基于对称金属包覆波导的高灵敏度光生化传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光生化传感器基本的作用是将某种生化参量(如,某种化学物质、生物分子、生化结构或某些微生物的性状变化或浓度变化等)转变为可以定性或定量测量的光信号的变化。这样,通过精确的测量光信号的变化,我们就可以对某一生化反应过程中某些感兴趣的过程或参量进行监测。由于具有高灵敏度、快速响应等特征,光生化传感器广泛应用于现代临床医学的检测、生物化学基础研究、环境监测、现代工业和食品检测等等领域中。
     导波光学问世以来,一直受到学术界和技术界的高度重视。在其发展的推动下,光生化传感器已经发展出了多种具有较高灵敏度的传感结构。其中,又以表面等离子共振传感器和泄漏模波导传感器最具有代表性和前沿性。但随着科技的进步和人们生活水平的提高,多种应用场合都对光生化传感器的灵敏度提出了更高的要求。
     本文利用导波光学理论,在介绍一般介质平板波导的基础上,着重分析了对称金属包覆波导的特性。对称金属包覆波导结构由上下金属包覆层和夹在中间的导波层组成。其中,上层金属膜比较薄,入射光一般经过这一层耦合进波导层;而其下层金属膜一般较厚,用以隔绝镀膜衬底材料对波导结构的影响;两层金属薄膜之间的介质层作为导波层,以分立的导模形式存在的导波光主要被限制在这层里传输。
     由于上下包覆层都是金属薄膜(其介电系数在光频范围内的实部一般是一个绝对值很大的负数),所以对称金属包覆波导中导波层的折射率取值范围可以很大,最小甚至可以为1.0。另外,对称金属包覆波导的导波层厚度还可以扩展至亚毫米甚至毫米量级,并因此能够容纳模序数上千的高阶导模。正因为上述这两个特征,使得气体和常用的生物化学流体样本等低折射率介质都可以作为该种波导结构的导波层,并可以在其中自由的流动。这样,利用对称金属包覆波导结构来制作光生化传感器就成为了可能。
     除了上述特性之外,对称金属包覆波导中的超高阶导模的有效折射率对于导波层介质的折射率变化非常敏感,而且取值范围比一般介质波导大得多,可以介于零和波导层折射率之间。经过分析,发现其超高阶导模能够通过自由空间耦合来激发,并且具有偏振无关性。
     根据上述特性,本文提出了对称金属包覆波导结构的光生化传感器。在该传感器中,待测样本被注入夹在两个金属薄膜层之间的样品腔中,两层金属膜和夹在其间的待测样本组成了对称金属包覆波导结构。通过观察该波导结构耦合或传输特性的变化,来探知待测样本折射率的微小变化,并进而得出样本浓度变化的信息。
     本文同时对该传感器的灵敏度进行了详细的理论分析。通过对现有的传感器的灵敏度的分析和比较,发现本文提出的传感器灵敏度要远远高于现有的表面等离子共振型传感器和泄漏模波导传感器。在分析的基础上,文中还给出了带来这一灵敏度提升的理论解释:入射光能量集中于待测样本层中,很小的有效折射率以及很窄的高阶导模吸收峰,这三个因素的综合使得对称金属包覆波导传感器的灵敏度较现有技术有了明显的提升。
     为了验证该传感器的性能,本文还通过角度调制法和强度调制法,分别设计了不同的实验方案进行实验验证。两种方法下的实验结果都一致证实了其角度调制法的探测灵敏度要优于现有的光生化传感器结构一到两个数量级;其强度调制法的探测灵敏度则更高。另外,本文还对影响该传感器灵敏度和分辨率的几个关键因素进行了分析。
     本文通过翔实的理论分析和实验表明,文中提出的基于对称金属包覆波导的光生化传感器具有简单的结构和极高的灵敏度,其在临床医疗、生化基础研究环境和食品检测以及现代工业等诸多领域中具有很高的应用价值。
Optical biosensor is a general term for a wide range of device that measures the presence or concentration of biological molecules, biological structures, microorganisms etc., by translating a biochemical interaction into a quantifiable optical signal. The potential application fields of biosensors are very extensive, including medical and health care, biological research, chemical industries, drug development, food and water examine, environment monitoring and protection, etc.
     The rapid developments of integrated optics and waveguide technologies have boosted the research on optical biosensors. Evolved from the ABBE refractometer, biosensors based on surface plasmon resonance (SPR) and the leaky mode waveguide (LW) have attracted a lot of interest for the simple structure and relatively high sensitivity over previous technologies. Recently, the presence of reverse asymmetric leaky waveguide sensor has further improved the sensitivity. But still, as the technologies evolving, application demands for higher sensitivity have never stopped.
     By employing the theory on dielectric optical waveguide, characteristics of the symmetric metal-clad optical waveguide (SMCW) have been analyzed in this thesis. This kind of waveguide consists of two metal films and a guiding layer in between. The upper metal film is relatively thin to be around 40nm, the incident light will go through it to be coupled into the waveguide structure. On the contrary, the base metal film is usually thicker to block the light from leaking into the substrates. The dielectric media between the two metal films acts as the guiding layer, the guided light wave is confined to propagate in it.
     As the real part of the dielectric constants of the metal films is negative, the refractive index, RI, of the guiding layer can be very small. Besides, in the SMCW structure, the thickness of the guiding layer can be enlarged to submillimeter scale and can contain ultrahigh order guided modes with mode index of over 1000. The effective RI of those ultrahigh order modes is very small (near 0), and is extremely sensitive to the RI of the guiding layer. These ultrahigh order modes also behave polarization independence and can be excited thorough free coupling technology.
     These unique features enable us to fabricate an extremely sensitive biosensor based on the SMCW structure. By putting liquid or even gas samples (with small RI as low as to 1) in the sample cell sealed between two metal films, a typical three layer SMCW sensor is presented. The sample works as the guiding layer. By monitoring the coupling properties of the SMCW sensor structure, minute changes in the sample RI can be captured, and thus to identify sample property changes.
     Based on the theoretical analysis, sensitivity comparison of the proposed sensor with SPR sensor and LW sensor is conducted. The comparisons show that there is a huge sensitivity improvement of the proposed sensor over previous ones. The concentration of incident energy in the sample layer, the small effective RI and the narrow resonance dip of ultrahigh order modes, all the three factors contribute to the sensitivity enhancement of SMCW sensor.
     To verify the performance of the proposed SMCW sensor, two SMCW sensors with different coupling methods are fabricated (one with prism coupling, the other with free space coupling). Experiments are carried out using angular interrogation and intensity interrogation, respectively, to test the sensor’s performance. The results reveal that by using angular interrogation, the sensitivity of proposed SMCW sensor is 1 to 2 orders to the magnitude higher than the previous sensor structure. What’s more, by using the intensity interrogation, the sensitivity enhancement is even larger. The causes that have influence on the sensor’s sensitivity and performance are also analyzed in the thesis.
     Based on the solid theoretical analysis and experimental proof, the SMCW proposed in this thesis is of profound potential in future applications for its extremely high sensitivity and simple configuration.
引文
i 张先恩,《生物传感器》,化学工业出版社,2006
    ii 靳伟等《导波光学传感器:原理与技术》,科学出版社,1998
    iii 张克俭,“折光仪在测定水性介质浓度上的应用”,机械工人及热加工, 2005,11,30~32
    iv I·阿西莫夫 著 朱岚 程席法等 译 《阿西莫夫最新科学指南》,江苏人民出版社,1999
    v 吴礼光 刘茉娥,“生物传感器研究进展”,化学进展,7(4), 287~310,1995
    vi 石仲斌 方大卫,“新型热敏开关器件—温控晶闸管”,仪表技术与传感器,3,15~17,1991
    vii I. Abdel-Hamid, D. Ivnitski, P. Atanasov, and E. Wilkins, “Highly sensitive flow-injection immunoassay system for rapid detection of bacteria”, Anal. Chim. Acta., 399, 99~108, 1999
    viii D. Ivnitski, I. Abdel-Hamid, P. Atanasov, and E. Wilkins. “Review: Biosensors for detection of pathogenic bacteria” Biosensors Bioelectron., 14, 599~624, 1999
    ix 赵兰巧,“出血性大肠杆菌 0157:H7 感染研究(综述)”,中国城乡企业卫生,02,24~26,2002
    x 李新军,叶长芸,张晶波,卢珊,白雪梅,徐建国,“产志贺毒素大肠杆菌 O157:H7 的亚碲酸钾抗性基因簇分布和抗性水平”,中华微生物学和免疫学杂志,23(11), 833~836,2003
    xi 赵志晶,刘秀梅,“大肠杆菌 O157 多克隆抗体及食品中双抗 ELISA 测定方法的研究”,卫生研究,32(6), 606~609, 2003
    xii 李志刚,杨宝兰,徐进,“乳酸菌对肠出血性大肠杆菌 O157:H7 抑制作用的研究”,中国食品卫生杂志, 15(4),298~301,2003
    xiii 许彦梅,徐建国,“PCR 方法在出血性大肠杆菌 O157:H7 诊断中的应用”,中国人兽共患病杂志,19(6),88~92,2003
    xiv 郑翰,逄波,景怀琦,杨晋川,赵广法,李洪卫,徐建国,“江苏省徐州市分离的大肠杆菌 O157:H7 菌株携带志贺毒素 2 型别的变化”,中华医学杂志,83(8),673~677,2003
    xv 陈益明,上官宗校,黄孟启,卓晓娅,“急性阑尾炎患者脓液细菌培养结果及耐药性”,中华医院感染学杂志,16(1),118~120,2006
    xvi J. Meng, S. Zhao, M.P. Doyle, S.E. Mitchell, and S. Kresovich, “Polymerase chain reaction for detecting Escherichia coli O157:H7”, Int. J. Of Food Microbiology, 32, 103~113, 1996
    xvii J. Sperveslage, E. Stackebrandt, F. W. Lembke, and C. Koch, “Detection of bacterial-contamination, including bacillus spores, in dey growth media and in milk by identification of their 16s rdna by polymerase chain-reaction”, J. Microbiol. Methods, 26, 219~224, 1996
    xviii Invitrogen Life Technologies. Product brochure for pcr and rt-pcr, www.invitrogen.com
    xix M.B. Medina. “Binding of collagen i to escherichia coli o157:h7 and inhibition by carrageenans”, Int. J. of Food Microbiology, 69, 199~208, 2001.
    xx A.A. Kolomenskii, P.D. Gershon, and H. A. Schuessler, “Surface plasmon resonance spectrometry and characterization of absorbing liquids”, Appl. Opt. 39, 3314~3319, 2000
    xxi J.Holoma, J.Ctyroky, M. Skalsky, J. Hradilova, and P. Klarova, “A surface plasmon resonance based integrated optical sensor”, Sens. Actuators B, 286~290, 1997
    xxii J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensor: review”, Sens. Actuators. B, 54, 3~15, 1999
    xxiii M. S. Braiman, and S. E. Plunkett,“ Design for supported planar waveguides for obtaining mid-IR evanescent wave absorption spectra from biomembranes of individual cells”, Appl. Spectroscopy, 51, 592~597, 1997
    xxiv C.A. Rowe-Taitt, J.W. Hazzard, K.E. Hoffman, J.J. Cras, J.P. Golden, and F.S. Ligler. “Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor”. Biosens. Bioelectronics, 15, 579~589, 2000
    xxv T. Okamoto, and I. Yamaguchi, “Absorption measurement using a leaky waveguide mode”, Opt. Rev., 4, 354~357, 1997
    xxvi H.J. Watts, C.R. Lowe, and D.V. Pollardknight. “Optical biosensor for monitoring microbialcells”, Anal. Chem., 66, 2465~2470, 1994
    xxvii B.H. Schneider, J.G. Edwards, and N.F. Hartman. “Hartman interferometer: versatile integrated optic sensor for label-free, real-time quantification of nucleic acids, proteins”, and pathogens. Clinical Chem., 43, 1757~1763, 1997
    xxviii A. Brandenburg and R. Henninger, “Integrated optical young interferometer”, Appl. Opt., 25, 5941~5947, 1994
    xxix R. G. Heideman, G. J. Veldhuis, E. W. H. Jager, and P. V. Lambeck, “Fabrication and packaging of integrated chemo-optical sensors”, Sens. Actuators B, 35-36, 234~240, 1996
    xxx G. R. Quigley, R. D. Harris, and J. S. Wilkinson, “Sensitivity enhancement of integrated optical sensors by use of thin high-index films”, Appl. Opt., 38, 6036~6039, 1999
    xxxi Ch. Stamm, R. Dangel, and W. Lukosz, “Biosensing with the integrated-optical difference interferometer: dual-wavelength operation”, Opt. Commun., 153, 347~359, 1998
    xxxii B. Maisenholder, H. P. Zappe, R. E. Kunz, P. Riel, M. Moser, and J. Edlinger, “A gaas/algaas based refractometer platform for integrated optical sensing applications”, Sens. Actuators B, 38-39, 324~329, 1997
    xxxiii W. Lukosz, Ch. Stamm, H. R. Moser, R. Ryf, and J. Dubendorfer, “Difference interferometer with new phase-measurement method as integrated-optical refractometer, humidity sensor and biosensor”, Sens. Actuators B, 38-39, 316~323, 1997
    xxxiv Th. Schubert, N. Haase, H. Huck, and R. Gottfried-Gottfried, “Refractive-index measurements using an integrated mach-zehnder interferometer”, Sens. Actuators A, 60, 108~112, 1997
    xxxv Guang Chen, Zhuangqi Cao, Jianghua Gu, Qishun Shen, “Oscillating wave sensors based on ultrahigh-order modes in symmetric metal-clad optical waveguides”, Appl. Phys. Lett. 89, Art No.081120, 2006
    xxxvi Guang Chen, Guang Chen, Zhuangqi Cao, Jianghua Gu, Qishun Shen, “Intensity measurement refractometer based on symmetric metal-clad waveguide structure”, Submitted to Optics Express.
    xxxvii Honggen Li, Zhuangqi Cao, Haifeng Lu, and Qishen Shen, “Polarization-insensitive narrow band filter with symmetrical metal-cladding optical waveguide”, Chin. Phys. Lett. 23, 643~645, 2006.
    xxxviii Haifeng Lu, Zhuangqi Cao, Honggen Li, and Qishen Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide”, Appl. Phys. Lett. 85, 4579~4581,2004
    xxxix Honggen Li, Zhuangqi Cao, Haifeng Lu, and Qishen Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide”, Appl. Phys. Lett. 83, 2757~2759, 2003
    xl Haifeng Lu, Zhuangqi Cao, Honggen Li, Qishen Shen , and Xiaoxu Deng, “Polarization-independent and tunable comb filter based on free-space coupling technique”, Opt. Lett., 31,386~388, 2006
    xli曹庄琪,《导波光学中的转移矩阵方法》,上海交通大学出版社,2000
    xlii P.K.Tien, “Integrated optics and new wave phenomena in optical waveguides”, Rev. Mod. Phys, 49, 361~420, 1977
    xliii K.Tiefenthaler and W.Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors”, J. Opt. Soc. Am. B, 6, 209~220, 1989
    xliv Handbook of Optics Volume Ⅱ Part4.Optical and Physical Properties of Materials. Chapter 35.Properties of Metals
    xlv Y.Suematsu, “Measurements of Refractive Index and film thickness of glass films by use of propagation constants”, Trans. Int. Electron. Commun. Eng. Japan, 55-C, 98, 1972
    xlvi L.G.Schulz and F.R.Tancherlini ,“ The Optical Constants of Silver,Gold,Copper,and Aluminum (II. The Index of Refraction n)”, J.Opt.Soc.Am.,44(5),362~368,1954
    xlvii I. P. Kaminow, W. L. Mammel, H. P. Weber. “Metal-Clad Optical Waveguides: Analytical and Experimental Study” Appl. Opt., 13 (2),396~405,1974
    xlviii Wittig, Joachim. Earnst Abbe. BSB B. G. Teubner Verlagsgesellschaft, Leipzig p.60, 1989
    xlix G. H. Meeten and A. N. North, “Refractive-index measurement of absorbing and turbid fluids by reflection near the critical angle”, Meas. Sci. Technol. 6, 214~225, 1995
    l A. Garcia-Valenzuela, M. C. Pena-Gomar, and C. Fajardo-Lira, “ Measuring and sensing a complex refractive index by laser reflection near the critical angle”, Opt. Eng. 41, 1704~1716, 2002
    li L. Hui, and X. Shusen, “Measurement method of the refractive index of biotissue by total internal reflection”, Appl. Opt., 35, 1793~1795, 1996
    lii M. C. Pena-Gomar, M. L. Gonzalez-Gonzdlez, A. Garcia-Valenzuela, J. Anto-Roca, and E. Perez, “Monitoring particle adsorption by use of laser reflectornetry near the critical angle”, Appl. Opt., 43, 5963~5970, 2004
    liii D. Tentori, and C. L.Famozo, “High-accuracy critical angle refractometry”, Opt. Eng., 32, 593~601, 1993
    liv A. Garcia-Valenzuela, R. Diaz-Uribe, “Detection limits of an internal-reflection sensor for the optical beam deflection method”, Appl. Opt., 36, 4456~4462,1997
    lv R. W. Wood, “On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum”, Phil. Magm., 4, 396~402, 1902
    lvi R. W. Wood, “Anomalous Diffraction Gratings”, Phys. Rev. 48, 928~936, 1935
    lvii U. Fano, “The theory of anomalous diffraction gratings and. of quasi-stationary waves on metallic surfaces (Sommer-field’s waves)”, J. Opt. Soc. Am. 31 213~222, 1941
    lviii C. Nylander, B. Liedberg, and T. Lindberg, “Gas detection by means of surface-plasmon resonance”, Sens. Actuators, 3, 79~88, 1982
    lix B. Liedberg, C. Nylander, I. Lundstrom, “Surface plasmon resonance for gas detection and biosensing”, Sens. Actuator, 4,299~304, 1983
    lx P.B.Daniels, J.K. Deacon, M.J. Eddowes, and D.G. Pedley,“Surface plasmon resonance applied to immunosensing”, Sensors and Actuators, 15, 11~18, 1988
    lxi B. Liedberg, C. Nylander, and I. Lundstrom, “Biosensing with surface plasmon resonance- how it all started”, Biosens. Bioelectronics, 10, i-ix.,1995
    lxii S. Miwa, and T. Arakawa, “Selective gas detection by means of surface plasmon resonance sensors”, Thin. Solid Films, 281-282, 466~468, 1996
    lxiii J. Melendez, R. Carr, D.Bartholomew, H. Taneja, S. Yee, C. Jung, and C. Furlong, “Development of a surface plasmon resonance sensor for commercial applications”, Sens. Actuators B, 38-39, 375~379, 1997
    lxiv T. Wink, S. J. Zuilen, A. Bult, and W. P. Bennekom, “Liposome-mediated enhancement of the sensitivity in immunoassays of proteins and peptides in surface plasmon resonance spectrometry“, Anal. Chem. 70, 827~832, 1998
    lxv P.B. Daniels, J. K. Deacon, M. J. Eddowes, and D. G. Pedley,“Surface plasmon resonance applied to immunosensing”, Sens. Actuators, 15, 11~18, 1988
    lxvi W. D. Wilson, “Analyzing Biomolecular Interactions”, Science, 95, 2103~2105, 2002
    lxvii C.E.Berger, R.P.Kooyman, and J.Greve, “Resolution in surface plasmon microscopy”, Rev..Sci. Instrum., 65, 2829~2836, 1994.
    lxviii Knut Johansen, Hans Arwin, Ingemar Lundstrom, and Bo Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations”, Rev. Sci. Instrum., 71, 3530~3538, 2000
    lxix Bryce P. Nelson, Anthony G. Frutos, Jennifer M. Brockman, and Robert M. Corn, “Near-Infrared Surface Plasmon Resonance Measurements of Ultrathin Films. 1. Angle Shift and SPR Imaging Experiments”, Anal. Chem. 71, 3928~3934, 1999
    lxx A. J. Haes, and R. P. Van Duyne, “Preliminary studies and potential applications of localized surface plasmon resonance spectroscopy in medical diagnostics”, Expert Review of Molecular Diagnostics, 4, 527~537, 2004
    lxxi J. W. Chung, S. D. Kim, R. Bernhardt, and J. C. Pyun, “Application of SPR biosensor for medical diagnostics of human hepatitis B virus (hHBV)”, Sens. Actuators B, 111, 416~422, 2005
    lxxii 葛晶 , 殷涌光 , 王凯, “使用 SPR 生物传感器快速检测大肠杆菌 E.Coli0157:H7”,吉林大学学报(工学版),2005,16,2005
    lxxiii 元秀华,刘德明,金四化,杨波,吴雄文,尹丙姣,“SPR 技术在生物、生化分析以及临床免疫学中的应用”, 中国医学物理学杂志,2003 年 4 期
    lxxiv 陈翔,蔡浩原,崔大付,向四海,“利用表面等离子体谐振生物传感器实时监测酶促反应的新方法”, 分析化学,2003,12 期
    lxxv 缪璐 , 刘仲明 , 张水华, “SPR 生物传感器在临床医学检验中的应用”, 医疗卫生装备,2006 年 8 期,
    lxxvi H Kano, and S Kawata, “Surface-plasmon sensor for absorption-sensitivity enhancement”, Appl.Opt., 33, 5166~5170, 1994
    lxxvii H.Kano, and S.kawata, “Two-photon-excited fluorescence enhanced by a surface plasmon”, Opt.Lett., 21, 1848~1850, 1996
    lxxviii K. Tiefenthaler and W. Lukosz,“Integrated optical switches and gas sensors”. Opt. Lett., 10, 137~139, 1984
    lxxix S.-W. Kang, K. Sasaki, and H. Minamitani, “Sensitivity analysis of a thin film optical waveguide. Biochemical sensor using evanescent field”, Appl. Opt. 32, 3544~3549, 1993
    lxxx R. Cush, J.M. Cronin, W.J. Stewart, C.H. Maule, J. Molloy, and N.J. Goddard. “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions part i:Principle of operation and associated instrumentation”. Biosens. Bioelectronics, 8, 347~354, 1993
    lxxxi P.E. Buckle, R.J. Davies, T. Kinning, D. Yeung, P.R. Edwards, D. Pollard-Knight, and C.R. Lowe,“The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions part ii: Applications”. Biosens. Bioelectronics, 8, 355~363, 1993
    lxxxii W. Lukosz,“Integrated optical chemical and direct biochemical sensors”. Sens. Actuators B, 29, 37~50, 1995
    lxxxiii R.E. Kunz. “Miniature integrated optical modules for chemical and biochemical sensing”. Sens. Actuators B, 38–39, 13~28, 1997
    lxxxiv Zhim. Qi, N. Matsuda, K. Itoh, M. Murabayashi, and C.R. Lavers,“A design for improving the sensitivity of a mach-zehnder interferometer to chemical and biological measurands”. Sens. Actuators B, 81, 254~258, 2002
    lxxxv M. Zourob, S. Mohr, B.J.T. Brown, P.R. Fielden, M. McDonnell, and N.J. Goddard. “The development of a metal clad waveguide sensor for the detection of particles”. Sens. Actuators B, 90, 296~307, 2003
    lxxxvi M. Zourob, S. Mohr, P.R. Fielden, and N.J. Goddard. “Small-volume refractive index and fluorescence sensor for micro total analytical system (_-tas) applications”. Sens. Actuators B, 94, 304~312, 2003
    lxxxvii R. Horváth, L.R. Lindvold, and N.B. Larsen. “Fabrication of all-polymer freestanding waveguides”. J. Micromech. Microeng., 13, 419~424, 2003
    lxxxviii T. Okamoto, and L. Yamaguchi, “Absorption Measurement Using a Leaky Waveguide Mode”, Opt. Rev. 4,4354~4357,1997
    lxxxix T. Okamoto, M. Yamamoto and I. Yamaguchi, “Optical waveguide absorption sensor using a single coupling prism”, J. Opt. Soc. Am. A, 17, 1880~1886, 2000
    xc Z. Qi, N. Matsuda, J. H. Santos, A. Takatsu and K. Kato, “Prism-coupled multimode waveguide refractometer”, Opt. Lett. 27, 689~691, 2002
    xci N. Skivesen, R. Horvath and H. C. Pedersen, “Multimode reversy-symmetry waveguide sensor for broad-range refractometry”, Opt. Lett. 28, 2473~2475, 2003
    xcii R. Horvath, H. C. Pedersen, and N.B.Larsen, “Demonstration of reverse symmetry waveguide sensing in aqueous solutions”, Appl. Phys. Lett. 84, 4044~4046, 2004
    xciii R. Horvath, H.C. Pedersen, N. Skivesen, D. Selmeczi, and N.B. Larsen, “Monitoring of living cell attachment and spreading using reverse symmetry waveguide sensing” Appl. Phys. Lett. 86, 071101, 2005
    xciv姚启钧,《光学教程》,高等教育出版社,1998
    xcv Handbook of Optics Volume Ⅱ Part4. Optical and Physical Properties of Materials. Chapter 35.Properties of Metals
    xcvi L.G.Schulz and F.R.Tancherlini ,“ The Optical Constants of Silver,Gold,Copper,and Aluminum (II. The Index of Refraction n)”, J.Opt.Soc.Am.,44(5), 362~368, 1954
    xcvii Li Honggen., Cao Zhuangqi. Lu Haifeng., and Shen Qishun., “Free-space coupling of light beam into a symmetrical metal-cladding optical waveguide”, Appl. Phys. Lett., 83(14), 2757~2759, 2003
    xcviii曹庄琪,《导波光学中的转移矩阵方法》,上海交通大学出版社,2000
    xcix I. P. Kaminow, W. L. Mammel, H. P. Weber. “Metal-Clad Optical Waveguides:Analytical and Experimental Study” Appl. Opt., 13 (2), 396~405, 1974
    c Lu Haifeng., Cao Zhuangqi., Li Honggen., and Shen Qishun “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide”, Appl. Phys. Lett., 85(21), 4579~4581, 2004
    ci曹庄琪、陈洸、刘志强、李红根、沈启舜、粟鹏毅,软件版权:ATR 薄膜仿真分析软件
    cii K. Matsubara, S. Kawata, and S. Minami, “Optical chemical sensor based on surface plasmon measurement”, Appl. Opt. 27 1160~1163, 1988
    ciii B. Liedberg, I. Lundstrom, and E. Stenberg, “Principles of biosensing with an extended coupling matrix and surface plasmon resonance”, Sens. Actuators B, 11, 63~72, 1993
    civ C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmons resonance”, Sens. Actuators, 3, 79~88, 1982
    cv B. Liedberg, C. Nylander, and I. Lundstrom, “Surface plasmons resonance for gas detection and biosensing”, Sens. Actuators, 4, 299~304, 1983
    cvi M.M.B. Vidal, R. Lopez, S. Aleggret, J. Alonso-Chamarro, I. Garces, and J. Mateo, “Determination of probable alcohol yield in musts by means of an SPR optical sensor”, Sens. Actuators B, 11 455~459, 1993
    cvii L.M. Zhang, and D. Uttamchandani, “Optical chemical sensing employing surface plasmon resonance”, Electron. Lett. 23 1469~1470, 1988
    cviii R.C. Jorgenson, and S.S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance”, Sens. Actuators B, 12, 213~220, 1993
    cix P.S. Vukusic, G.P. Bryan-Brown, and J.R. Sambles, “Surface plasmon resonance on grating as novel means for gas sensing”, Sens. Actuators B, 8, 155~160, 1992
    cx A.A. Kruchinin, and Y.G. Vlasov, “Surface plasmon resonance monitoring by means of polarization state measurement in reflected light as the basis of a DNA probe biosensor” , Sens. Actuators B, 30,77~80, 1996
    cxi S.G. Nelson, K.S. Johnston, and S.S Yee, “High sensitivity surface plasmon resonance sensor based on phase detection”, Sens. Actuators B, 35–36, 187~191, 1996
    cxii V E Kochergin, A A Beloglazov, M V Valeiko, and P I Nikitin, "Phase properties of a surface-plasmon resonance from the viewpoint of sensor applications", Quantum. Electron., 28 (5), 444~448, 1998
    cxiii A V Kabashin, and P I Nikitin, "Interferometer based on a surface-plasmon resonance for sensor applications", Quantum. Electron., 27 (7), 653~654, 1997
    cxiv A. Garcia-Valenzuela, and R. Diaz-Uribe, “Detection limits of an internal-reflection sensor for the optical beam deflection method”, Appl. Opt., 36, 4456~4462,1997
    cxv H.E. de Bruijn, B.S.F. Altenburg, R.P.H. Kooyman, and J. Greve, “Choice of metal and wavelength for surface-plasmon resonance sensors: some considerations”, Appl. Opt. 31 440~442, 1992
    cxvi R.P.H. Kooyman, H. Kolkman, J. van Gent, and J. Greve, “Surface plasmon resonance immunosensors: sensitivity considerations”, Anal. Chim. Acta 213, 35~45, 1988
    cxvii E.M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing”, Biosensors Bioelectron. 11, 635~649, 1996
    cxviii J. Homola, “On the sensitivity of surface plasmon resonance sensors with spectral interrogation”, Sens. Actuators B, 41, 207~211, 1997
    cxix A. A. Kolomenskii, P. D. Gershon, and H. A. Schuessler, “Sensitivity and detection limit of concentration and adsorption measurements by laser-induced surface-plasmon resonance”, Appl. Opt., 36, 6539~6547, 1997
    cxx J. Villatoro, and A. Garcia-Valenzuela, “Sensitivity of optical sensors based on laser-excited surface-plasmon waves”, Appl. Opt. 38, 4837~4844, 1999
    cxxi J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review”, Sens. Actuators B, 54, 3~15, 1999.
    cxxii曹庄琪,《导波光学中的转移矩阵方法》,上海交通大学出版社,2000
    cxxiii K. Tiefenthaler, and W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors”, J. Opt. Soc. Am. B, 6, 209~220, 1989
    cxxiv T. Okamoto, M. Yamamoto and I. Yamaguchi, “Optical waveguide absorption sensor using a single coupling prism”, J. Opt. Soc. Am. A, 17, 1880~1886, 2000
    cxxv Z. Qi, N. Matsuda, J. H. Santos, A. Takatsu and K. Kato, “Prism-coupled multimode waveguide refractometer”, Opt. Lett. 27, 689~691, 2002
    cxxvi N. Skivesen, R. Horvath and H. C. Pedersen, “Multimode reversy-symmetry waveguide sensor for broad-range refractometry”, Opt. Lett. 28, 2473~2475, 2003
    cxxvii R. Horvath, H. C. Pedersen, and N. B. Larsen, “Demonstration of reverse symmetry waveguide sensing in aqueous solutions”, Appl. Phys. Lett. 84, 4044~4046, 2004
    cxxviii J. J. Saarinen, S. M. Weiss, P. M. Fauchet and J. E. Sipe, “Optical sensor based on resonant porous silicon structures”, Opt. Express 10, 3754~3764, 2005
    cxxix G. Chen, Z. Cao, J. Gu and S. Shen, “Oscillating wave sensors based on ultrahigh-order modes in symmetric metal-clad optical waveguides”, Appl. Phys. Lett. 89, Art. No. 081120, 2006
    cxxx G. Chen, Z. Cao, J. Gu and S. Shen, “Intensity measurement refractometer based on symmetric metal-clad waveguide structure”, Submitted.
    cxxxi W.P.Chen and J.M.Chen., “Use of surface plasma waves fore determination of the thickness and optical constants of thin metallic films”, J.Opt.Soc.Am , 71, 189~191, 1981
    cxxxii L.G.Schulz,“The Optical Constants of Silver,Gold,Copper,and Aluminum (I. The Absorption Coefficient k)”, J.Opt.Soc.Am.,44, 357~362, 1954
    cxxxiii L.G.Schulz and F.R.Tancherlini,”The Optical Constants of Silver,Gold,Copper,and Aluminum (II. The Index of Refraction n)”, J.Opt.Soc.Am.,44, 362~368, 1954
    cxxxiv G. Chen, Z. Cao, J. Gu and S. Shen, “Oscillating wave sensors based on ultrahigh-order modes in symmetric metal-clad optical waveguides”, Appl. Phys. Lett. 89, Art. No. 081120, 2006
    cxxxv曹庄琪,《导波光学中的转移矩阵方法》,上海交通大学出版社,2000
    cxxxvi K. A. Chang, H.-J. Lim, and C. B. Su, “A fiber optic Fresnel ratio meter for measurements of solute concentration and refractive index change in fluids”, Meas. Sci. and Technol., 13, 1962~1965, 2002.
    cxxxvii R. Horvath, H. C. Pedersen, and N. B. Larsen, “Demonstration of reverse symmetry waveguide sensing in aqueous solutions”, Appl. Phys. Lett. 84, 4044~4046, 2004
    cxxxviii J. Homola, S. S. Yee, G. Gauglitz, “Surface plasmon resonance sensors: review”, Sens. Actuators B, 54, 3~15, 1999
    cxxxix G. Chen, Z. Cao, J. Gu and S. Shen, “Intensity measurement refractometer based on symmetric metal-clad waveguide structure”, Submitted to Optics Express
    cxl Li Honggen., Cao Zhuangqi. Lu Haifeng., and Shen Qishun., “Free-space coupling of light beam into a symmetrical metal-cladding optical waveguide”, Appl. Phys. Lett., 83(14), 2757~2759, 2003
    cxli Z. Qi, N. Matsuda, J. H. Santos, A. Takatsu and K. Kato, “Prism-coupled multimode waveguide refractometer”, Opt. Lett. 27, 689~691, 2002
    cxlii J. Villatoro and A. Garcia-Valenzuela, “Sensitivity of optical sensors based on laser-excited surface-plasmon waves,” Appl. Opt., 38 4837~4844, 1999
    cxliii R. E. Collin, “Antennas and Radiowave propagation”,McGraw-Hill, New York, Appendix to Chap. 4, pp. 284~286,1985
    cxliv H. P. Chiang, Y. C. Wang, P. T. Leung, “Effect of temperature on the incident angle-dependence of the sensitivity for surface plasmon resonance spectroscopy”, Thin. Solid Films, 425, 135~138, 2003
    cxlv A. K. Sharma, B. D. Gupta, “Influence of temperature on the sensitivity and signal-to-noise ratio of a fiber-optic surface-plasmon resonance sensor”, Appl. Opt., 45, 151~161, 2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700