猪MMP-19和MMP-23基因的分离、定位和功能初步分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类基因组计划的完成以及功能基因组学研究的不断深入,与人类生理和病理相关的大量的新基因被证实。然而,对于相对滞后的猪基因组研究而言,与之相应的基因并没有被发现。因此,本研究根据比较基因组学的原理,利用生物信息数据库资源,分离定位了猪MMP-19和MMP-23基因,并对其基因结构和功能进行了初步研究,取得了如下结果:
     1.通过电子克隆、普通RT-PCR和RACE相结合的技术获得了猪MMP-19的全长cDNA序列和MMP-23基因的全长CDS,通过同源基因序列比对对分离的基因进行了鉴定,推导出了相应基因编码的氨基酸序列并对其基本生化性质和功能域进行了预测。
     2.获得了猪MMP-19和MMP-23基因的DNA全长序列,并进行了基因结构分析。结果显示,MMP-19基因总长度约6340bp,由9个外显子和8个内含子组成;MMP-23基因总长度约3726 bp,由8个外显子和7个内含子组成。两个基因所有内含子的剪切都符合GT/AG规则。
     3.通过Real-time PCR技术对MMP-19和MMP-23基因在不同品种猪的不同组织中的表达进行了分析。结果表明,MMP-19基因在不同品种猪的肝脏中的相对表达量较高,在脾和卵巢中适度表达,在其他组织中的表达量较低;比较MMP-19基因在两个品种不同组织的表达发现,该基因在肝、脾和卵巢中的表达量在品种间存在差异,在通城猪的表达量明显高于长白猪;MMP-23基因在两个品种的心和卵巢中都有较高的表达,在脾、腹脂、输卵管、大肠、小肠、肺、舌和胃中适量表达,在其他组织中的表达量较低,但该基因在心和卵巢中的表达模式在不同品种间存在较大差异,具体表现为该基因在长白猪心脏中的表达量高于卵巢,在通城猪则相反。
     4.通过Real-time PCR技术对MMP-19和MMP-23基因在不同品种猪不同发育阶段背最长肌中的表达进行了分析。结果表明,两个基因在两个品种的表达模式完全一致,基因的表达量随发育胚胎发育呈上调。
     5.获得了猪MMP-23基因的约1400bp的5’端上游序列,经过多种软件的综合分析发现,该区段内存在典型的CpG岛型启动子,没有TATA框和CAAT框。CpG岛序列长506bp,GC含量达70.75,在该区域内富含转录因子结合位点,包括Sp1、Myod、Snail、MZF1、c-Ets、c-FOS等因子的结合位点。
     6.用猪×仓鼠辐射杂种板对猪MMP-19和MMP-23基因进行了染色体精细定位,结果显示,猪MMP-19基因位于5号染色体,与微卫星标记DK紧密连锁,LOD值为18.02;猪MMP-23基因位于8号染色体,与微卫星标记Sw2521紧密连锁,LOD值为11.69.7.通过测序在猪MMP-19基因发现了15个SNP位点。在3个品种的猪群(通城、大白和长白)中,利用Mse? -RFLP对位于第5外显子203bp处的多态进行了检测,并分析了不同品种中的基因频率和基因型频率。
     8.在7个品种的猪群(通城、五指山、贵州、巴马、莱芜、大白和长白)中,利用PCR-RFLP的方法分别对MMP-23基因第3外显子第131bp处的Mbo?-RFLP多态和第4外显子第150bp处的Bsh1236I-RFLP多态进行了检测,并分析了不同品种中的基因频率和基因型频率。
     9.以本试验室与通城县畜牧局种畜场合作建立的实验群体(3个纯种群,大白、长白和通城以及2个3元杂种群,大长通和长大通)为材料,分析猪MMP-19和MMP-23基因的多态位点与部分生产性状和部分免疫性状的关联。结果显示:MMP-19基因第5外显子第203bp处的多态位点不同基因型个体在白细胞数和血清中免疫球蛋白含量以及眼肌高度方面差异显著(P<0.05);MMP-23基因第3外显子第131bp处的多态位点不同基因型个体在血红蛋白浓度和血细胞平均血红蛋白含量方面差异显著(P<0.05);MMP-23基因第4外显子第150bp处的多态位点不同基因型个体在胸背结合处背膘厚度差异显著(P<0.05)。
With achievement of human genome project and increasing deepen of gene function research, a lot of new genes were identified and characterized. However, the pig genome research is hysteretic, and the genes homologous of pig and human were not identified. Pig MMP-19 gene and MMP-23 gene were isolated and mapped by combining with bioinformatics and biotechnology in this research. Furthermore, the gene structure and function of these two genes were analyzed. These main results are as follows:
     1. Full length cDNA of pig MMP-19 gene and entire coding region of pig MMP-23 gene were isolated by combination with e-PCR, RT-PCR, and RACE. These two genes were identified by blasting with the homologous genes of human. The amino acid sequences of MMP-19 and MMP-23 were deduced and the domain of corresponding protein was predicted.
     2. The full-length DNA sequences of MMP-19 gene and MMP-23 gene were obtained and the genomic structures are further analyzed. The results showed MMP-19 gene spanned about 6340bp which composed of 9 exons and 8 introns. Pig MMP-23 gene spanned about 3726 bp which comprised of 8 exons and 7 introns. All the introns of the two genes were spliced by the GT/AG rule.
     3. The expression profiles of MMP-19 gene and MMP-23 gene in different tissues of Tongcheng and Landrace pig were analyzed using real-time PCR. The results showed MMP-19 were most highly expressed in the different pig breeds liver. Moderate expression was observed in spleen and ovary. There was a little expression in other tissues analyzed. Expression profiles of Tongcheng MMP-19 in different tissues was compared with those of Landrace pig’s, the results revealed the expression level of Tongcheng MMP-19 gene in liver, spleen and ovary is higher than those of Landrace. MMP-23 is highly expressed in the different pig breeds heart and ovary. Moderate expression is observed in spleen, oviduct, large intestine, small intestine, lung, tongue and stomach. There is a little expression in other tissues analyzed. However, the expression of this gene in heart and ovary between Tongcheng pig and Landrace pig was different. The expression level in heart is higher than that in ovary of Landrace pig, and the reverse results were found in Tongcheng pig.
     4. Temporal expression profiles of porcine MMP-19 and MMP-23 gene for development of skeletal muscle in Tongcheng and Landrace pigs were detected by real-time PCR, the results showed the expression mode of two genes in different pig breeds were completely same.
     5. The 5’upstream sequence about 1400bp of pig MMP-23 was obtained. There was a classical CpG island type promoter, but without TATA box and CAAT box in this region. The length of CpG was 506bp, and the GC content reached 70.75%. This region contained many transcription factor binding sites, including Sp1+, Myod+, Snail+, MZF1-, c-Ets+, c-FOS, GC box+.
     6. Porcine MMP-19 and MMP-23 genes were physical mapped by the RH panel. MMP-19 gene was located on SSC5, which is closely linked to marker DK with LOD score threshold 18.02. MMP-23 gene was located on SSC8, which is closely linked to marker Sw2521 with LOD score threshold 11.69.
     7. The total of 15 SNPs were found in MMP-19 gene by sequencing. The polymorphisms at 203th bp of exon 5 of porcine MMP-19 gene was detected in Tongcheng pigs, Landrace, and Large Yorkshire, respectively using Mse?–RFLP, and genotypic and allelic frequencies in different breeds were determined.
     8. The Mbo?-RFLP polymorphisms at 131th bp of exon 3 and Bsh1236I-RFLP polymorphisms at 150th bp of the exon 4 in MMP-23 gene were detected in Tongcheng pigs, Wuzhishan mini-pigs, Guizhou mini-pigs, Bama mini-pigs, Laiwu pigs, Landrace, and Large Yorkshire using PCR–RFLP, and genotypic and allelic frequency were analyzed among different breeds.
     9. The partial polymorphic sites of MMP-19 and MMP-23 gene were genotyped in the experimental pig population constructed under the cooperation of our lab and animal husbandry bureau of Tongcheng county, which consisted of Tongcheng, Large White, Landrace and three-way crossbreds, Landrace×(Large White×Tongcheng) and Large White×(Landrace×Tongcheng). Association between genotypes, phenotypes of economic traits and immunological traits were analyzed, the results as followed: there were significant associations between genotype of polymorphisms at 203th bp of exon 5 of MMP-19 gene with content, leukocyte counts and loin-muscle height of serum immunoglobulin G; there were significant associations between genotype of polymorphisms at 131th bp of exon 3 of MMP-23 gene with concentration and content of hemoglobin; there were significant associations between genotype of polymorphisms at 150th bp of the exon 4 of MMP-23 gene with backfat thickness.
引文
[1] Gross J, Lapiere C M. Collagenolytic activity in amphibian tissues: a tissue culture assay[J]. Proc Natl Acad Sci USA, 1962, 48:1014-1022.
    [2] Visse R, Nagase H. Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases: Structure, Function, and Biochemistry[J]. Circ Res, 2003, 92(8): 827-839.
    [3] Pendas A M, Balbin M, Llano E, et al. Structural analysis and promoter characterization of the human collagenase-3 gene (MMP13)[J]. Genomics, 1997, 40(2): 222-233.
    [4] Shapiro S D. Matrix metalloproteinase degradation of extracellular matrix: biological consequences[J]. Curr Opin Cell Biol,1998, 10(5): 602-608.
    [5] Wada K, Sato H, Kinoh H, et al. Cloning of three Caenorhabditis elegans genes potentially encoding novel matrix metalloproteinases[J]. Gene, 1998, 211(1): 57-62.
    [6] Llano E, Pendas A M, Aza-Blanc P, et al. Dm1-MMP,a matrix metalloproteinase from Drosophila with a potential role in extracellular matrix remodeling during neural development[J]. J Biol Chem, 2000, 275(46): 35978-35985.
    [7] Lepage T, Gache C. Early expression of a collagenase-like hatching enzyme gene in the sea urchin embryo[J]. EMBO J,1990, 9(9): 3003-3012.
    [8] Kinoshita T, Fukuzawa H, Shimada T,et al. Primary structure and expression of a gamete lytic enzyme in Chlamydomonas reinhardtii: similarity of functional domains to matrix metalloproteases[J]. Proc Natl Acad Sci USA, 1992, 89(10): 4693-4687.
    [9] McGeehan G, Burkhart W, Anderegg R,et al. Sequencing and characterization of the soybean leaf metalloproteinase: structural and functional similarity to the matrix metalloprot- einase family[J]. Plant Physiol, 1992, 99(3): 1179-1183.
    [10] Maidment J M, Moore D, Murphy G P,et al. Matrix metalloproteinase homologues from Arabidopsis thaliana. Expression and activity[J]. J Biol Chem, 1999, 274(49): 34706-34710.
    [11] Uria J A, López-Otín C. Matrilysin-2, a new matrix metalloproteinase expressed in human tumors and showing the minimal domain organization required for secretion, latency,and activity[J]. Cancer Res, 2000, 60(17): 4745-4751.
    [12] Pei D, Kang T, Qi H. Cysteine array matrix metalloproteinase (CAMMP)/MMP-23 is a type II transmembrane matrix metalloproteinase regulated by a single cleavage for both secretion and activation[J]. J Biol Chem, 2000, 275(43): 33988-97.
    [13] Morgunova E, Tuuttila A, Bergmann U, et al. Structure of human promatrix metalloproteinase-2: activation mechanism revealed[J]. Science,1999, 284(5420): 1667-70.
    [14] Lovejoy B, Cleasby A, Hassell A M, et al. Structure of the catalytic domain of fibroblast collagenase complexed with an inhibitor[J]. Science, 1994, 263(5145): 375-7.
    [15] Bode W, Reinemer P, Huber R, et al. The X-ray crystal structure of the catalytic domain of human neutrophil collagenase inhibited by a substrate analogue reveals the essentials for catalysis and specificity [J]. EMBO J, 1994, 13(6): 1263-9.
    [16] Borkakoti N, Winkler F K, Williams D H, et al. Structure of the catalytic domain of human fibroblast collagenase complexed with an inhibitor[J]. Nat Struct Biol, 1994, 1(2): 106-10.
    [17] Stams T, Spurlino J C, Smith D L, et al. Structure of human neutrophil collagenase reveals large specificity pocket[J]. Nat Struct Biol, 1994, 1(2): 119-23.
    [18] Jozic D,Bourenkov G, Lim N H, et al. X-ray structure of human proMMP-1: new insights into procollagenase activation and collagen binding[J]. J Biol Chem, 2005, 280(10): 9578-85.
    [19] Morgunova E, Tuuttila A, Bergmann U, et al. Structural insight into the complex formation of latent matrix metalloproteinase 2 with tissue inhibitor of metalloproteinase[J]. Proc Natl Acad Sci U S A, 2002, 99(11): 7414–9.
    [20] Murphy G, Gavrilovic J. Proteolysis and cell migration: creating a path[J]. Curr Opin Cell Biol, 1999, 11(5): 614-621.
    [21] Sternlicht M D, Werb Z. How matrix metalloproteinases regulate cell behaviour[J]. Annu Rev Cell Dev Biol, 2001, 17: 463-516.
    [22] Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs[J]. Cardiovasc Res, 2006, 69(3): 562-573.
    [23] Holliday L S, Welgus H G, Fliszar C J, et al. Initiation of osteoclast bone resorption by interstitial collagenase [J]. J Biol Chem, 1997, 272(35): 22053-22058.
    [24] Pilcher B K, Dumin J A, Sudbeck B D, et al. The activity of collagenase-1 is required for keratinocyte migration on a type I collagen matrix[J]. J Cell Biol, 1997, 137(6): 1445-1457.
    [25] Curry T E,Osteen K G. The matrix metalloproteinase system: changes, regulation, and impact throughout the ovarian and uterine reproductive cycle[J]. Endocr Rev, 2003, 24(4): 428-65.
    [26] Hulboy D L, Rudolph L A, Matrisian L M. Matrix metalloproteinases as mediators of reproductive function[J]. Mol Hum Reprod, 1997, 3(1): 27-45.
    [27] Greenwald GS, Roy SK. Follicular development and its control. In:Knobil E, Neill J (eds.), The Physiology of Reproduction, 2nd Edition. New York: Raven Press; 1994: 629–724.
    [28] Monniaux D, Huet C, Besnard N, et al . Follicular growth and ovarian dynamics in mammals [J]. J Reprod Fertil Suppl, 1997: 51:3–23.
    [29] Bagavandoss P. Differential distribution of gelatinases and tissue inhibitor of metalloproteinase-1 in the rat ovary [J]. J Endocrinol, 1998, 158:221–228.
    [30] Cooke R G, Nothnick W B, Komar C, et al. Collagenase and gelatinase messenger ribonucleic acid expression and activity during follicular development in the rat ovary [J]. Biol Reprod, 1999, 61: 1309–1316.
    [31] Garcia R, Ballesteros L M, Hernandez-Perez O, et al. Metalloproteinase activity during growth, maturation and atresia in the ovarian follicles of the goat[J]. Anim Reprod Sci, 1997, 47:211–228.
    [32] Huet C, Monget P, Pisselet C, et al. Chronology of events accompanying follicular atresia in hypophysectomized ewes, Changes in levels of steroidogenic enzymes, connexin 43, insulin-like growth factor II mannose 6 phosphate receptor, extracellular matrix components, and matrix metalloproteinases [J]. Biol Reprod, 1998, 58: 175–185.
    [33]. Bjersing L, Cajander S. Ovulation and the mechanism of follicle rupture. VI. Ultrastructure of theca interna and the inner vascular network surrounding rabbit graafian follicles prior to induced ovulation[J]. Cell Tissue Res, 1974, 153: 1–14.
    [34] Bjersing L, Cajander S. Ovulation and the mechanism of follicle rupture. V. Ultrastructure of tunica albuginea and theca externa of rabbit graafian follicles prior to induced ovulation [J]. Cell Tissue Res, 1974, 153: 15–30.
    [35] Morales T I, Woessner J F Jr, Marsh J M, et al. Collagen, collagenase and collagenolytic activity in rat graafian follicles during follicular growth and ovulation[J]. Biochim Biophys Acta, 1983, 756: 119–122.
    [36]. Murdoch W J, McCormick R J. Enhanced degradation of collagen within apical vs. basal wall of ovulatory ovine follicle [J]. Am J Physiol Endocrinol Metab, 1992, 263:221–225.
    [37] Fukumoto M, Yajima Y, Okamura H, et al. Collagenolytic enzyme activity in human ovary: an ovulatory enzyme system[J]. Fertil Steril, 1981, 36:746–750.
    [38] Curry TE Jr, Dean DD, Woessner JF Jr, et al. The extraction of a tissue collagenase associated with ovulation in the rat [J]. Biol Reprod, 1985, 33:981–991.
    [39] Reich R, Tsafriri A, Mechanic G L. The involvement of collagenolysis in ovulation in the rat [J]. Endocrinology, 1985, 116:522–527.
    [40] Reich R, Daphna-Iken D, Chun S Y, et al. Preovulatory changes in ovarian expression of collagenases and tissue metalloproteinase inhibitor messenger ribonucleic acid: role of eicosanoids[J]. Endocrinology, 1991, 129: 1869–1875.
    [42] Curry T E Jr, Mann J S, Huang M H, et al. Gelatinase and proteoglycanase activity during the periovulatory period in the rat [J]. Biol Reprod, 1992, 46:256–264.
    [42] Hagglund A C, Ny A, Leonardsson G, et al. Regulation and localization of matrix metalloproteinases and tissue inhibitors of metalloproteinases in the mouse ovary during gonadotropin-induced ovulation [J]. Endocrinology, 1999, 140: 4351–4358.
    [43] Murdoch W J, Peterson T A, Van Kirk E A, et al. Interactive roles of progesterone, prostaglandins, and collagenase in the ovulatory mechanism of the ewe [J]. Biol Reprod, 1986, 35:1187–1194.
    [44] Chaffin C L, Stouffer R L. Expression of matrix metalloproteinases and their tissue inhibitor messenger ribonucleic acids in Macaque periovulatory granulosa cells: time course and steroid regulation[J]. Biol Reprod, 1999, 61: 14–21.
    [45] Curry T E Jr, Clark M R, Dean D D, et al. The preovulatory increase in ovarian collagenase activity in the rat is independent of prostaglandin production [J]. Endocrinology, 1986,118:1823–1828.
    [46] Puistola U, Salo T, Martikainen H, et al. Type IV collagenolytic activity in human preovulatory follicular fluid [J]. Fertil Steril, 1986, 45: 578–580.
    [47] Driancourt M A, Quesnel H, Meduri G, et al. Luteinization and proteolysis in ovarian follicles of Meishan and Large White gilts during the preovulatory period [J]. J Reprod Fertil, 1999, 114:287–297.
    [48] Nothnick W B, Keeble S C, Curry T E Jr. Collagenase, gelatinase, and proteoglycanase mRNA expression and activity during luteal development, maintenance, and regression in the pseudopregnant rat ovary [J]. Biol Reprod, 1996, 54:616–624.
    [49] Liu K, Olofsson J I, Wahlberh P, et al. Distinct expression of gelatinaseA [matrix metalloproteinase (MMP)-2], collagenase-3 (MMP-13), membrane type MMP 1 (MMP-14), and tissue inhibitor of MMPs type 1 mediated by physiological signals during formation and regression of the rat corpus luteum [J]. Endocrinology, 1999, 140:5330–5338.
    [50] Goldberg M J, Moses M A, Tsang P C. Identification of matrix metalloproteinases and metalloproteinase inhibitors in bovine corpora lutea and their variation during the estrous cycle [J]. J Anim Sci, 1996, 74:849–857.
    [51] Duncan W C, McNeilly A S, Illingworth P J. The effect of luteal ‘‘rescue’’ on the expression and localization of matrix metalloproteinases and their tissue inhibitors in the human corpus luteum [J]. J Clin Endocrinol Metab, 1998, 83:2470–2478.
    [52] Endo T, Aten R F, Wang F, et al. Coordinate induction and activation of metalloproteinase and ascorbate depletion in structural luteolysis [J]. Endocrinology, 1993, 133:690–698.
    [53] Waterhouse P, Denhardt DT, Khokha R. Temporal expression of tissue inhibitors of metalloproteinases in mouse reproductive tissues during gestation [J]. Mol Reprod Dev, 1993, 35: 219–226.
    [54] Rudolph-Owens L, Hulboy D L, Wilson C L, et al. Coordinate expression of matrix metalloproteinase family members in the uterus of normal, matrilysin-deficient, and stromelysin-1 deficient mice [J]. Endocrinology, 1997, 138:4902–4911.
    [55] Woessner J F Jr. Regulation of matrilysin in the rat uterus [J]. Biochem Cell Biol, 1996, 74:777–784.
    [56] Maj J G, Kankofer M. Activity of 72-kDa and 92-kDa matrix metalloproteinases in placental tissues of cows with and without retained fetal membranes [J]. Placenta, 1997, 18:277–285.
    [57] Salamonsen L A, Nagase H, Woolley D E. Matrix metalloproteinases and their tissue inhibitors at the ovine trophoblast-uterine interface [J].J Reprod Fertil Suppl, 1995, 49:29–37.
    [58] Das S K, Yano S, Wang J, et al. Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in the mouse uterus during the peri-implantation period [J]. Dev Genet, 1997, 21:44–54.
    [59] Riley S, Webb C J, Leask R, et al. Involvement of matrix metalloproteinases 2 and 9, tissue inhibitor of metalloproteinasesand apoptosis in tissue remodelling in the sheep placenta [J]. J Reprod Fertil, 2000, 118:19–27.
    [60] Librach C L, Werb Z, Fitzgerald M L, et al. Type IV collagenase mediates invasion of human cytotrophoblasts [J]. J Cell Biol, 1991, 113:437–449.
    [61] Shimonovitz S, Hurwitz A, Hochner-Celnikier D, et al. Expression of gelatinase B by trophoblast cells: down-regulation by progesterone [J]. Am J Obstet Gynecol, 1998, 178:457–461.
    [62] Keller N R, Sierra-Rivera E, Eisenberg E et al. Progesterone exposure prevents matrix metalloproteinase-3 (MMP-3) stimulation by interleukin-1a in human endometrial stromal cells[J]. J Clin Endocrinol Metab, 2000, 85:1611–1619.
    [63] Autio-Harmainen H. Simultaneous expression of 70 kilodalton type IV collagenase and type IV collagen al (IV) chain genes by cells of early human placenta and gestational [J]. Endometrium. Lab Invest, 1992, 67:191–200.
    [64] Bjorn S F. Co-ordinated expression of MMP-2 and its putative activator, MT1-MMP, in human placentation [J]. Hum Reprod, 1997, 3: 713–723.
    [65] Blankenship TN, King BF. Identification of 72-kilodalton type IV collagenase at sites of trophoblastic invasion of macaque spiral arteries [J]. Placenta 1994, 15:177–187.
    [66] Hurskainen T. mRNA expressions of TIMP-1, -2, -3, and 92-KD typeIV collagenase in early human placenta and decidual membrane as studied by in situ hybridization [J]. J Histochem Cytochem,1996, 44:1379–1388.
    [67] Nawrocki B. Membrane-type matrix metalloproteinase-1 expression at the site of human placentation [J]. Placenta, 1996, 17:565–572.
    [68] Vettraino I, Roby J, Tolley T, et al. Collagenase-1, stromelysin-1, and matrilysin are expressed within the placenta during multiple stages of human pregnancy [J]. Placenta, 1996, 17:557–563.
    [69] Librach C, Feigenbaum S, Bass K, et al. Interleukin-1b regulates human cytotrophoblast metalloproteinase activity and invasion in vitro [J]. J Biol Chem, 1994, 269:17125–17131.
    [70] Simon C, Moreno C, Remoh?′ J, et al. Cytokines and embryo implantation [J]. J Immunol, 1998, 39:117–131.
    [71] De los Santos MJ, Mercader A, Frances A, et al. Role of endometrial factors in regulating secretion of components of the immunoreactive human embryonic interleukin-1 system during embryonic development [J]. Biol Reprod, 1996, 54:563–574.
    [72] Geisert RD, Pratt TN, Bazer FW, et al. Immunocytochemical localization and changes in endometrial progestin receptor protein during the porcine estrous cycle and early pregnancy [J].Reprod Fertil Dev, 1994, 6:749–760.
    [73] Lessey BA, Yeh I, Castelbaum AJ, Fritz MA, et al. Endometrial progesterone receptors and markers of uterine receptivity in the window of implantation [J]. Fertil Steril ,1996, 65:477–483.
    [74] Amso NN, Crow J, Shaw RW. Comparative immunohistochemical study of estrogen and progesterone receptors in the fallopian tube and uterus at different stages of the menstrual cycle and the menopause [J]. Hum Reprod, 1994, 9:1027–1037.
    [75] Spencer TE, Bazer FW. Temporal and spatial alterations in uterine estrogen receptor and progesterone receptor gene expression during the estrous cycle and early pregnancy in the ewe [J]. Biol Reprod, 1995, 53:1527–1543.
    [76] Wiseman B S, Sternlicht M D, Lund L R, et al. Site-specific inductive and inhibitory activities of MMP-2 and MMP-3 orchestrate mammary gland branching morphogenesis [J]. J Cell Biol, 2003, 162(6): 1123-33.
    [77] Boulay A, Masson R, Chenard M P, et al.High cancer cell death in syngeneic tumors developed in host mice deficient for the stromelysin-3 matrix metalloproteinase [J]. Cancer Res, 2001, 61(5):2189-93.
    [78] Alexander C M, Hansell E J, Behrendtsen O, et al. Expression and function of matrix metalloproteinases and their inhibitors at the maternal embryonic boundary during mouse embryo implantation[J]. Development, 1996, 122(6):1723-36.
    [79] Bullard K M, Lund L, Mudgett J S, et al. Impaired wound contraction in stromelysin-1 deficient mice[J]. Ann Surg, 1999, 230(2):260-5.
    [80] Lund L R, Romer J, Bugge T H, et al. Functional overlap between two classes of matrix- degrading proteases in wound healing[J].EMBO J, 1999, 18(17):4645-56.
    [81] Brooks P C, Clark R A, Cheresh D A. Requirement of vascular integrin alpha v beta 3 for angiogenesis[J]. Science, 1994, 264(5158):569-71.
    [82] Itoh T, Tanioka M, Yoshida H, et al. Reduced angiogenesis and tumor progression in gelatinase A-deficient mice[J]. Cancer Res, 1998, 58(5):1048-51.
    [83] Lambert V, Wielockx B, Munaut C, et al. MMP-2 and MMP-9 synergize in promoting choroidal neovascularization [J]. FASEB J, 2003, 17(15):2290-2.
    [84] Kim Y M, Jang J W, Lee O H, et al. Endostatin inhibits endothelial and tumor cellular invasion by blocking the activation and catalytic activity of matrix metalloproteinase[J]. Cancer Res, 2000, 60(19): 5410-3.
    [85] Lee S J, Jang J W, Kim Y M, et al. Endostatin binds to the catalytic domain of matrix metalloproteinase-2[J]. FEBS Lett, 2002, 519(1-3):147-52.
    [86] Nyberg P, Heikkila P, Sorsa T, et al. Endostatin inhibits human tongue carcinoma cell invasion and intravasation and blocks the activation of matrix metalloprotease-2, -9, and -13[J]. J Biol Chem, 2003, 278(25):22404-11.
    [87] Hiraoka N, Allen E, Apel I J, et al. Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins[J]. Cell, 1998, 95(3):365-77.
    [88] Belotti D, Paganoni L, Manenti L, et al. Matrix metalloproteinases (MMP9 and MMP2) induce the release of vascular endothelial growth factor (VEGF) by ovarian carcinoma cells: implications for ascites formation[J]. Cancer Res, 2003, 63(17): 5224-9.
    [89] Bregers G, Brekken R, McMahon G, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis[J]. Nat Cell Biol, 2004, 2(10):737-44.
    [90] Mohan R, Sivak J, Ashton P. et al. Curcuminoids inhibit the angiogenic response stimulated by fibroblast growth factor-2, including expression of matrix metalloproteinase gelatinase B[J]. J Biol Chem, 2000, 275(14):10405-12.
    [91] Sounnt N E, Devy L, Hajitou, et al.MT1-MMP expression promotes tumor growth and angiogenesis through an up-regulation of vascular endothelial growth factor expression[J]. FASEB J, 2002, 16(6):555-64.
    [92] Yu Q, Stamenkovic I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis[J].Genes Dev, 2000, 14(2): 163-76.
    [93] Cornelius L A, Nehring L C, Harging E, et al. Matrixmetalloproteinases generate angiostatin: effects on neovascularization[J]. J Immunol, 1998, 161(12):6845-52.
    [94] Ferreras M, Felbor U, Lenhard T, et al. Generation and degradation of human endostatin proteins by various proteinases[J]. FEBS Lett, 2000, 486(3):247-51.
    [95] Ganz T. Defensins and host defense[J]. Science, 1999, 286(5439):420-421.
    [96] Wilson C L, Ouellette A J, Satchell D P, et al. Regulation of intestinal alpha- defensin activation by the metalloproteinase matrilysin in innate host defense[J]. Science, 1999, 286(5437):113-117.
    [97] Gearing A J, Thorpe S J, Miller K, et al.Selective cleavage of human IgG by the matrix metalloproteinases, matrilysin and stromelysin[J]. Immunol Lett, 2002, 81(1):41-48.
    [98] Ruiz S, Henschen-Edman A H, Nagase H, et al. Digestion of C1q collagen-like domain with MMPs-1,-2,-3, and -9 further defines the sequence involved in the stimulation of neutrophil superoxide production[J]. J Leukoc Biol, 1999, 66(3):416-422.
    [99] Feng X, Tonnesen M G, Peerschke E I, et al. Cooperation of C1q receptors and integrins in C1q-mediated endothelial cell adhesion and spreading[J]. J Immunol, 2002, 168(5):2441-2448.
    [100] Rozanov D V, Ghebrehiwet B, Postnova T I, et al. The hemopexin-like C-terminal domain of membrane type 1 matrix metalloproteinase regulates proteolysis of a multifunctional protein, gC1qR[J]. J Biol Chem, 2002, 277(11):9318-9325.
    [101] Creemers E E, Cleutjens J P, Smits J F, et al. Matrix metalloproteinase inhibition after myocardial infarction: a new approach to prevent heart failure [J]. Circ Res, 2001, 89(3): 201-210.
    [102] Radisky D C, Bissell M J. Matrix metalloproteinase-induced genomic instability [J].Curr Opin Genet Dev, 2006, 16(1):45-50.
    [103] Harris E D Jr, DiBona D R, Krane S M.. Collagenases in human synovial fluid[J]. J Clin Invest, 1969, 48(11):2104-2113.
    [104] Harris E D Jr, DiBona D R, Krane S M.. A mechanism for cartilage destruction in rheumatoid arthritis[J]. Trans Assoc Am Physicians, 1970, 83:267-276.
    [105] Harris E D Jr, Krane S M. An endopeptidase from rheumatoid synovial tissue culture[J]. Biochim Biophys Acta, 1972, 258(2):566-576.
    [106] Dayer J M, Graham R, Russell G, et al. Collagenase production by rheumatoid synovial cells:stimulation by a human lymphocyte factor[J]. Science, 1977, 195(4274):181- 183.
    [107] Martignetti J A, Ageel A A, Sewairi W A, et al. Mutation of the matrix metalloproteinase 2 gene (MMP2) causes a multicentric osteolysis and arthritis syndrome[J]. Nat Genet, 2001, 28(3):261-265.
    [108] Zhu Y, Spitz M R, Lei L, et al. A single nucleotide polymorphism in the matrix metallopro- teinase-1 promoter enhances lung cancer susceptibility[J]. Cancer Res, 2001, 61(21): 7825-7829.
    [109] Ghilardi G, Biondi M L, Mangoni J, et al. Matrix metalloproteinase-1 promoter polymorphism 1G/2G is correlated with colorectal cancer invasiveness[J]. Clin Cancer Res, 2001, 7(8):2344-2346.
    [110] Rutter J L, Mitchell T I, Buttice G, et al. A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter creates an Ets binding site and augments transcription[J]. Cancer Res, 1998, 58(23):5321-5325.
    [111] Parks W C, Shapiro S D. Matrix metalloproteinases in lung biology[J]. Respir Res, 2001, 2(1):10 -19.
    [112] Somerville R P, Oblander S A, Apte S S. Matrix metalloproteinases: old dogs with new tricks[J]. Genome Biology, 2003, 4(6):216-227.
    [113] Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression[J]. Nat Rev Cancer, 2002, 2(3):161-74.
    [114] Hojilla C V, Mohammed F F, Khokha R. Matrix metalloproteinases and their tissue inhibitors direct cell fate during cancer development[J]. Br J Cancer, 2003, 89(10):1817-21.
    [115] Westermarck J, Kahari V M. Regulation of matrix metalloproteinase expression in tumor invasion[J]. FASEB J, 1999, 13(8):781-92.
    [116] Pan M R, Hung W C. Nonsteroidal anti-inflammatory drugs inhibit matrix metalloproteinase-2 via suppression of the ERK/Sp1-mediated transcription[J]. J Biol Chem, 2002, 277(36): 32775-80.
    [117] Reunanen N, Li S P, Ahonen M, et al. Activation of p38 alpha MAPK enhances collagenase-1 (matrix metalloproteinase (MMP)-1) and stromelysin-1 (MMP-3) expression by mRNA stabilization[J]. J Biol Chem, 2002, 277(35):32360-8.
    [118] Ruhul Amin A R, Oo M L, Senga T, et al. SH2 domain containing protein tyrosine phosphatase 2 regulates concanavalin A-dependent secretion and activation of matrix metalloproteinase 2 via the extracellular signal-regulated kinase and p38 pathways[J]. Cancer Res, 2003, 63(19):6334-9.
    [119] Tanimura S, Asato K, Fujishiro S H, et al. Specific blockade of the ERK pathway inhibits the invasiveness of tumor cells:downregulation of matrix metalloproteinase-3/-9/-14 and CD44[J]. Biochem Biophys Res Commun, 2003, 304(4): 801-6.
    [120] Crawford H C, Fingleton B, Gustavson M D, et al. The PEA3 subfamily of Ets transcription factors synergizes with beta-catenin-LEF-1 to activate matrilysin transcription in intestinal tumors[J]. Mol Cell Biol, 2001, 21(4):1370-83.
    [121] Bond M, Fabunmi R P, Baker A H, et al. Synergistic upregulation of metalloproteinase-9 by growth factors and inflammatory cytokines:an absolute requirement for transcription factor NF-kappa B[J]. FEBS Lett, 1998, 435(1):29-34.
    [122] Jimenez M J, Balbin M, Alvarez J, et al. A regulatory cascade involving retinoic acid, Cbfa1, and matrix metalloproteinases is coupled to the development of a process of perichondrial invasion and osteogenic differentiation during bone formation[J]. J Cell Biol, 2001, 155(7): 1333-44.
    [123] Ye S. Polymorphism in matrix metalloproteinase gene promoters: implication in regulation of gene expression and susceptibility of various diseases[J]. Matrix Biol, 2000, 19(7): 623-629.
    [124] Ye S, Eriksson P, Hamsten A. Progression of coronary atherosclerosis is associated with a common genetic variant of the human stromelysin-1 promoter which results in reduced gene expression[J]. J Biol Chem, 1996, 271(22):13055-13060.
    [125] Ghilardi G, Biondi M L, Caputo M, et al. A single nucleotide polymorphism in the matrix metalloproteinase-3 promoter enhances breast cancer susceptibility[J]. Clin Cancer Res, 2002, 8(12): 3820-3.
    [126] Ghilardi G, Biondi M L, Erario M, et al. Colorectal carcinoma susceptibility and metastases are associated with matrix metalloproteinase-7 promoter polymorphisms[J]. Clin Chem, 2003, 49(11): 1940-2.
    [127] Miao X, Yu C, Tan W, et al. A functional polymorphism in the matrix metalloproteinase-2 gene promoter (-1306C/T) is associated with risk of development but not metastasis of gastric cardia adenocarcinoma [J]. Cancer Res, 2003, 63(14):3987-90.
    [128] Yu C, Pan K, Xing D, et al. Correlation between a single nucleotide polymorphism in the matrix metalloproteinase-2 promoter and risk of lung cancer[J]. Cancer Res, 2002, 62(22):6430-3.
    [129] Van Wart H E, Birkedal-Hansen H. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family[J]. Proc Natl Acad Sci USA, 1990, 87(14):5578-82.
    [130] Lohi J, Wilson C L, Roby J D, et al. Epilysin, a novel human matrix metalloproteinase (MMP-28) expressed in testis and keratinocytes and in response to injury[J]. J Biol Chem, 2001, 276(13): 10134-44.
    [131] Pei D, Weiss S J. Furin-dependent intracellular activation of the human stromelysin-3 zymogen [J]. Nature, 1995, 375(6528):244-7.
    [132] Yana I, Weiss S J. Regulation of membrane type-1 matrix metalloproteinase activation by proprotein convertases[J]. Mol Biol Cell, 2000, 11(7):2387-401.
    [133] Zucker S, Pei D, Cao J, et al. Membrane type matrix metalloproteinases (MT-MMP)[J]. Curr Top Dev Biol, 2003, 54:1-74.
    [134] Sato H, Takino T, Okada Y, et al. A matrix metalloproteinase expressed on the surface of invasive tumour cells[J]. Nature, 1994, 370(6484):61-65.
    [135] Williamson R A, Marston F A, Angal S,et al. Disulphide bond assignment in human tissue inhibitor of metalloproteinases (TIMP)[J]. Biochem J, 1990, 268(2):267-74.
    [136] Gomis-Ruth F X, Maskos K, Betz M, et al. Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1[J]. Nature, 1997, 389(6646):77-81.
    [137] Lee M H, Rapti M, Murphy G. Unveiling the surface epitopes that render tissue inhibitor of metalloproteinase-1 inactive against membrane type 1-matrix metalloproteinase[J]. J Biol Chem, 2003, 278(41):40224-30.
    [138] Mott J D, Thomas C L, Rosenbach M T, et al. Post-translational proteolytic processing of procollagen C-terminal proteinase enhancer releases a metalloproteinase inhibitor[J]. J Biol Chem, 2000, 275(2): 1384-90.
    [139] Petitclerc E, Boutaud A, Prestayko A, et al. New functions for non-collagenous domains of human collagen type IV. Novel integrin ligands inhibiting angiogenesis and tumor growth in vivo[J]. J Biol Chem, 2000, 275(11):8051-61.
    [140] Herman M P, Sukhova G K, Kisiel W, et al. Tissue factor pathway inhibitor-2 is a novel inhibitor of matrix metalloproteinases with implications for atherosclerosis[J]. J Clin Invest, 2001, 107(9): 1117-26.
    [141] Oh J, Takahashi R, Kondo S, et al. The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis [J]. Cell, 2001, 107(6):789-800.
    [142] Pendas AM, Knauper V, Puente XS, et al. Identification and characterization of a novel human matrix metalloproteinase with unique structural characteristics, chromosomal location, and tissue distribution[J]. J Biol Chem, 1997, 272(7):4281-6.
    [143] Caterina J J, Shi J, Kozak C A, et al. Characterization, expression analysis and chromosomal mapping of mouse matrix metalloproteinase-19 (MMP-19) [J]. Mol Biol Rep, 2000, 27(2):73-79.
    [144] Pendas A M, Folgueras A R, Llano E, et al. Diet-induced obesity and reduced skin cancer susceptibility in matrix metalloproteinase 19-deficient mice [J]. Mol Cell Biol, 2004, 24(12):5304-13.
    [145] Jost M., Folgueras A.R., Frerart F, et al. Earlier onset of tumoral angiogenesis in matrix Metalloproteinase-19 deficient mice [J]. Cancer Res., 2006, 66 (10):5234-5241.
    [146] Velasco G, Pendas A M, Fueyo A, et al. Cloning and characterization of human MMP-23, a new matrix metalloproteinase predominantly expressed in reproductive tissues and lacking conserved domains in other family members[J]. J Biol Chem,1999,274(8):4570-6.
    [147] Pei D, Kang T, Qi H. Cysteine Array Matrix Metalloproteinase (CA-MMP)/MMP-23 Is a Type II Transmembrane Matrix Metalloproteinase Regulated by a Single Cleavage for Both Secretion and Activation[J]. J Biol Chem, 2000, 275(43): 33988-33997.
    [148] Ohnishi J, Ohnishi E, Jin M, et al. Cloning and Characterization of a Rat Ortholog of MMP-23 (MatrixMetalloproteinase-23), a Unique Type of Membrane-Anchored Matrix Metalloproteinase and Conditioned Switching of Its Expression during the Ovarian Follicular Development[J]. Mol Endocrinol, 2001, 15(5):747-64.
    [149] Gajecka M, Yu W, Ballif BC, et al. Delineation of mechanisms and regions of dosage imbalance in complex rearrangements of 1p36 leads to a putative gene for regulation of cranial suture closure [J] .Eur J Hum Genet., 2005, 13(2):139-49.
    [150] Milan D, Hawken R, Cabau C, et al. IMpRH server: an RH mapping server available on the Web[J]. Bioinformatics. 2000, 6(6): 558-559.
    [151] 余梅. 猪 12 号染色体上四个新基因的分离、鉴定和物理定位[D].武汉:华中农业大学,2002.
    [152] 刘榜. 15 个猪品种 MHC II 类区 4 个基因的 SNPs 分析及与免疫性状的关联[D].武汉: 华中农业大学,2003.
    [153] 杨金娥. 猪 12 号染色体上 10 个新基因的分离、定位及其与部分性状的关联分析[D]. 武汉: 华中农业大学,2004.
    [154] 王彦芳. 猪 PA28 和 PA700 基因家族相关基因的分离、定位、SNPs 检测及其与性状的关联分析[D].武汉:华中农业大学,2004.
    [155] Brinckerhoff CE, Matrisian LM. Matrix metalloproteinases: a tail of a frog that became a prince [J]. Nat Rev Mol Cell Biol, 2002, 3(3):207-14.
    [156] Thomas E, Curry J R, Osteen. Cyclic Changes in the Matrix Metalloproteinase System in the Ovary and Uterus[J]. Biology of reproduction, 2001, 64:1285–1296.
    [157] Sharrocks A D, Brown A L, Ling Y, et al. The ETS-domain transcription factor family[J]. Int J Biochem Cell Biol, 1997, 12: 1371–1387.
    [158] Chakraborti S, Mandal M, Das S, et al. Regulation of matrixmetalloproteinases: An overview[J]. Molecular and Cellular Biochemistry, 2003, 253: 269–285.
    [159] Karin M, Liu Z G, Zandi F. Ap-1 function and regulation[J].Curr Opin Cell Biol, 1997, 9:240–246
    [160] Angel P, Karin M. The role of jun, fos and the AP-1 complex in cell proliferation and transformation.[J] Biochim Biophys Acta, 1991, 1072:129–157.
    [161] Carrere S, Verger A, Flourens A, et al. Erg proteins, transcription factors of the Ets family form homo, heterodimers and ternery complexes via two distinct domains[J]. Oncogene , 1998, 16: 3261–3268.
    [162] 胡士军, 马兴红,杨增明. 转录因子 Snail 的作用机制及其生理功能[J] 细胞生物学杂志,2006,28:160-164.
    [163] Ikenouchi J,Matsuda M, Furuse M, et al. Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail[J]. J Cell Sci., 2003, 15, 116(10):1959-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700