavirus also expose the carboxy-terminal region on the external surface of the virion [J]. J Virol.1995 Sep; 69(9):5269-5277.
    [72]Bingham R W, Madge M H, Tyrrell D A. Haemagglutinating by avian infectious bronchitis virus-a coronavirus [J]. J Gen Virol,1975.28:381-390.
    [73]Schultze B, Enjuanes L, Cavanagh D, Herrler G N-acetylneuraminic acid plays a critical role for the haemagglutinating activity of avian infectious bronchitis virus and porcine transmissible gastroenteritis virus [J].Adv Exp Med Biol,1993. 342:305-310.
    [74]Popova R, Zhang X. The spike but not the Hemagglutinin esterase protein of bovine coronavirus is necessary and sufficient for viral infection [J]. Virology, 2002,294:222-236.
    [75]Wu HY, Guy JS, Yoo D, et al. Common RNA replication signals exist among group 2 coronaviruses:evidence for in vivo recombination between animal and human coronavirus molecules [J]. Virology.2003; 315(1):174-183.
    [76]Ko CK, Kang MI, Lim GK, et al. Molecular characterization of HE, M, and E genes of winter dysentery bovine coronavirus circulated in Korea during 2002-2003[J].Virus Genes.2006; 32(2):129-136.
    [77]Vijgen L, Keyaerts E, Lemey P, et al. Evolutionary History of the Closely Related Group 2 Coronaviruses:Porcine Hemagglutinating Encephalomyelitis Virus, Bovine Coronavirus, and Human Coronavirus OC43[J]. J. Virol.2006, 14(80):7270-7274.
    [78]Maria A. Quiroga, Javier Cappuccio, Pablo Pineyro, et al. Hemagglutinating encephalomyelitis coronavirus infection in pigs, Argentina [J]. Emerging Infectious Diseases,2008,14 (3):484-486.
    [79]贺文琦,陆慧君,宋德光,等.一株高致病性血凝性脑脊髓炎病毒的分离鉴定.中国兽医学报.2007.27(6):781-784.
    [80]殷震,刘景华.动物病毒学[M].北京:科学出版社,1997,690-692.
    [81]Chang CN, Hsu FS, Shen YM, et al.A serological survey on hemagglutinating encephalomyelitis virus infection in pigs of Taiwan Sugar Corporation. Taiwan, Annual Research Report of Animal Research Institute [J]. Taiwan Sugar Corporation,1978:157-163.
    [82]Hirano N, Suzuki Y, Haga S. Pigs with highly prevalent antibodies to human coronavirus and swine haemagglutinating encephalomyelitis virus in the Tohoku District of Japan[J]. Epidemiol infect,1999,122:545-551.
    [83]贺文琦,陆慧君,高丰,等.猪血凝性脑脊髓炎病毒抗体的调查[J].中国兽医科技,2005,35(9):739-741.
    [84]高丰,贺文琦.动物疾病病理诊断学[M].北京:科学出版社,2010:156-157.
    [85]Hirano N, Nomura R, Tawara T,et al. Neurotropism of swine haemagglutinating encephalomyelitis virus (coronavirus) in mice depending upon host age and route of infection[J].J Comp Pathol.2004,130(1):58-65.
    [86]蔡宝祥主编.家畜传染病学(第四版)[M].中国农业出版社,2001.
    [87]贺文琦,陆慧君,宋德光,等.1株高致病性血凝性脑脊髓炎病毒的分离与鉴定[J].中国兽医学报,2007,27(06):781-784.
    [88]Royan Rahimi RAIHANA, Marie HAYAKAWA, Emiko SUGIURA, et al. Analysis of the Properties of Neutralizing Monoclonal Antibodies against the Hemagglutinating Encephalomyelitis Virus and Inhibition of HEV Infection by Specific MAb [J]. Vet. Med. Sci.2009,71(4):447-452.
    [89]耿百成,高丰,贺文琦,等.血凝性脑脊髓炎病毒血凝抑制试验方法的研究[J].动物医学进展,2005,26(06):98-100.
    [90]常灵竹,贺文琦,陆慧君,等.猪血凝性脑脊髓炎病毒RT-PCR方法的建立及初步应用[J].中国农学通报,2007,23(09):15-18.
    [91]Y Sekiguchi, J Shirai, TTaniguchi, et al. Development of reverse transcriptase PCR and nested PCR to detect porcine hemagglutinating encephalomyelitis virus [J].Vet Med Sic,2004,66 (4):367-372.
    [92]张冰冰,赵魁,宋德光,等.绵羊IFN-y和IL-2基因SYBR Green I real-time PCR检测方法的建立及应用[J].中国兽医科学,2010,40(11):1146-1150.
    [93]陈小金,陈建飞,时洪艳,等.猪轮状病毒SYBR Green I实时荧光定量PCR检测方法的建立[J].中国兽医科学,2010,40(02):174-179.
    [94]COCKERILL F R. Application of rapid-cycle real-time polymerase chain reaction for diagnostic testing in the clinical microbiology laboratory [J]. Arch Pathol Lab Med,2003,127(9):1112-1120.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700