小麦籽粒淀粉合成酶基因表达与淀粉合成的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验以生产上推广应用的不同专用类型非糯小麦品种和缺失Wx蛋白的糯性小麦品种作为研究材料。主要研究:(1)不同专用类型小麦籽粒腺苷二磷酸葡萄糖焦磷酸化酶基因(AGPase1)、束缚态淀粉合成酶基因(GBSSI)、可溶性淀粉合成酶基因(SSSIII)、淀粉分支酶基因(SBEI)表达与淀粉合成的关系;(2)缺失不同Wx蛋白小麦籽粒中GBSSI基因表达与直链淀粉合成的关系;(3)弱筋小麦籽粒淀粉合成酶基因表达对氮素和花后温度的响应。探索不同专用类型小麦籽粒淀粉合成酶基因表达对淀粉合成与品质调控的生理机制;为小麦的高产、优质、高效栽培提供理论依据和技术参考。试验主要结果如下:
     1不同小麦品种籽粒淀粉合成酶基因表达、淀粉合成酶活性以及淀粉积累特点
     不同专用类型小麦籽粒中淀粉合成酶基因(AGPase1、GBSSI、SSSIII、SBEI)表达变化动态一致,均呈单峰曲线。于花后5天左右开始表达,15天达最大值,之后急剧下降,25天相对表达量下降至1.0左右,并相对稳定至成熟期;籽粒腺苷二磷酸葡萄糖焦磷酸化酶(AGPase)、束缚态淀粉合成酶(GBSS)、可溶性淀粉合成酶(SSSIII)、淀粉分支酶(SBE)活性变化均呈单峰曲线,AGPase、SSS、SBE活性峰值时间出现在花后25天,GBSS活性峰值时间出现在花后30天;籽粒中淀粉及其组分含量和积累量均呈“S”型曲线变化,随着灌浆进程的推进,呈上升趋势。
     不同专用类型小麦间,淀粉合成酶基因(AGPase1、GBSSI、SSSIII、SBEI)相对表达量、淀粉合成酶(AGPase、GBSS、SSS、SBE)活性、淀粉积累量和积累速率大小均表现为强筋小麦中优9507>中筋小麦淮麦18>弱筋小麦宁麦9号>糯小麦Wx11,其中糯小麦Wx11籽粒中GBSSI相对表达量和GBSS活性几乎为零,籽粒中直链淀粉含量<2%;同一专用类型不同小麦品种之间,上述测定值均表现为:强筋小麦中优9507>秦麦11;中筋小麦扬麦16>淮麦18;弱筋小麦扬麦15>宁麦9号。
     2不同小麦品种籽粒蔗糖合成酶(SS)活性、蔗糖和可溶性总糖含量变化
     不同专用类型小麦籽粒中蔗糖合成酶(SS)均呈单峰曲线变化,花后20天SS活性达最大值,之后急剧下降。籽粒蔗糖和可溶性总糖含量随着灌浆进程的推进呈下降趋势。
     不同专用类型小麦之间籽粒蔗糖合成酶(SS)活性表现为强筋小麦中优9507>中筋小麦淮麦18>弱筋小麦宁麦9号>糯小麦Wx11,籽粒可溶性总糖和蔗糖含量表现为糯小麦Wx11>弱筋小麦宁麦9号>中筋小麦淮麦18>强筋小麦中优9507。此结果表明,强筋小麦籽粒利用同化物的能力最高,使得淀粉合成的底物最多,籽粒中淀粉积累量最高,蔗糖含量最低;糯小麦籽粒中蔗糖降解代谢能力最低,供给淀粉合成的底物最少,导致籽粒中淀粉积累量最低,蔗糖含量最高。同一专用类型不同小麦品种之间籽粒蔗糖合成酶(SS)、可溶性总糖和蔗糖含量均表现为:强筋小麦中优9507>秦麦11;中筋小麦扬麦16>淮麦18;弱筋小麦扬麦15>宁麦9号。
     3小麦籽粒淀粉合成酶基因表达和淀粉合成酶活性与淀粉积累的关系
     AGPase1和SSSIII基因相对表达量最大值与AGPase、GBSS、SSS、SBE、SS酶活性峰值的相关性均达显著或极显著水平;GBSSI基因相对表达量最大值与AGPase和SS酶活性峰值的相关性达显著水平,与GBSS、SSS、SBE酶活性峰值的相关性未达显著水平; SBEI基因相对表达量最大值与SSS和SBE酶活性峰值相关性达极显著水平,与AGPase、GBSS、SS酶活性峰值的相关性未达显著水平;另外AGPase1、GBSSI、SSSIII、SBEI基因相对表达量和AGPase、GBSS、SSS、SBE酶活性与籽粒直、支链淀粉及总淀粉积累速率均呈极显著正相关。说明这四种淀粉合成酶基因和淀粉合成酶共同对籽粒淀粉的合成起作用;AGPase1、SSSIII、SBEI基因可能主要通过转录水平控制籽粒淀粉的合成,而GBSSI基因可能主要通过转录后水平控制籽粒直链淀粉的合成。
     4缺失不同Wx蛋白小麦籽粒中GBSSI基因表达与直链淀粉合成的关系缺失不同Wx蛋白小麦籽粒中GBSSI基因相对表达量、GBSS活性、直链淀粉积累量均表现为:正常型>缺A型>缺D型>缺B型>缺AB型>缺ABD型;籽粒淀粉最终粘度、反弹值、糊化温度在缺失不同Wx蛋白小麦品种之间表现顺序与其一致;淀粉峰值粘度、低谷粘度、稀懈值、沉降值表现顺序与其相反。相关分析表明,淀粉膨胀势与直链淀粉含量、反弹值和糊化温度呈显著或极显著负相关,与淀粉峰值粘度、低谷粘度呈显著或极显著正相关。
     5弱筋小麦籽粒淀粉合成酶基因表达对氮素的响应
     弱筋小麦15籽粒中淀粉合成酶基因(AGPase1、GBSSI、SSSIII、SBEI)相对表达量、淀粉合成酶(AGPase、GBSS、SSS、SBE)活性、淀粉积累量以及部分淀粉粘度参数值在相同的氮肥运筹比例时,施氮量为150kg hm-2~210kg hm-2范围时,随着施氮量的增加,均呈上升趋势;当施氮量超过210kg hm-2时,随着施氮量的增加,上述指标值降低;相同的施氮量水平下,当追施氮肥适当前移时,弱筋小麦扬麦15籽粒中上述指标值增加。
     6弱筋小麦籽粒淀粉合成酶基因表达对花后温度的响应
     花后不同时期经25℃和35℃处理后,弱筋小麦扬麦15籽粒中淀粉合成酶基因相对表达量(AGPase1、GBSSI、SSSIII、SBEI)、淀粉合成酶活性(AGPase、GBSS、SSS、SBE)、淀粉积累量以及部分淀粉粘度参数值均下降,其下降幅度在各处理间的顺序表现为:花后5-7d>花后10-12d>花后15-17d>花后20-22d>花后25-27d>花后30-32d>花后35-37d,花后5-7d高温处理下降幅度最大。同一时期经不同温度处理后,籽粒中上述指标值下降幅度均表现为:35℃>25℃,35℃处理下降幅度最大,25℃处理与CK差异不显著。花后5-7d经35℃处理后,籽粒中除GBSSI和GBSS外,其它3种淀粉合成酶基因相对表达量和相应酶活性到达峰值的时间均前移。GBSSI和GBSS对温度最为钝感,SSSIII基因和SSS对温度最为敏感。
     7荧光定量PCR技术方法的改进
     荧光定量PCR是一种在PCR反应体系中加入荧光基团,利用荧光信号实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析的方法。该方法的优点在于它能监测任何dsDNA序列的扩增,不需要探针的设计,使检测方法变得简便,同时也降低了检测的成本。本试验利用DNA消化酶去除mRNA中的DNA,以防止DNA污染;根据荧光定量PCR的要求严格设计引物,避免产生引物二聚体;把不同模板的cDNA混合进行稀释制作标准曲线;优化荧光定量PCR的反应体系,采用两步法RT-PCR进行荧光定量检测。这种制作方法可以准确反映反应体系中反转录和扩增过程的效率,使结果更为可信。
The expression levels of ADP-Glc Pyrophosphorylase gene(AGPase1), Granule-Bound Starch Synthase gene(GBSSI), Soluble Starch Synthase gene(SSSIII), and Starch Branching Enzyme gene(SBEI) and their relationships with the starch synthesis in wheat grains of different gluten types were investigated with non-waxy wheat cultivars and waxy wheat varieties. The relationship between GBSSI gene expression and amylose synthesis in wheat grains with different missing Wx proteins, and the responses of the expression levels of starch synthase genes in weak-gluten wheat grains to nitrogen and high temperature after anthesis were analyzed . These studies are of crucial importance both in exploring the physiological mechanism for starch synthase gene expression regulating starch synthesis and starch quality in wheat grains with different gluten types and in providing theoretical basis and technical guidance for efficient production in wheat grains with high yield and goodquality. The main results were as follows.
     1. Changes of starch synthase genes expression levels, starch synthases activities and starch accumulation in grains of different wheat cultivars during grain filling
     Single-peak trends were observed in the expression levels of AGPase1, GBSSI, SSSIII and SBEI during grain filling. The expressions of these genes were first detected on DAA 5 (the 5th day after anthesis), reached the maximum on DAA 15, and declined significantly from DAA 15. The lowest expression levels of starch synthase genes were recorded during the period of DAA 30-40, only at around 1.0. The activities of AGPase, SSS, GBSS, and SBE performed in the pattern of a single-peak curve during grain filling. AGPase, SSS and SBE activities reached their peaks on DAA 25 and GBSS activity reached its maximum on DAA 30. The starch content and accumulation in grains rose gradually after anthesis,
     Among the different gluten types of wheat varieties, the expression levels of starch synthase genes, the activities of starch synthase, and starch accumulation were recorded in a descending order of Zhongyou9507 (a strong-gluten cultivar), Huaimai18 (a medium-gluten cultivar), Ningmai9 (a weak-gluten cultivar), and Wx11 (a Waxy variety). The expression of GBSSI and the activity of GBSS in Wx 11 grains were maintained at very low levels approaching zero, which led to amy-lose content in Wx11 grains were lower than 2%. Between different wheat varieties with the same gluten type, the order of above-mentioned parameters was: Zhongyou9507 > Qinmai11 in strong-gluten cultivars; Yangmai16 > Huaimai18 in medium-gluten cultivars; Yangmai15 > Ningmai9 in weak-gluten cultivars.
     2 Changes of SS activity, sucrose and total soluble sugar contents in grains of different wheat cultivars during grain filling
     The activities of SS performed in the pattern of a single-peak curve in wheat grains with different gluten types during grain filling. Its peak appeared on DAA 20. The sucrose and total soluble sugar contents in wheat grains dropped constantly respectively after anthesis and at early grain filling stage.
     Among different gluten types of wheat varieties, the activity of SS in a descending order of Zhongyou9507, Huaimai18, Ningmai9, and Wx11, and the order of sucrose and total soluble sugar contents in wheat grains were expressed as Wx11 > Ningmai9 > Huaimai18 > Zhongyou9507. The results showed that a large amount of sugar in strong-gluten wheat grains had been converted into the substrate for starch synthesis, therefore the starch accumulation in its grains was much higher than that in the grains of the other three gluten types. In waxy wheat grains there were a large amount of sugar which was incapable of being converted into the substrate for starch synthesis. Hence, the starch accumulation in its grains was much lower than that in non-waxy wheat grains. Between different wheat varieties with the same gluten type, the above mentioned parameters were in the following order: Zhongyou9507 > Qinmai11 in strong-gluten cultivars; Yangmai16 > Huaimai18 in medium-gluten cultivars; Yangmai15 > Ningmai9 in weak-gluten cultivars.
     3. Relationship of the expression levels of starch synthase genes with the activities of starch synthases and starch accumulation in wheat grains
     The relationship between the maximum expression levels of AGPase1, SSSIII and the peak activities of AGPase, GBSS, SSS, SBE, SS was significantly correlated at 0.01 or 0.05 levels. The maximum expression level of GBSSI was significantly correlated with the peak activities of AGPase and SS, while there were no significant correlations between it and the peak activities of GBSS, SSS, and SBE. The maximum expression level of SBEI was highly significantly correlated with the peak activities of SSS and SBE, (p<0.01), and insignificantly correlated with the peak activities of AGPase, GBSS, and SS. The expression levels of AGPase1, GBSSI, SSSIII, and SBEI and the activities of AGPase, GBSS, SSS, and SBE were highly significantly correlated with the accumulatiing rates of amylase, amylopectin, and total starch. These suggested that starch synthase genes and starch synthases played collaborative roles in starch synthesis in wheat grains. AGPase, SSS,and SBE might probably control starch synthesis at transcriptional level, and GBSSI might probably control starch synthesis at post-transcriptional level.
     4 Relationship between GBSSI gene expression and amylose synthesis in wheat grains with different missing Wx proteins
     The expression level of GBSSI, GBSS activity, and amylase content were recorded in the following order: normal type > single null allels of Wx-A1 > single null allels of Wx-D1 > single null allels of Wx-B1 > double null allels of Wx-A1 and Wx-B1 > waxy type. Similar trends were observed in final viscosity, rebound value, and gelatinization temperature, while opposite trends were measured in peak viscosity, trough viscosity, breakdown, and sedimentation value.
     5 Responses of starch synthase gene expressions in weak-gluten wheat grains to nitrogen
     The expression levels of starch synthase genes (AGPase1, GBSSI, SSSIII, SBEI), the activities of starch synthases (AGPase, GBSS, SSS, SBE), and starch accumulation rose in the grains of Yangmai15, a weak-gluten wheat cultivar, with the increase of nitrogen application amount varying from 150kg hm-2 to 210kg hm-2. When nitrogen application amount was higher than 210kg hm-2, those decreased. The expression levels of starch synthase gene, the activities of starch synthase, and starch accumulation were stimulated when topdressing N percentage decreased reasonably.
     6 Responses of starch synthase gene expression in weak-gluten wheat grains to high temperature after anthesis
     The expression levels of starch synthase genes (AGPase1, GBSSI, SSSIII, SBEI), the activities of starch synthases (AGPase, GBSS, SSS, SBE), and starch accumulation in the grains of Yangmai15 were significantly inhibited when the wheat plants were subjected to high temperatures during grain filling. The decrements of these parameters among different high temperature treating periods were in the following order: 5-7DAA > 10-12DAA > 15-17DAA > 20-22DAA > 25-27DAA > 30-32DAA > 35-37DAA. Compared to 25℃, the inhibitive effects were more significant at 35℃. Similar trends were found in these parameters for the treatment of 25℃and the control. The expression levels of AGPase1, SSSIII, and SBEI, and the activities of AGPase, SSS, SBE reached their peaks on earlier dates when subjected to 35℃on 5-7 DAA. GBSSI and GBSS were insensitive to high temperatures. SSSIII and SSS were sensitive to high temperatures.
     7 Improvement of real-time quantitative PCR technique
     Real-time quantitative PCR (RT-PCR) is a kind of nucleicacid technology, which can monitor the entire real-time PCR process through the accumulation of fluorescence signal and analysis the unknown sample through the standard curve. Therefore, it has the characteristics of real-time monitoring, simple and cost saving. In this experiment, a series of measures had been taken to further improve RT-PCR technology, which included removing DNA in mRNA with DNA enzyme, strictly designing primers in accordance with the requirements of RT-PCR, mixing different template cDNA to make standard curve, optimizing the reaction system of RT-PCR and the use of two-step RT-PCR reaction. These measures above mentioned can accurately reflect the process of reverse transcription and amplification.
引文
[1] Anisworth C, TarvisM, Clark J. Isolation and analysis of cDNA clone encoding the smallsubunit of ADP-glucose pyrophosphorylase from wheat. Plant Molecular Biology, 1993, 23:23-33.
    [2] Nakamura T, Yamamori M, Hirano H, et al. Identification of three waxy proteins in wheat (Triticum aestivum L.). Biochemical Genetics, 1993, 31(1-2): 75-86.
    [3] Yamamori M, Endo T R. Variation of starch granule proteins and chromosome mapping of their coding genes in common wheat. Theor Appl Genet, 1996, 93: 275-281.
    [4] Sun C, Puthigae S, Staffan A, et al. The two genes encoding starch-branching enzymesIIaand IIb are differentially expressed in barley. Plant Physiology, 1998, 118: 37-49.
    [5] French D. Organization of starch granules. In: Whistler RL, BeMiller JN, Paschall EF (eds). Starch: Chemistry and Technology. Orlando: Academic, 1984, 183-247.
    [6] Tako M, Hizukuri S. Retrogradation Mechanism of Rice Starch. Cereal Chemistry, 2000, 77(4): 473-477.
    [7] SHizukuri. Recent advances in molecular structure of starch. Starch Science, 1988, 31:185.
    [8] Smith A M. The biosynthesis of starch granules. Biomacromolecules, 2001, 2: 335-341.
    [9] Hizukuri S. Polymodal distribution of the chain lengths of amylopectins and its significa-nce. Carbohydr-Research. 1986, 147(3): 342-347.
    [10] Dong Jiang, Weixing Cao, Tingbo Dai,et al. Activities of key enzymes for starch synthesis in relation to growth of superior and inferior grains on winter wheat (Triticum aestivum L.) spike. Plant Growth Regulation, 2003, 41: 247–257.
    [11]李友军,熊瑛,骆炳山.不同类型小麦籽粒灌浆期碳水化合物代谢及相关酶活性研究.西北农林科技大学学报, 2006, 34(1): 13-19.
    [12]赵俊晔,于振文,孙慧敏,等.不同小麦品种籽粒淀粉组分及相关酶活性的差异.作物学报, 2004, 30(6):525-530.
    [13]罗毅,姜玉梅,刘海英.不同优质小麦子粒淀粉积累动态及其酶活性变化.河南农业大学学报. 2005, 39(2): 135-138.
    [14]刘霞,姜春明,郑泽荣.藁城8901和山农1391淀粉合成酶活性和淀粉组分积累特征的比较.中国农业科学, 2005, 38(5): 897-903.
    [15]闫素辉,王振林,戴忠民,等.两个直链淀粉含量不同的小麦品种籽粒淀粉合成酶活性与淀粉积累特征的比较.作物学报, 2007, 33(1): 84-89.
    [16]王文静,高桂立,罗毅.三个不同品质类型冬小麦品种籽粒淀粉积累动态及其有关酶的活性变化.作物学报, 2005, 31(10): 1305-1309.
    [17] Martha J G, Denyer K, Alan M M. Starch synthesis in the cereal endosperm. Plant biology. 2003, 6: 215-222.
    [18] Denyer K, Dunlap F, Thorbjornsen T, et al. The major form of ADP-glucose pyrophosphorylase in maize endosperm is extra-plastidial. Plant Physilogy, 1996, 112: 779-785.
    [19] Muller-Rober B, Kopman J. Approaches to influence starch quantity and starch quality intransgenic plants. Plant Cell and Enviroment, 1994, 17: 601.
    [20]王月福,于振文,李尚霞,等.小麦籽粒灌浆过程中关键淀粉合成酶的活性及其效应.作物学报, 2003, 29(1): 75-81.
    [21] Jean-Louis Prioul, Emmanuelle Jeannette, Agnes Reyss, et al. Expression of ADP-GlucosPyrophosphorylase in Maize Grain and Source Leaf during Grain Filling. Plant Physiolgy,1994, 104: 179-187.
    [22]包劲松,夏英武.水稻淀粉合成的分子生物学研究进展.植物学通报,1999, 16(4): 352-358.
    [23] Okita TA, Nakata PA, Aderson JM, et al. The subuint struction of potato tuber ADP-glucose pyrophosphorylase. Plant physiolgy, 1990, 93: 785.
    [24] Dickinson D B, Preiss J. ADP-glucose pyrophosphorylase from maize endosperm. Archiv-es Biochemistry and Biophysics, 1969, 130: 119-128.
    [25] Stark D.M, Tmmerman K.P, Barry G L, Preiss J. and Kishore G.M., Science, 1992, 258:287-292.
    [26] Smidansky E D, Clancy M, Meyer F D, et al. Enhanced ADP-glucose pyrophosphorylaseactivity in wheat endosperm increases seed yield. Proc Natl Acad Sci USA, 2002, 99: 1724-1729.
    [27] Muller-Rober B, Sonnewald U, Willmitzer L. Inhibition of AGPase in transgenic potatoesleads to sugar-storing tubers and influences tuber formation and expression of tuber-storage protein genes. EMBO Journal, 1992, 11: 1229-1238.
    [28]余春梅,陈佩度,季本华.小麦胚乳淀粉合成酶基因研究进展.麦类作物学报, 2004, 24(4): 123-128.
    [29]刘霞,姜春明,郑泽荣,等.藁城8901和山农1391淀粉合成酶活性和淀粉组分积累特征的比较.中国农业科学, 2005, 38(5): 897-903.
    [30] Denyer K, Smith A M. The purification and characterization of the two forms of solublestarch synthase from developing pea embryos. Planta, 1992, 186: 609-667.
    [31] Yamamori M, Nakamura T, Endo T R, et al. Waxy protein deficiency and chromosomallocation of coding genes in common wheat. Theor Appl Genet, 1994, 8(2-3): 179-184.
    [32] Hirano H Y, Eiguchi M, SanoY. A single base change altered the regulation of the waxylocus of rice (Oryza satva). Plant Cell Physiolgy, 1990, 32: 989.
    [33] Van Der Leij FR, Visser RGF, Oosterhaven K et al. Complementation of the amylose-free starch mutant of potato (Solanum tuberosum L.). Theor Appl Genet, 1987, 75: 217.
    [34] Tsai C.Y., 1965, Correlation of enzymatic activity with Wx dosage, Maize Genet. Coop. Newslett, 39:153-156.
    [35]彭佶松,郑志仁,刘涤,胡之璧淀粉的生物合成及其关键酶.植物生理学通讯, 1997, 33(33):297-303.
    [36]时岩玲,田纪春.颗粒结合型淀粉合成酶研究进展,麦类作物学报, 2003, 23 (3): 119-122.
    [37] Cal X L, Wang Z Y, Xing Y Y, et al. Aberrantsplicing of intron 1 leads to the heterogeneous 5'UTR and decreased expression of waxy gene in rice cultivars of intermediate amylose content. The Plant Journal 199, 14 (4): 459-465.
    [38] Wang ZY, Wu ZL, Xing YY, et al. Molecular characterization of rice Wx gene. Series Biology, 1992, 35(5): 558.
    [39]张峰,蒋德安,翁晓燕.淀粉合酶的酶学与分子生物学研究进展.植物学通报, 2001, 18(2):177-182.
    [40]赵步洪,张文杰,常二华,等.水稻灌浆期籽粒中淀粉合成关键酶的活性变化及其与灌浆速率和蒸煮品质的关系.中国农业科学, 2004, 37(8): 1123-1129.
    [41]盛婧,郭文善,胡宏,等.小麦淀粉合成关键酶活性及其与淀粉积累的关系.扬州大学学报(农业与生命科学版). 2003, 24(4): 49-53.
    [42] Commuri P D, Keeling P L. Chain-length specificities of maize starch synthase I enzyme-e: studies of glucan affinity and catalytic properties. Plant Journal, 2001, 25: 475-486.
    [43]李春燕,封超年,张影,等.氮肥基追比对弱筋小麦宁麦9号籽粒淀粉合成及相关酶活性的影响.中国农业科学, 2005, 38(6): 1120-1125.
    [44] Li Z, Rahman S, Kosar-Hashemi B, et al. Cloning and characterization of a gene encodi-ng wheat starch synthase I. Theor Appl Genet, 1999a, 98(8): 1208-1216.
    [45] Baba T, Nishiara M, Mizuno K, et al. Identification cDNA cloning and gene expressiomof soluble starch synthase in rice (Oryza sativa L.) immature seeds. Plant Physiogy, 1993, 103: 565-573.
    [46] Kossmann J, Abel G J W, Springer F, et al. Cloning and functional analysis of a cDNA encoding a starch synthase from potato (Solanum tuberosum L.) that is predominantlyexpressed in leaf tissue. Planta, 1999, 208(4): 503-511.
    [47] Li Z Y, Mouille G, Kosar-Hashemi B, et al. The structure and expression of the wheat starch synthase III gene. Motifs in the expressed gene define the lineage of the starchsynthase III gene family. Plant Physiolgy, 2000, 123 (2): 613-624.
    [48] Gao M, Wanat J, Stinard PS, et al. Characterization of dull1, a maize gene coding for a novel starch synthase. Plant Cell, 1998, 10(3): 399-412.
    [49] Fontaine T, Dhulst C, Maddelein M L et al. Toward an understanding of biogenesis of starch granule: Evidence that Chamydomonas solube starch synthase controls the synthas-e of intermediate size glucan of amylopectin. Journal of Biological Chemistry, 1993, 268:126-230.
    [50] Abel G J W, Springer F, Willmitzer L, et al. Cloning and functional analysis of a cDNA encoding a novel 139kDa starch synthase from potato (Solanum tuberosum L.). Plant Journal, 1996, 10(6): 981-991.
    [51] Keeling P L, Bacon P J, Holt D C. Elevated temperature reduces starch deposition in wheat endosperm by reducing the activity of soluble starch synthase. Planta, 1993, 191: 342.
    [52] Burton R A, Bewley J D, Smith A M, et al. Starch branching enzymes belonging to dis-tinct enzyme families are differentially expressed during pea embryo development. PlantJournal, 1995, 7: 3-15.
    [53] Satoh H, Nishi A, Yamashita K, et al. Starch-branching enzyme I deficient mutation spe-cifically affects the structure and properties of starch in rice endosperm. Plant Physiolgy,2003, 133: 1111-1120.
    [54] Takeda Y, Guan H .P. Branching of amylose by the branching isoenzymes of maize end-osperm. Rarbohydrate Research, 1993, 240: 253–263.
    [55] Rahman S, Abrahams S, Abbott D, et al. A complex arrangement of genes at a starch branching enzyme I locus in the D-genome donor. Genome, 1997, 40: 465–474.
    [56] Burton RA, Jenner H, Carrangis L et al. Starch granule initiations growth are altered inbarley mutants that lack isoamylase activity. Plant Journal, 2002, 31(1): 97-112.
    [57] Morell MK, Lennow A, Kosar HB et al. Differential expression properties of starch bran-ching enzyme isoforms in developing wheat endosperm. Plant Physiol, l997, 113(1): 201-208.
    [58] Mutisya J, Sathish P, Su C, et al. Starch branching enzymes in sorghum (Sorghum bicol-or) and barley (Hordeum vugare); comparative analyses of enzyme structure and gene ex-pression. Plant Physiolgy, 2003, 160: 921-930.
    [59] Hiroaki Yamanouchi, Yasunori Nakamura. Organ specificity of isoforms of starch branchi-ng enzyme in rice. Plant and Cell Physiology, 1992, 33(7): 985-991.
    [60]吴方喜,谢华安,苏军,等. Sbel正、反义基因改变籼稻直链淀粉含量的研究.福建农业学报,2006, 21(2): 150-153.
    [61]柴晓杰,徐亚维,王丕武,等.玉米淀粉分支酶基因启动子的克隆与功能分析.生物技术通报, 2006, 283-287.
    [62] Stephen AJ, Gerhard PS, Roger JW et al. A minor form of starch branching enzyme inpotato (Solanum tuberosum L.) tubers has a major effect on starch structure: cloning and characterisation of multiple forms of SBE A. Plant Journal, 1999, 18: 163-168.
    [63] Nishi A, Nakamura Y, Tanaka N, et al. Biochemical and genetic effects of amylase exte-nder mutation in rice endosperm Plant Physiolgy, 2001, 127: 459-472.
    [64] Kasemnsuwan L, Jane J, Schnable P et al. Characterization of the dominant mutant amyl-ose extender (Ac1-51) in maize starch. Cereal Chemistry, 1995, 72(5): 457-464.
    [65] Blauth S L, Kimk N, Klucinec J, et al. Identification of mutatur insertional mutants of starch-branching enzyme1(she1).in Zea mays L. Plant Molecular Biology, 2002, 48: 287- 297.
    [66] Hasnain H, Alexandra M, Robert S, et al. Three isoforms of isoamylase contribute differ-ent catalytic properties for the debranching of potato glucans. Plant Cell, 2003, 15: 133-149.
    [67] Kubo A, Fujita N, Jarada K, et al. The starch-debranching enzymes isoamylase ZPU lula-nase are both involved in amylopectin biosynthesis in rice endosperm. Plant Physiolgy, 1999, 121: 399-410.
    [68] Rahman A, Wong K S, Jane J L, et al. Characterization of Su1 isoamylase, a determina-nt of storage starch structu ZPU in maize. Plant Physiolgy, 1998, 117: 425-435.
    [69] Mary K, Beatty AR, Cao H, et al. Purification molecular genetic characterization of ZP-U1, a pullulanase-type starch debranching enzyme from maize. Plant Physiolgy, 1999, 119: 255-266.
    [70]高振宇,黄大年,钱前.植物支链淀粉生物合成研究进展.植物生理与分子生物学学报, 2004, 30(5): 489-495.
    [71] Burton, R., Jenner, H., Carrangis, L, et al. Starch granule initiation and growth are alter-ed in barley mutants that lack isoamylase activity. Plant Journal, 2002, 31: 97–112.
    [72] Fulda N. Kubo A, Suh D S, et al. Antisense inhibition of isoamylase alters the structureof amylopectin and the physicochemical properties of starch in rice endosperm. Plant Cell, 2003, 44: 607-618.
    [73] Jason RD, Christophe C, Martha GJ et al. Mutational analysis of the pullulanase-type de-branching enzyme of maize indicates multiple functions in starch metabolism. Plant Cell,2003, 15: 666-680.
    [74]戴忠民.氮素代谢对小麦生理特性的影响研究进展.河南农业科学,2008, 7: 10-12.
    [75]张强,戴其根,张洪程,等.氮肥用量对中筋专用小麦扬麦11号淀粉性状及籽粒品质的影响.莱阳农学院学报,2004, 21 (3): 206-210.
    [76]李青常,王振林,张艳,等.施氮水平对小麦面条加工品质的影响.中国农业科学, 2005, 38(2): 420-424
    [77]胡宏,盛婧,郭文善,等.氮素对弱筋小麦宁麦9号淀粉形成的调节效应.麦类作物学报2004, 24(2): 92-96.
    [78]蔡瑞国,尹燕枰,张敏,等.氮素水平对藁城8901和山农1391籽粒品质的调控效应.作物学报, 2007, 33(2): 304-31.
    [79]郭天财,宋晓,马冬云,等.氮素营养水平对2种穗型冬小麦品种籽粒灌浆及淀粉特性的影响.华北农学报, 2007, 22(1): 132-136.
    [80]姜东,于振文,李永庚,等.施氮水平对高产小麦蔗糖含量和光合产物分配及籽粒淀粉积累的影响.中国农业科学,2002, 35(2): 157-162.
    [81]宋建民.小麦Wx蛋白对淀粉理化特性和面条品质的影响及其作用机理研究.学位论文.中国农业大学.
    [82]姜东,于振文,李永庚,等.施氮水平对鲁麦22籽粒淀粉合成的影响.作物学报, 2003, 29(3): 462-467.
    [83]潘庆民,于振文,王月福,等.追氮时期对小麦旗叶中蔗糖合成与籽粒中蔗糖降解的影响.中国农业科学, 2002, 35(7): 771-776.
    [84]马冬云,郭天财,宋晓,等.氮素水平对冬小麦籽粒灌浆过程中淀粉合成关键酶活性的影响.植物生理学通讯,2007, 43(6): 1057-1060.
    [85]严美玲.水氮运筹对小麦产量、品质及碳氮代谢的影响与调控. 2006,博士生论文.
    [86] Douglas C. Doehlert, Edwin R. Duke, Leslie J. Smith. Effect of nitrogen supply on expr-ession of some genes controlling storage proteins and carbohydrate synthesis in culturedmaize kernels. Plant Cell, 1997, 47: 195-198.
    [87] Weimin Dian, Huawu Jiang, Qingshuang Chen, et al. Cloning and characterization of thegranule-bound starch synthaseII gene in rice: gene expression is regulated by the nitrog-en level, sugar and circadian rhythm. Planta, 2003, 218: 261–268.
    [88]苗建利,王晨阳,郭天财等.高温与干旱互作对两种筋力小麦品种籽粒淀粉及其组分含量的影响.麦类作物学报, 2008, 28(2): 254-259.
    [89]刘萍,郭文善,浦汉春,等.灌浆期短暂高温对小麦淀粉形成的影响.作物学报, 2006, 32(2): 182-188.
    [90]赵辉,戴廷波,荆奇,等.灌浆期高温对两种品质类型小麦品种籽粒淀粉合成关键酶活性的影响.作物学报, 2006, 32(3): 423-429.
    [91]闫素辉,尹燕枰,李文阳,等.灌浆期高温对小麦籽粒淀粉的积累、粒度分布及相关酶活性的影响.作物学报, 2008, 34(6): 1092-1096.
    [92]戴廷波,赵辉,荆奇,等.灌浆期高温和水分逆境对冬小麦籽粒蛋白质和淀粉含量的影响.生态学报, 2006, 26(11): 3670-3676.
    [93]王珏,封超年,郭文善,等.花后高温胁迫对小麦籽粒淀粉积累及晶体特性的影响.麦类作物学报, 2008,28(2):260-265.
    [94] Jenner C F. The physiology of starch and protein deposition in the endosperm of wheat.Plant Physiology,1991, 18: 211-226.
    [95] Jenner C F,Siwek K,Hawker J S. The synthesis of 14C starch from 14C sucrose in iso-lated wheat grains is dependent upon the activity of soluble starch synthase. Australian Journal of Plant Physiology, 1993,20: 329-335.
    [96] Macleod L C,Duffus C M. Reduced starch content and sucrose synthase activity in dev-eloping endosperm of barley plant growth at elevated temperatures. Australian Journal ofPlant Physiology,1988,15: 367-375.
    [97]张保仁,董树亭,胡昌浩,等.高温对玉米籽粒淀粉合成及产量的影响.作物学报, 2007,33(1): 38-42.
    [98]金正勋,杨静,钱春荣,等.灌浆成熟期温度对水稻籽粒淀粉合成关键酶活性及品质的影响.中国水稻科学,2005, 19(4): 377-380.
    [99] William J. Hurkman , Kent F. McCue , Susan B, et al. Effect of temperature on expre-ssion of genes encoding enzymes for starch biosynthesis in developing wheat endosperm.Plant Science,2003, 164: 873-881.
    [100] Hurkman W T, MrMue K F, Altenbach S B, et al. Effect of temperature on expressionof genes encoding enzymes for starch hiosvn-theses in developing wheat endosperm. Plant Science,2003, 1-9.
    [101] Keeling P L, Bacon P J, Holt D C. Elevated temperature reduced starch deposition in wheat endosperm by reducing the activity of soluble starch synthase. Planta, 1993, 191: 342-348.
    [102] Morita N, Maeda T, Miyazaki M, et al. Dough and baking properties of high amylose and waxy wheat flours. Cereal Chemistry, 2002, 79(4): 491-495.
    [103]王晓曦,苏东民.小麦淀粉与小麦品质之间的关系.粮食与饲料工业, 2000, (9): 4-5.
    [104] Toyokawa H, Rubenthaler G, Powers J, et al. Japanese noodle qualities.. Starch compon-ents.Cereal Chemistry, 1989, 66: 387-391.
    [105] Kiribuchi O C, Yanagisawa T, Yamaguchi I, et al. Allelism test of waxy hexaploid wheat from different sources. Breeding Science, 1998, 48(1): 93-94.
    [1] Douglas C D, Tsung M K, Frederick C F. Enzymes of sucrose and hexose metabolism in developing kernels of two inbreds of maize. Plant Physiology, 1988, 86: 1013-1019.
    [2] Keeling P L, Wood J R, Tyson R H. Starch biosynthesis in developing wheat grain. Plant Physiology, 1988, 87: 311-319.
    [3] Shannon J C, Pien F M, Cao H P, et al. Brittle-1, an adenylate translocator, facilitates transfer of extraplastidial synthsized ADP-Glucose into amylopasta of maizes endosperms. Plant Physiology, 1998, 117: 1235-1252.
    [4]闫素辉,王振林,戴忠民,等.两个直链淀粉含量不同的小麦品种籽粒淀粉合成酶活性与淀粉积累特征的比较.作物学报,2007, 33 (1): 84–89.
    [5]姜东,于振文,李永庚,等.高产小麦强势和弱势籽粒淀粉合成相关酶活性的变化.中国农业科学, 2002, 35(4): 378-383.
    [6]盛婧,郭文善,朱新开,等.不同类型专用小麦籽粒淀粉及其组分积累动态.扬州大学学报(农业与生命科学版), 2006, 27(2): 31-35.
    [7]赵会杰,邹琦,张秀英.两个不同穗型小麦品种生育后期碳水化合物代谢的比较研究.作物学报, 2003, 9(5): 676-681.
    [8]郑霏琴,王宗阳,高继平.水稻籽粒胚乳总RNA的提取.植物生理学通讯, 1993, 29(6): 438-440.
    [9]中国科学院上海植物生理研究所,上海市植物生理学会编.现代植物生理学实验指南,科学出版社, 1999: 127-128.
    [10]程方民,蒋德安,吴平,等.早籼稻籽粒灌浆过程中淀粉合成酶的变化及温度效应特征.作物学报, 2001, 27(2): 201-206.
    [11]何照范主编,粮油籽粒品质及其分析技术,北京农业出版社,1995.
    [12]何照范,张迪青编,保健食品化学及其检测技术,北京轻工业出版社,1998.
    [13]王文静,高桂立,罗毅,等.三个不同品质类型冬小麦品种籽粒淀粉积累动态及其有关酶的活性变化.作物学报, 2005, 31(10): 1305-1309.
    [14]李建敏,王振林,高荣岐,等.强、弱筋小麦籽粒形成期蔗糖、淀粉合成相关酶活性及其与氮代谢的关系.作物学报, 2008, 34(6): 1019-1026.
    [15]刘霞,姜春明,郑泽荣,等.藁城8901和山农1391淀粉合成酶活性和淀粉组分积累特征的比较.中国农业科学, 2005, 38(5): 897-903.
    [16]梁灵,魏益民,张国权,等.关中小麦品种籽粒糊化特性研究.中国粮油学报, 2003(2): 21-24.
    [17]张玉荣,郭桢祥.小麦淀粉的理化特性与面条的品质.粮油食品科技, 2003, 12(11): 15-171.
    [18] Anderson. R, Larson D, Landencia, et al. Molecular characterization of the gene encoding a rice endosperm-specific ADP-glucose pyrophosphorylase subunit and its developmental pattern of transcription. Gene, 1991, 97: 199-205.
    [19] Zhongyi Li, Greg Mouille, Behjat Kosar-Hashemi, et al. The structure and expression of the wheat starch synthase III genemotifs in the expressed gene define the lineage of the starch synthase III gene family. Plant Physiology, 2000, 123: 613–624.
    [20] KENT F. McCUE, WILLIAM J. HURKMAN, CHARLENE K. TANKA, et al. Starch-branching enzymes sbe1 and sbe2 from wheat (Triticum aestivum cv. Cheyenne): molecular characterization, developmental expression, and homoeologue assignment by differential PCR*. Plant Molecular Biology 2002, 20: 191a–191m.
    [21]包劲松,夏英武.水稻淀粉合成的分子生物学研究进展.植物学通报, 1999, 16(4): 352-358.
    [22] Preiss J, Ball K, Smith-White B, et al. Starch biosynthesis and its regulation. Biochemical Society Transactions, 1991, 19: 539-547.
    [23] Nakamura Y, Kuki K, Park S Y, et al. Carbohydrate metabolism in the developing endosperm of rice grains. Plant Cell Physiology, 1989, 30(6): 833-839.
    [24]赵步洪,张文杰,常二华,等.水稻灌浆期籽粒中淀粉合成关键酶的活性变化及其与灌浆速率和蒸煮品质的关系.中国农业科学, 2004, 37(8): 1123-1129.
    [25] Reeves C D, Krishan H B, Okita T W. Gene expression in development wheat endosperm. Plant Phsiology, 1986, 82: 34-40.
    [26] Tsai C Y. Correlation of enzymatic activity with Wx dosage. Maize Genet Coop Newslett, 1965, 39: 153.
    [27] Nishi A, Nakamura Y, Tanaka N, et al. Biochemical and genetic an anlysis of the effects ofamylose-extender mutation in rice endosperm. Plant Physiology, 2001, 127: 459-472.
    [28] James M G, Robertson D S, Myers A M. Characterization of the maize gene sugary1, a determinant of starch composition in kernels. Plant Cell, 1995, 7: 417-429.
    [29]刘仲奇,吴兆苏,俞世蓉,等. IAA和ABA对小麦籽粒淀粉积累的影响.南京农业大学学报, 1992, 15(1): 7-12.
    [30]张秋英,刘娜,金剑,等.春小麦籽粒淀粉和蛋白质积累与底物供应的关系.麦类作物学报, 2000, 20(1): 55-58.
    [31]王旭东,于振文,王东.钾对小麦旗叶蔗糖和籽粒淀粉积累的影响.植物生态学报, 2003, 27(2): 196-201.
    [32]高松洁,郭天财,王文静,等.不同穗型冬小麦品种灌浆期籽粒中与淀粉合成有关的酶活性变化.中国农业科学, 2003, 36(11): 1373-1377.
    [33]王东,于振文,王旭东,等.硫营养对小麦籽粒淀粉合成及相关酶活性的影响.植物生理与分子生物学学报, 2003, 29(5): 437-442.
    [1] Miura H, Tanii S, Nakamura T, et al. Genetic control of amylase content in wheat endosperm starch and differential effects of three Wx genes. Theor .Appl .Genet, 2000, 100 (1): 32-38.
    [2] Miura H, Araki E, Tarui S. Amylose synthesis capacity of the three Wx gene of wheat Chinese Spring. Euphytica, 1999, 108 (2): 91-95.
    [3] Yamamori M, Endo T R. Variation of starch granule proteins and chromosome mapping of their coding genes in common wheat. Theor Appl Genet, 1996, 93: 275-281.
    [4] Miura H, Sugawara A. Dosage effects of the three Wx genes on amylase synthesis in wheat endosperm. Theor Appl Genet, 1996, 93: 1066-1070.
    [5] Crosbie G B. The relationship between starch swelling properties, paste viscosity and boiled noodle quality in wheat flours. Journal Cereal Science, 1991, 131: 145-150.
    [6] Yun S H, Quail K. Physicochemical properties of Australian wheat flours for white salted noodles. Journal Cereal Science, 1996, 23: 181-189.
    [7] Baik B K, Lee M R. Effects of starch amylose content of wheat on textural properties of whitesalted noodles. Cereal Chemistry, 2003, 80(3): 304-309.
    [8]刘建军,何中虎,杨金,等.小麦品种淀粉特性变异及其与面条品质关系的研究.中国农业科学, 2003, 36(1): 7-12.
    [9]师凤华,徐杰,李保云,等.小麦胚乳Wx蛋白缺失对籽粒淀粉含量的影响.中国农业大学学报, 2006, 11(6): 41- 44.
    [10] Cal X L, Wang Z Y, Xing Y Y, et al. Aberrantsplicing of intron1 leads to the heterogeneous 5'UTR and decreased expression of waxy gene in rice cultivars of intermediate amylose content. The Plant Journal, 1991, 14(4): 459-465。
    [11] Sprague G F, Bringhall B, Hixon R M. Some effect of the waxy gene in corn on properties of the endosperm starch. Jam Society Agronomy, 1943, 35: 817.
    [12] Nakamura Y, Umemoto T, Takahata Y, et al. Changes in structure of starch and enzyme vactivities affected by sugary mutations in developing rice endosperm. Possible role of starch debranching enzyme (R-enzyme) in amylopectin biosynthesis. Plant Physiolgy, 1996b, 97: 491-498
    [13] Morris C F, Shackley B J, King G E, et al. Genotypic and environmental variation for flour swelling volume in wheat. Cereal Chemistry, 1997, 74(1): 16-21.
    [14] Zhao X C, Batey I L, Sharp P J, et al. A single genetic locus associated with starch granule properties and noodle quality in wheat. Journal of Cereal Science, 1998, 27(1): 7-13.
    [15]宋健民,戴双,李豪圣,等. Wx蛋白缺失对淀粉理化特性和面条品质的影响.中国农业科学, 2007, 40(12): 2888-2894.
    [16]师凤华,徐杰,尤明山,等.小麦胚乳Wx蛋白缺失对淀粉含量和淀粉特性的影响.麦类作物学报, 2006, 26 (5): 54-59.
    [17] Yasui T, Matsuki J, Sasaki T, et al. Waxy wheat starch its structure and properties. Proceeding of the 46th Australia Cereal Chemistry conference. 1996, 270-273
    [18] GRAYBOSCH R A. Waxy wheats: Origin, properties, and prospects. Trends in Food Science and Technology, 1998, 10(8): 135-142.
    [1]姜东,于振文,李永庚,等.施氮水平对鲁麦22籽粒淀粉合成的影响.作物学报, 2003, 29(3): 462-467.
    [2]李春燕,封超年,张影,等.氮肥基追比对弱筋小麦宁麦9号籽粒淀粉合成及相关酶活性的影响.中国农业科学, 2005, 38(6): 1120-1125.
    [3]闰素辉,尹燕抨,李文阳,等.灌浆期高温对小麦籽粒淀粉的积累、粒度分布及相关酶活性的影响.作物学报, 2008, 34(6): 1092-1096.
    [4]刘萍,郭文善,浦汉春,等.灌浆期短暂高温对小麦淀粉形成的影响.作物学报,2006, 32(2):182-188.
    [5]胡宏,盛婧,郭文善,等.氮素对弱筋小麦宁麦9号淀粉形成的调节效应.麦类作物学报, 2004, 24(2): 92-96.
    [6]李青常,王振林,张艳,等.施氮水平对小麦面条加工品质的影响.中国农业科学, 2005, 38(2): 420-424
    [7] Tatsuya Hirano, Yoshihisa Saito, Hiroaki Ushimaru and Hiroyasu Michiyama. The Effect of theAmount of Nitrogen Fertilizer on Starch Metabolism in Leaf Sheath of Japonica and Indica Rice Varieties during the Heading Period. Plant Production Science, 2005, 2(8): 122-130.
    [8]沈鹏,金正勋,罗秋香,等.氮肥对水稻籽粒淀粉合成关键酶活性及蒸煮食味品质的影响.东北农业大学学报,2005, 36(5): 561-566.
    [9]李云祥.施氮处理对水稻颖果发育、胚乳细胞结构和稻米品质的影响. 2004,中国优秀硕士论文全文数据库.
    [10] Scheible WR, Lauerer M, Schulze ED, et al. Accumulation of nitrate in the shoot acts as a signal to regulate shoot-root allocation in tobacco. Plant Journal, 1997, 11: 671-691.
    [11] Dian Weimin, Jiang Huawu, Chen Qingshuang, et al. Cloning and characterization of the granule-bound starch synthase II gene in rice: gene expression is regulated by the nitrogen level, sugar and circadian rhythm. Planta, 2003, 218(2): 261-278.
    [12] Douglas C. Doehlert, Edwin R. Duke, Leslie J. Smith. Effect of nitrogen supply on expression ofsome genes controlling storage proteins and carbohydrate synthesis in cultured maize kernels. Plant Cell, 1997, 47: 195-198.
    [13] Stone P J, Nicolas M E. Wheat cultivars vary widely in the reports of grain yield and quality to short periods of post-anthesis heat stress. Plant Physiology, 1994, 21: 887-900.
    [14] Altenbach S B, DuPont F M, Kothari K M, et al. Temperature, Water and FertilizerInfluence theTiming of Key Events During Grain Development in a US Spring Wheat. Cereal Science, 2003, 37: 9-20.
    [15] William J H, Kent F. Effect of temperature on expression of genes encoding enzyme-s for starch biosynthesis in developing wheat endosperm. Plant Science, 2003, 164(5): 873-881
    [16]李永庚,于振文,张秀杰,等.小麦产量与品质对灌浆不同阶段高温胁迫的响应.植物生态学报,2005, 29(3): 461-466.
    [17] Hawker J S, Jenner C F. High temperature affects the activity of enzymes in the commi-tted path-way of starch synthesis in developing wheat endosperm.. Plant Physiolgy, 1993, 20: 197-209.
    [18]金正勋,杨静,钱春荣,等.灌浆成熟期温度对水稻籽粒淀粉合成关键酶活性及品质的影响.中国水稻科学. 2005, 19(4): 377-380.
    [19] E.P. Wilhelm, R.E. Mullen, P.L. Keelingaand G.W. Singletary. Heat stress during grain filling in maize. Crop Science, 1999, 39: 1733-1741.
    [20] Allwork M A B, Loguc S .T., Iacamd L C. effect of high temperature during grain filling on starch synthesis in the deccloping barley grain. Plant Phyiolgy, 1998, 25: 173-181.
    [21] Tenser C F. effect of exposure of wheat cars to high temperature on dry matter accumulation and carbohydrate metabolism in the grain of two cultivars:II. Carry-over effects. Plant Physiolgy, 1991, 18(2): 179-190.
    [22] Keeling P L, Bacon P J,Holt D C. Elevated temperature reduced starch deposition in wheat endos-perm by reducing the activity of soluble starch synthase. Planta, 1993, 191:342-348.
    [1] Anderson. R, Larson D, Landencia, et al. Molecular characterization of the gene encoding a rice endosperm-specific ADP-glucose pyrophosphorylase subunit and its developmental pattern of transcription. Gene, 1991, 97: 199-205.
    [2]包劲松,夏英武.水稻淀粉合成的分子生物学研究进展.植物学通报, 1999, 16(4): 352-358.
    [3] Zhongyi Li, Greg Mouille, Behjat Kosar-Hashemi, et al. The structure and expression of the wheat starch synthase III genemotifs in the expressed gene define the lineage of the starch synthase III gene family. Plant Physiology, 2000, 123: 613–624.
    [4] KENT F. McCUE, WILLIAM J. HURKMAN, CHARLENE K. TANKA, et al. Starch-branching enzymes sbe1 and sbe2 from wheat (Triticum aestivum cv. Cheyenne):molecular characterization, developmental expression, and homoeologue assignment by differential PCR*. Plant Molecular Biology, 2002, 20: 191a–191m.
    [5]赵俊晔,于振文,孙慧敏,等.不同小麦品种籽粒淀粉组分及相关酶活性的差异.作物学报, 2004, 30(6): 525-530.
    [6]闫素辉,王振林,戴忠民,等.两个直链淀粉含量不同的小麦品种籽粒淀粉合成酶活性与淀粉积累特征的比较.作物学报, 2007, 33 (1): 84–89.
    [7]李建敏,王振林,高荣岐,等.强、弱筋小麦籽粒形成期蔗糖、淀粉合成相关酶活性及其氮代谢的关系.作物学报,2008,34(6): 1019-1026.
    [8]王文静,高桂立,罗毅,等.三个不同品质类型冬小麦品种籽粒淀粉积累动态及其有关酶的活性变化.作物学报, 2005, 31(10): 1305-1309.
    [9]潘庆民,于振文,王月福,等.追氮时期对小麦旗叶中蔗糖合成与籽粒中蔗糖降解的影响.中国农业科学, 2002, 35(7): 771-776.
    [10]熊福生,高珠,詹勇昌.植物叶片中蔗糖、淀粉积累量与其降解酶活性关系研究.作物学报, 1994, 20(1): 52-58.
    [11] Smith A M, Denyer K, Matin C R. The synthesis of the starch granule. Plant Physiology, 1997, 48: 67-87.
    [12] Dickinson D B, Preiss J. Presence of ADP-glucose pyrophosphorylase in shrunken-2 andbrittle-2 mutants of maize endosperm. Plant physiolgy, 1969, 44: 1058.
    [13] Reeves C D, Krishan H B, Okita T W. Gene expression in development wheat endosperm. Plant Phsiology, 1986, 82: 34-40.
    [14] Tsai CY. Correlation of enzymatic activity with Wx dosage. Maize Genet Coop Newslett, 1965, 39: 153.
    [15] Hovenkamp J H M, Jacobsen E, Ponstein A S et al. Isolation of an amylase-free starch mutant of potato(Solanum tuberosum L.). Theor Appl Genet, 1987, 75: 217-221
    [16] Van Der Leij FR, Visser RGF, Oosterhaven K et al. Complementation of the amylase-free starch mutant of potato(Solamum tuberosum L.). Theor Appl Genet, 1987, 75: 217.
    [17] Abel G J W, Springer F, Willmitzer L, et al. Cloning and functional analysis of a cDNA encoding a novel 139kDa starch synthase from potato (Solanum tuberosum L.). Plant Journal, 1996, 10 (6): 981-991。
    [18]柴晓杰,徐亚维,王丕武,等.玉米淀粉分支酶基因启动子的克隆与功能分析.生物技术通报, 2006, 283-287.
    [19]盛婧,郭文善,朱新开,等.不同类型专用小麦籽粒淀粉及其组分积累动态.扬州大学学报(农业与生命科学版), 2006, 27(2): 31-35.
    [20] Yamamori M, Nakamura T, Endo T R, et al. Waxy protein deficiency and chromosomal location of gene. Theor Appl. Genet. 1994, 8(2-3): 179-184.
    [21] Miura H, Sugawara A. Dosage effects of the three Wx genes on amylase synthesis in wheat endosperm. Theor Appl Genet, 1996, 93: 1066-1070.
    [22] Yamamori M, Nakamura T, Kuroda A. Variations in content of starch granule-bound protein among several Japanese common wheat(Triticum aestrivum L.). Euphytica, 1992, 64: 215-219.
    [23]李春燕,封超年,张影,等.氮肥基追比对弱筋小麦宁麦9号籽粒淀粉合成及相关酶活性的影响.中国农业科学, 2005, 38(6): 1120-1125.
    [24]李运祥,王忠,顾蕴洁,等.施氮处理对稻米淀粉积累的影响.南京师大学报, 2003, 26(3): 68-71.
    [25]李运祥.施氮处理对水稻颖果发育、胚乳细胞结构和稻米品质的影响. 2004,中国优秀硕士学位论文全文数据库.
    [26] Douglas C. Doehlert, Edwin R. Duke, Leslie J. Smith. Effect of nitrogen supply on expression of some genes controlling storage proteins and carbohydrate synthesis in cultured maize kernels. Plant Cell, 1997, 47: 195-198.
    [27] Keeling P L, Bacon P J, Holt D C. Elevated temperature reduced starch deposition in wheat endosperm by reducing the activity of soluble starch synthase. Planta, 1993, 191: 342-348.
    [28] Rijven A H G C. Heat inactivation of starch synthase in wheat endosperm tissue. Plant Physiolgy, 1986, 81: 448-45.
    [29] Hurkman W J, McMue K F, Altenbach S B, et al. Effect of temperature on expression of genes encoding enzymes for starch biosyntheses in developing wheat endosperm. Plant Science, 2003, 1-9.
    [30] Guedira M, Paulsen G M. Accumulation of starch in wheat grains under different shoot/root temperatures during maturation. Plant Biolgy, 2002, 29: 495-503.
    [31] Altenbach S B, Dupont F M, Kothari K M, et al. Temperature,water and fertilizerin fluence the timing of key events duringg rain development in a US spring wheat. Cereal Science, 2003, 37: 9-2.
    [32] Bhullar S S, Jenner C F. Effects of temperature on the conversion of sucrose to starch in the developing wheat endosperm. Plant Physiolgy, 1986, 13: 605-615.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700