基于高频PWM的电液比例控制系统的研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电液比例控制技术是工程机械的核心技术之一,经过六十多年的发展,它由一项单一的技术,形成了目前机电液一体化、智能化、信息化的综合自动化系统。在我国由于起步晚,技术水平低,汽车起重机生产企业往往需要从国外引进电液比例控制系统核心控制器,以提升自身产品的竞争力。但是进口的控制器产品一方面价格偏高,造成汽车起重机整车成本高昂;另一方面它是通用产品,难以适应国内的汽车起重机的某些特殊作业环境,以致故障不断。因此,自主研发设计汽车起重机电液比例控制系统及其核心控制器,已成为国内汽车起重机生产企业的当务之急。
     本文密切结合湖南省科技攻关重点项目进行研究,围绕“汽车起重机电液比例控制系统”的开发做了大量的工作。论文综述了电液比例控制技术的发展历程及发展方向。在分析汽车起重机液传动系统数学模型的基础上,针对该模型的非线性、大滞后及不确定性特点,本文构建了一种新型的控制器—模糊神经网络PID控制器,将模糊神经网络与常规PID控制器相结合,调整PID控制器的三个参数,实现了对液压马达转速的精确控制。另外,汽车起重机的机械结构决定了其电液比例控制系统只能采用主从式双CPU结构,在复杂的施工环境下,节点之间可靠通讯成了迫切需要解决的问题,针对这一问题,论文在对比各种工业控制组网方式的基础上,提出了利用CAN总线实现主从节点的通信方案。并在ARM硬件平台和μC/OS-Ⅱ微内核软件平台上实现了CAN总线应用层协议—CANopen协议。最后,本文针对无位置反馈的电磁比例阀,设计了高频PWM波驱动模块,使线圈平均电流和颤振信号独立可调,并实现了线圈电流的闭环控制,可以很大程度上解决没有位移反馈带来了定位精度不够、响应速度减慢的问题,更重要的是,该驱动模块能够有效降低摩擦,减少电磁铁的磁滞现象。
     核心控制器的实验表明,本文设计的汽车起重机电液比例控制系统已实现设计需求,具有稳定可靠、操作方便等优点,表明本文所研发成果的有效性和实用价值。
Electro-hydraulic proportional control technology is critic to construction mechanism including auto crane. With rapid development of Chinese fundamental constructions, more and more auto cranes are needed. It provides a good opportunity of expanding this market and making fortune for both abroad and civil auto crane manufacturer. But there are some difficulties to compete with overseas counterparts for civil manufacturer. One reason is that poor of technical level, most civil manufacturers’products are based on the imported electro-hydraulic proportional controller which is act as the core, as a result, the cost become higher and lost the advantage of lower cost. The other lies in the imported electro-hydraulic controller itself. Being a general product, the imported control doesn’t work well in particular working conditions in China. Based on above two points, developing electro-hydraulic proportional controller of having independent intellectual property is now urgent to civil auto crane manufacturer.
     Combined with a significant project of Hunan province, the application and research of electro-hydraulic proportional control system base on engineering machinery has been put forward. Firstly the development history and trend of electro-hydraulic control systems are introduced. Based on the modeling of auto crane hydraulic system, to solve the non-linearity, hysteresis and time-variation of the system, a novel control algorithm-fuzzy neural network PID is put forward and the closed-loop control of hydraulic motor is implemented, the PID control parameters are adjusted by the fuzzy neural network. Secondly, kinds of field buses applied to industrial control network are studied, can bus is finally selected to guarantee the stable and real-time communication between master and slave nodes, furthermore, based on the ARM hardware platform andμC/OS-Ⅱmicro kernel platform, the CANopen protocol implemented. Lastly, the paper design a high frequency PWM driver for electro-hydraulic solenoid to implement the closed-loop control of coil current, the current of coil and the frequency of dither signal can be tuned separately, even more important, magnetic hysteresis problem is solved.
     The experiment of central controller states that embedded electro-hydraulic proportional control system described in the paper has reached the design demand with the advantage of stability, security and easy to handle. It also states the the research is of validity and practicability.
引文
[1] 王开云.车列电液比例位置控制系统的研究:[东北大学硕士学位论文].辽宁省:东北大学机械工程与自动化学院,2002,2-3
    [2] 刘世勋,刘少军.国外液压控制技术发展动向.液压与气动,1996,(4):3-4
    [3] 黎启柏.电液比例控制与数字控制系统.北京:机械工业出版社,1997,40-42
    [4] 王春行.液压控制系统.北京:机械工业出版社,1999,4-5
    [5] 路甬祥,胡大纮.电液比例控制技术.北京:机械工业出版社,1988,1-7,57-65
    [6] 余纪纲.从 BOSCH 电液比例控制系统看国处液压技术发展方向.液压与气动, 1997,6
    [7] 吴根茂,邱敏秀.实用电液比例控制技术.浙江:浙江大学出版社,1993,27-53
    [8] 易继锴,侯媛彬.智能控制技术.北京:北京工业大学出版社,2003,157-163
    [9] 王耀南.智能控制系统.湖南:湖南大学出版社,2006,113-120
    [10] Nelson W L. Pulse-width Relay Control in Sampling Systems. Trans.ASEM, J.Basic eng,1961
    [11] 许南雁,郝继飞,邢青青. PWM 控制方法研究.工矿自动化,2005,(04):22-24
    [12] Tsai S C, Ukrainetz P R. Response Characteristics of a Pulse-width modulated Electro Hydraulic Servo. Trans ASEM, J.Basic Eng,1970,(9):204-214
    [13] Okaka Y, Mastuda K. Application of a High Speed Solenoid Actuator Linear Hydraulic Servo-Mechanism , Int Symp On Fluid Control&Meas,Tokyo, 1985,(9):2-6
    [14] 匀许宏,路涵秀.脉宽调制(PWM)数控比例方向阀的研究.机床与液压,1989,(2): 35-37
    [15] 颜容庆,李自光.现代工程机械液压与液力系统基本原理故障分析与排除.北京:人民交通出版社,2001,180-183
    [16] 许益民.电液比例控制系统分析与设计.北京:机械工业出版社,2005,27-33
    [17] 蔡廷文.液压系统现代建模方法.北京:中国标准出版社,2002,19-25
    [18] 黄卉.关于比例阀控非对称缸系统的建模稳态.机床电器,2000,(3):4-7
    [19] 刘子龙,庄显义,刘国忠等.四边滑阀控制液压缸传递函数的一种求解方法.机床与液压,2003,(4):236-239
    [20] 李洪人.液压控制系统.北京:国防工业出版社,1990,53-67
    [21] 杨俭.电液比例位置系统复合控制及相关研究:[浙江大学博士学位论文].浙江省:浙江大学流体传动及控制国家实验室,2005,56-59
    [22] Katsuhiko Ogata,卢伯英.现代控制工程.北京:电子工业出版社,2000,45-47
    [23] 陶永华.新型 PID 控制及其应用.北京:机械工业出版社,2002,17-40
    [24] 刘镇,姜学镇,李东海.PID 控制参数整定方法.电子应用技术,1997,(5):4-6
    [25] 陈传硕,田丽华.PID 控制参数的整定方法.长春邮电学院学报,1994,12(1):9-16
    [26] 李文,赵强.基于神经网络的多变量模糊自整定 PID 控制器.大连铁道学院学报, 1998,19(1):55-62
    [27] 王拂为,孟晓风.一种基于动态神经网络的 PID 参数在线自整定方法.仪器仪表学报,2001,22(4):50-51
    [28] 胡晚霞 .专家式 PID 自整定控制器的设计和实现 .自动化仪表 ,1996,17(3): 21-25
    [29] 刁宇静,黄道平,肖迳.PID 控制器参数自整定方法综述.广东自动化与信息工程,2002,(1):1-4
    [30] Ziegler J G, Nichols N B. Optimum settings for automatic controllers. Trans ASME,1942,(64):759-768
    [31] Su-Wang Sung, Inobemm LEE, Jie LEE. New process identification method for automatic design of PID controllers. Automatic,1998,34(4):513-520
    [32] Yi JiKai, Wang Lin. The Application of Fuzzy Neural Networks to the Temperature Control System of Oil-Burning Tunnel Kiln. Proceeding of the International Conference on Intelligent Processing,1997
    [33] L A Zadeh. Fuzzy Sets and Their Applications. NewYork: Academic Press,1975,54-58
    [34] 胡包钢,应浩.模糊 PID 控制技术研究发展回顾及其面临的若干重要问题.自动化学报,2001,27(4):591-592
    [35] J J Buckley, Y Hayashi. Fuzzy neural networks: A Survey. Fuzzy Sets and Systems,1994,66(1):1-13
    [36] H Yin. Analytical Structure of A Two-input Two-output Fuzzy Controller and Its Relation of PI and Multilevel Relay Controllers. Fuzzy Sets and Systems, 1994,(63):21-33
    [37] Shi-Zhong He. Control of Dynamical Processes Using an on-Line Rule-Adaptive Fuzzy Control System. Fuzzy Sets and Systems,1993,(54):11-22
    [38] 关景泰.机电液控制技术.上海:同济大学出版社,2003,113-119,199
    [39] 阳宪惠.现场总线技术及其应用.北京:清华大学出版社,2003,56-78
    [40] 孙占辉 ,张培仁 .CAN 总线在现场总线控制系统中的应用 .微计算机信息 , 2002,18(7):7-8
    [41] CAN Controller area network CAN, an in-vehicle serial communication Protocol.SAE Press, 1999,27-55
    [42] Olaf Pfeiffer, Andrew Ayre, Christian KeydeL. Embedded Networking with CAN and CANopen. RTC Books,2003,25-37,66-151
    [43] 乌宽明 .CAN 总线原理和应用系统设计 .北京 :北京航空航天大学出版社 , 1996,15-46
    [44] Chacko, R.V.Lakaparampil, Z.V.Chandrasekar V. CAN based Distributed Real Time Controller Implementation for Hybrid Electric Vehicle. Vehicle Power and Propulsion,2005 IEEE Conference,2005,247-251
    [45] Esacademy. Implementation Of MicroCANopen. http://www.microcanopen.com/
    [46] 何立民.单片机高级教程——应用与设计.北京:北京航空航天大学出版社, 1999,59-63,88-103
    [47] Philips 公司. LPC2292 用户手册
    [48] Philips 公司. LPC2000 系列 ARM-CAN 控制器驱动程序的实用指南
    [49] Jean j.Labrosse.Embedded Syetems Building Blocks, 2E.北京:机械工业出版社,2002,201-210
    [50] 冉汉政.嵌入式实时操作系统 μC/OS 在控制工程中的应用.现代电子技术, 2003,156(13):84-86
    [51] 肖海荣.基于 SJA1000 的 CAN 总线智能节点设计.计算机自动测量与控制, 2001,9(2):48-50
    [52] 广州周立功单片机发展有限公司. MagicARM2200 教学实验开发平台
    [53] 罗安,韩波. PWM 电液比例放大器的研制.机床与液压,1996,(3)
    [54] 宫文斌,刘昕晖,孙延伟.电液比例 PWM 控制方法.吉林大学学报,2003,18(7): 104-106
    [55] 薛定宇.反馈控制系统设计与分析—Matlab 语言应用.北京:清华大学出版社, 2000,275-277

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700