表面受限催化缩聚及特种环氧树脂的合成/性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用表面光接枝方法制备的表面携带酸和特殊基团的膜片,研究了表面受限酸催化固化酚醛树脂和逐步接枝反应,阐明了其中涉及的基本原理和基本规律;同时合成了一种新的特种环氧树脂,并对其结构和热性能进行了详细地分析和表征,具有重要的理论意义和实用价值。主要研究进展和成果如下:
     采用UV表面接枝方法将丙烯酸(AA)接枝在LDPE膜表面,制备了含有羧酸的LDPE-g-PAA膜片。这种表面受限酸可催化甲阶酚醛树脂发生固化反应,膜表面固化层厚度为20nm—60nm。实验和分析结果表明:随着反应时间和反应温度的增加,固化层厚度虽有增加,但变化不大,所以,受限羧酸基团对酚醛树脂的固化有催化作用,但催化作用比较弱。
     通过对氨基苯磺酸与LDPE-g-PAA上羧酸的成盐反应,制备了农面含磺酸基团的膜片,羧基反应转化率大于30%。当膜片与酚醛树脂溶液接触反应时,溶液粘度无升高的结果表明这种酸催化固化作用只发生在膜表面——磺酸的受限区域内;膜表面酚醛树脂固化层重量和厚度随反应时间的增加和温度升高而明显增加,反应时间从1h增加到10h(50℃反应),固化层厚度从127nm增加提高到234nm;反应温度从22℃升高到50℃时(反应时间2h),固化层厚度从87nm加到154nm;改变溶剂性质,催化固化反应作用差别很大,在水介质中,磺酸对酚醛树脂有很强的催化固化作用,酚醛树脂固化层厚度为40nm—90nm,随反应时间延长固化层厚度增加,而同样条件下在丙酮介质中,酚醛树脂层的厚度只有20-30nm,而且延长反应时间对酚醛树脂层厚度没有影响。根据上述实验结果,提出表面受限磺酸作用于酚醛树脂的模型,磺酸中的氢离子被束缚在膜的表面,由于电荷作用,氢离子被酸根控制的距离为L,L的大小受温度和溶剂的影响,当温度升高时,L值变大,当温度降低时,L值变小:当溶剂能够很好地溶解LDPE膜表面的大分子链以及磺酸根基团时,L值变大,而当溶剂的性质与大分子链或磺酸根基团的溶解性不相近时,L值变小。这种机理很好地解释了本章研究发现的各种实验现象。
     将LDPE-g-PAA与亚硫酰氯反应制备了表面含酰氯基团的膜片,确定了合适的反应条件;通过对酰氯基团在各种介质中稳定性的比较,确定丙酮作为酰氯基团进一步与其它试剂反应的溶剂:在聚合物膜片表面接枝了间苯_二酚,形成了逐步聚合的锚点,扩大了膜表面接枝反应在机理和单体领域的范围:设计了一种膜表面逐步缩合接枝反应方法,将表面带有特殊基团的膜片交替放入间苯二酚、甲醛(丙酮)溶液中,实现了逐步缩合反应只在膜片表面发生,同时也为其他逐步聚合反应的理论研究提供一种新方法。
     发明了以水为溶剂间苯二酚与丙酮反应合成多官能度酚的方法,并证明该多酚结构是一种三官能度酚——4-(3,3-二氢-7-羟基-2,4,4-三甲基-2H-1-苯并吡喃-2-基)-1,3-苯二酚,该方法具有合成体系简单、无溶剂污染、目标产物纯度高(大于94%)和单体的转化率高(大于99%)的特点,并提出了间苯二酚与丙酮反应生成一种邻-异丙烯基酚,然后异丙烯基酚发生二聚,最后二聚体闭环生成苯并氧杂六环结构的反应机理。进一步采用该酚与环氧氯丙烷反应合成了的特种环氧树脂(TF-EPOXY),通过FTIR和ESI-MS确定了环氧树脂的结构是与三官能度酚相对应的三官能度环氧树脂。采用二氨基二苯砜(DDS)和二氨基二苯甲烷(DDM)固化三官能度环氧树脂,同化动力学研究得出固化反应活化能分别为63.2kJ/mol和55.3kJ/mol,同化反应级数分别为0.875和0.882。确定了固化反应的适宜温度分别为200℃-250℃和150℃-200℃。采用DSC、DMTA和TG分析了TF-EPOXY/DDS和TF-EPOXY/DDM体系的耐热性能,结果表明:两种固化体系的Tg均为300℃,比同体系的普通环氧树脂Tg高出100℃左右,是一种新型的耐高温的高性能环氧树脂品种。
Surface photo-grafting has been considered as a promising way to prepare a kind of film on the surface of which there are acids groups and novel reactive groups. The catalysis curing reactions of phenolic resole and stepwise grafting reactions induced by confined acids and novel groups were studied to explore and understand the basic principles. Meanwhile, a novel multi-phenol and new novel epoxy compound was synthesized, and their structures and thermo-resi stance property were analyzed and characterized. The main achievements are as following:
     The films with carboxyl group on the surface were prepared by the UV photo-grafting of acrylic acid onto LDPE films. Resultant surface confined acid can catalyze the curing reaction of phenolic resole. Calculated thickness of curing phenolic resole layer was between 20nm and 60nm. The reaction time and reaction temperature dependence of catalysis curing effect of confined acid on phenolic resole demonstrated that the thickness of curing phenolic resole layer increased slightly, which clarified the catalytic effect of confined carboxyl groups on the curing of phenolic resole were not power enough.
     The films with sulfonic groups on the surface were prepared by the reaction of carboxyl groups in LDPE-g-PAA and sulfanic acid with conversation of carboxyl groups more than 30%. The viscosity of phenolic solution kept constant when films were soaked into the solution, which revealed the curing reaction of phenolic resole occurred only on the surface or the vicinity of sulfonic groups in stead of in the solution of phenolic resole. The weight and the thickness of cured phenolic resole layer on the surface of films were increased with the increase of reaction temperature and reaction time. Cured phenolic resole layer was increased from 127nm to 234nm when the reaction time changed from 1 hour to 10 hours at 50℃, and from 87nm to 154nm when the reaction temperature rose from 22℃to 50℃. The catalysis effect of acid on the curing of phenolic resole varied obviously with the variation of solubility of solvent. The thickness of curing phenolic resole layer thickened from 40nm to 90nm with increase of reaction time in water. Otherwise, the thickness of curing phenolic resole was only between 20nm to 30nm in acetone in the condition as the same as that in water. Consequently, an appropriate model of confined sulfonic acid was proposed. H proton was confined within a distance of L to a sulfonic group, which was influenced by reaction temperature and solubility of solvent. The value of L enlarged with the rise of temperature and better of solubility of solvent. This model can explain experimental phenomena reasonably.
     The films with acyl chloride on the surface were prepared by the reaction of LDPE-g-PAA and thionyl chloride. The reaction conditions were determined. The comparison of stability of obtained acyl chloride in several kinds of solvents was carried out and acetone was found to be appropriate one where the acyl chloride existed stably. The confined acyl chloride groups were used to graft resorcinol molecule successfully, which was expected to be a position for further condensation with some monomers with functional groups, such as formaldehyde and acetone. A new way was designed to undergo the stepwise grafting reaction by which resorcinol and formaldehyde (or acetone) was grafted alternatively to the surface of LDPE film. This method was also useful way for theoretical study of stepwise polymerization.
     A new way was invented for preparation of a tri-functional phenol by using resorcinol and acetone in water. It was of the feature of simple composition, high purity of product (more than 94%) and high monomer conversion (more than 99%). An appropriate mechanism of the reaction of resorcinol and acetone was proposed. Furthermore, tri-functional group phenol was used to make epoxy by reaction with epichlorohydrin. The structure and molecular weight measured by FTIR and ESI-MS clarified the synthesized epoxy compound was a corresponding tri-functional epoxy (TF-EPOXY). Then, kinetic study of curing behavior of this TF-EPOXY cured by DDS and DDM was determined. Suitable curing temperature and curing activation energy were determined by DSC analytical results which were 200℃-250℃and 63.2kJ/mol for TF-EPOXY/DDS system and 150℃-200℃and 55.3kJ/mol for TF-EPOXY/DDM system respectively. Finally, the properties of heat resistance of TF-EPOXY / DDS and TF-EPXOY/DDM were elucidated by DSC, DMTA and TG analysis. The experimental results showed that Tg of TF-EPOXY/DDS system and CYD128/DDM were both more than 300℃, which were 100℃higher than that of BIS-A epoxy system. The synthesized novel epoxy compound was new species with thermo-resistance and high property.
引文
1. Oster G, Shibata O, Graft copolymer of polyacrylamide and natural rubber produced by mean of UV light, J. Polym. Sci., 1957, 26:233-234
    2.李善君,纪才圭.高分子光化学原理及应用.上海:复旦大学出版社
    3.杨万泰.尹梅贞.表面光接技原理、方法及应用前景.高分子通报.1999.44(1):60-65
    4. Eduard A. Kulik, Maria I. Ivanchenko, Koichi Kato, Shushi Sano and Yoshito Ikada, Peroxide generation and decomposition on polymer surface, J. Polym. Sci., Part A, 1995, 33:323-330
    5. Mathias Ulbricht, Heike Matuchewski, Annett Oechel, Hans-georg Hiche, Photoinduced graft polymerization surface modification for the preparation of hydrophilic and low-protein-adsorbing ultrafiltration membranes, J. Membr. Sci., 1996, 115, 31-47
    6. Ranby B, Cao Z M, Hult A., Zhang P. Y., Modification of polymer surface by graft copolymerization, Polymer Preprints, 1986, 272, 38
    7. Ogiwara Y, Torikoshi K, Kubota H. Vapor phase photografting of acrylic acid on polymer films: effects of solvent mixed with monomer. J Polym Sci, Polym Lett Ed, 1982, 20:17-21
    8. Yang WT, Ranby B. Bulk surface photografting process and its applications. I. Reactions and kinetics. J Appl Polymer Sci, 1996, 62:533-543
    9. Uyama Y, Ikada Y. Graft polymerization of acrylamide onto UV-irradiated films. J Appl Polym Sci, 1988, 36:1087-1096
    10. Calgare S. Photochemical grafting of acrylated Azo dyes on polymeric surfaces. V. grafting of some acryloxy-substitute aromatic diazenes as model molecules onto polypropylene, polycaprolactam and PET films. J Appl Polym Sci., 1982, 27:527-533
    11. Ang CH, Gamett JL, Levot T, Long MA. Radiation and UV grafting of monomers to polyolefin and cellulose acetate. Significance of these studies in reagent insolubilization reactions. J Macromol Sci-Chem, 1982, A17:87-88
    12. Kindo S, Nakamatsu T, Tsuda K. Graft copolymelization of methyl methacrylate on Poly(phenyl vinyl sulfide). J Macromol Sci-Chem., 1977, A11(4): 719-732
    13. Ihoue H, Konama S. Surface photografting of hydrophilic vinyl monomers onto diethyldithiocarbamated polydimethylsiloxane. J Appl Polym Sci, 1984, 29:877-889
    14. Zhang PY, Ranby B. Surface modification by continuous graft copolymerization. Ⅱ. Photoinitiated graft copolymerization onto polypropylene film surface. J Appl Polym Sci, 1991, 43:621-636
    15. Nito K, Suzuki S, Miyasaka K. Photoinduced acrylamide graft polymerization onto extended hard elastic polypropylene. J Appl Polym Sci, 1982, 27:637-643
    16. Seiber RP, Needles HL. Photo-induced vapor-phase grafting of acrylic monomers onto fibrous substrate in the presence of biacetyl. J Appl Polym Sci, 1975,19:2187-2206
    17. Needles HL, Alger KW. Vapor-phase grafting of methyl acrylate on fiber surfaces treated with aqeous dispersions of metal oxides. J Appl Polym Sci, 1975,19:2207-2223
    18. Harris JA, Arthur JC. Photo-initiated polymerization of glycidyl methacrylate with cotton cellulose. J Appl Polym Sci, 1978, 22:905-915
    19. Arai K, Ogiwara Y. Grafted chains as spacer for an insoluble polymer ligand. Ⅱ. Two-step polymerization using tetraethylthiuram disulfide as an initiator. J Appl Polym Sci, 1988, 36:1651-1658
    20. Zhang PY, Ranby B. Surface modification by continuous graft copolymerization. Ⅰ. Photo-initiated graft copolymerization onto PE tape film surface. J Appl Polym Sci. 1990, 40:1647-1661
    21. Zhang PY, Ranby B. Surface modification by continuous graft copolymerization. Ⅲ. Photoinitiated graft copolymerization onto PET fiber surface. J Appl Polym Sci, 1990, 41: 1459-1467
    22. Yang WT, Ranby B. The role of far UV radiation in the photografting process. Polymer Bulletin, 1996, 37:89-96
    23. Yang W T, Ranby B. Macromolecules. 1996, 29:3308-3310
    24. Allmer K, Hult A, Ranby B. Surface modification of polymers. Ⅰ. Vapour phase photografting with acrylic acid. J. Polym. Sci. 1988, A26:2099
    25.高志民,杨永源,冯树京,吴世康.聚丙烯表面光接枝及染色.感光科学与光化学,1984,(4):54-58
    26. Kubota H, Ogiwara Y. Effect of water in vapor-phase photografting of vinyl monomers on polymer films. J Appl Polym Sci. 1991, 43:1001-1005
    27. Yang W T, R'anby B. J AppiPolym Sci. 1996,62:545-555
    28. Allmer K, Hult A, RAnby B. Surface modification of polymers. Ⅱ. Grafting with glycidyl acrylates and the reasons of the grafted surfaces with amines. J Polym Sci, 1989, A27: 1641-1652
    29. Ogiwara Y, Kanda M. Photosensitized grafting on polyolefin films in vapor and liquid phases. J Polym Sci: Polym Let Ed. 1981, 19:457-462
    30. Rengarajan R, Vicic M, Lee S. Solid phase graft copolymerization. I. Efect of initiator and catalyst. 1 Appl Polym Sci, 1990.39:1783-1791
    31. Mateon B, Stenberg B. Surface modification and stabilization of rubber materials: plasma polymerization and photografting. J Appl Polym Sci, 1993, 50:1247-125
    32. Ang CH, Garnet JL, Levotetal R. Photosensitized grafting of styrene, 4-vinylpyridine and methyl methacrylate to polypropylene. J Polym Sci: Polym Let Ed, 1980, 18:471
    33. Zhang PY, Ranby B. Photoinitiated grafting at polymer surface. Part 2, Presented at "Polymer Surfaces and Interfaces', Durham, England, April 17, 1985
    34. Tazuke S, Kimura H. Surface photografting. 2. Modification of polypropylene film surface by graft polymerization of acrylamide. Makromol Chem, 1978, 179:2603-26
    35. Uchida E, Uyama Y, Ikeda Y. Surface graft polymerization of acrylamide onto PET film by UV irradiation. J Polym Sci, 1989,A27:527-53
    36.何明波,胡兴洲.预氧化聚烯烃膜的表面光接枝聚合.高分子学报,1989,(3):275-27
    37. Ranby B, Gao ZM. Modification of polymer surfaces by graft copolymerization. Polym Prep. 1986, 272:38-39
    38. Needles HL Alger KW. Photo-induced polymerization of methyl acrylate vapors on preweted polyamide and polyester fibers. J Appl Polym Sci, 1978, 22:3405-341
    39. Goldbtatt RD, Park JM, White RC. Photochemical surface modification of PET. J Appl Polym Sci, 1989, 37:335-347
    40. Davis NP, Garnett JL. The role of solvent alcohol in the photosensitized copolymerization of styrene to cellulose. Polym Lett Ed, 1976,14:537-541
    41. Tazuke S, Kimura H. Surface photografting. I. Graft polymerization of hydrophilic monomers onto various polymer films. J Polym Sci: Polym Lett Ed, 1978,16:497-502
    42. Ranby B, Gao ZM. Modification of polymer surfaces by graft copolymerization. Polym Prep, 1986, 272:38-39
    43. Rengarajan R, Vicic M, Lee S. Solid phase graft copolymerization. I. Effect of Initiator and catalyst. J Appl Polym Sci. 1990, 39:1783-1791
    44. Ogiwara Y, Tarumi M, Kubota H. Photo-induced grafting of acrylamide onto polyethylene film by means of two-step method. J Appl Polym Sci. 1982, 27:3743-4750
    45. Kubota H. Distribution of methacrylic acid-gratted chains introduced into polyethylene film by photografting. J Appl Polym Sci. 1990, 41:689-695
    46. Johnson Jr. RE, Dettre RH, Brandreth DA. Dynamic contact angle and contact angle hysteresis. J Colloid Interf Sci 1977; 62:205-12
    47. Good RJ, Kotsidas ED. The contact angle of water on, olystyrene: a study of the cause of hysteresis. J Colloid, Interf Sci 1978, 66:360-2
    48. Penn LS, Miller B. A study of the primary cause of contact angle hysteresis on some polymeric solids. J Colloid Intarf, Sci 1980, 78:238-41
    49. Yasuda H, Sharma AK, Yasuda T. Effect of orientation and mobility of polymer molecules at surfaces on contact angle and its hysteresis. J Polym Sci, Polym Phys Ed 1981, 19:1285-91
    50. Tretinnikov ON, Ikada Y. Dynamic wetting and contact, angle hysteresis of polymer surface studied with the modified, Wilhelmy balance method. Langmuir 1994, 10:1606-14
    51. Mona M, Occhiello E, Garbassi F. Wettability and antistatic, behavior of surface-grafted polypropylene. J Colloid Interf Sci 1992, 149:290-4
    52. Takei TG, Aoki T, Sanui K, Ogata N, Sakurai Y, Okano T. Dynamic contact angle measurement of temperature-responsive surface properties for poly(N-isopropyl-acrylamide) graft surface. Macromolecules 1994, 27:6163-6
    53. Gong X, Dai LJ, Griesser H. Mau AWH. Surface immobilization of poly (ethylene oxide): structure and properties. J Polym Sci, Part B 2000, 38:2323-32
    54. Song Y-Q, Sheng J, Wei M, Yuan X-B. Surface modification of polysulfone membranes by low-temperature plasma-graft poly(ethylene glycol) onto polysulfone membranes. J Appl Polym Sci 2000, 78:979-85
    55. Guo S, Shen L, Feng L. Surface characterization of blood compatible amphiphilic graft copolymers having uniform poly(ethylene oxide) side chains. Polymer 2001,42:1017-22
    56. Chen Q, Chen W, Qian J, Zhang X, Chen Z. The research on triboelectric beneficiation of ultrafine coal. Proc Annu Int Pittsburgh Coal Conf 1999, 38-41
    57. Lee WS, Takahashi Y. Study on triboelectric charging characteristics of two-component developers: effect of external additives. Denshi Shashin Gakkaishi 1998, 37(2): 175-9
    58. Verogin RPN, Tripp CP, McDougall MNV, Osmond D. The role of water in the triboelectric charging of alkylchlorosilane-treated silicas as toner surface additives. J Imaging Sci Technol 1995, 39(5): 429-32
    59. Kodama J, Foerch R, Mclntyre NS, Castle GSP. Effect of plasma treatment on the triboelectric properties of polymer powders. J Appl Phys 1993, 74(6): 4026-33
    60. Ijichi K, Uemura Y, Yoshizawa H, Hatate Y, Haraguchi T, Ide S, Hatanaka C, Yamada K, Kawano Y. Triboelectric charge control of polymer microspheres by low-temperature plasma treatments. Kagaku Kogaku Ronbunshu 1997, 23(4): 578-81
    61. Shalaby SW, Gregory RV, Allan JM. Molecularly bonded inherently conductive polymers on substrates and shaped articles made from them. US patent 5,691,062; Nov 12, 1997
    62. Okuo M, Harada E, Higuchi Y. Surface grafting treatment by irradiation with activeenergy ray. Japanese Patent JP1998-245,763; Aug 31, 1998
    63. Grob MC, Eisermann D. Permanent antistatics: new developments for polyolefin applications. Polyolefins Ⅺ Int Conf 1999, 743-60
    64. Giglio E, Sabbatini L, Zambonin PG. Development and analytical characterization of cysteine-grafted polypyrrole films electrosynthesized on Pt- and Ti-substrates as precursors of bioactive interfaces. J Biomater Sci, Polym Ed 1999, 10(8):845-58. Giglio E, Sabbatini L, Zambonin PG. Development and analytical characterization of cysteine-grafted polypyrrole films electrosynthesized on Pt- and Ti-substrates as precursors of bioactive interfaces. J Biomater Sci, Polym Ed 1999, 10(8): 845-58
    65. Tessier D, Dao LH, Zhang Z, King MW, Guidoin R. Polymerization and surface analysis of electrically conductive polypyrrole on surface-activated polyester fabrics for biomedical applications. J Biomater Sci, Polym Ed 2000, 11(1): 87-99
    66. Decker C, Zahouily K. Light-stabilization of polymeric materials by grafted UV-cured coatings. J Polym Sci, Polym Chem 1998, 36: 2571-80. Decker C, Zahouily K. Light-stabilization of polymeric materials by grafted UV-cured coatings. J Polym Sci, Polym Chem 1998, 36:2571-80
    67. Ali R. Method of modifying of a polymer material by plasma-treating to improve the bonding, wetting and printing properties, and uses thereof. US Patent 6,057,414; May 2. 2000
    68. Vladkova T, Krasteve N, Kostadinova A, Altankov G. Preparation of PEG-coated surfaces and a study for their interaction with living cells. J Biomater Sci, Polym Ed 1999, 10(6): 609-20
    69. Hendriks M, Verhoeven M, Cahalan LL, Cahalan PT, Fouache B. Medical device with biomolecule-coated surface graft matrix. European Patent EP 809,997: December 3,1997
    70. Ewen K, Peter K, Hoecker H, Reichelt N, Raetzsch M. The migration of polar additives in polyolefines. Chem Fibers Int 1998, 48(5): 383-4
    71. Liang D, Zhou S, Song L, Zaitsev VS, Chu B Copolymer of poly(N-isopropyl acrylamide) densely grafted with poly(ethylene oxide) as high-performance separation matrix of DNA. Macromolecules 1999, 32:6326-32
    72. Zheng J, Uchida E, Uyama Y, Ikada Y. Adhesive interaction in aqueous media between polymer surfaces grafted with anionic and cationic polymer chains. Langmuir 1995, 11:1688-92
    73. Zhang J, Uchida E, Uyama Y, Ikada Y. Adhesive interaction in aqueous media between polymer surfaces grafted with anionic and cationic polymer chains. Langmuir 1995, 11:1688-82
    74. Zhang J, Uchida E, Suzuki K, Uyama Y, Ikada Y. Adhesive interaction in water between surfaces with vanous zeta potentials. J Colloid Interf Sci 1996, 178: 371-3.
    75. Michielsen S. The effect of grafted polymeric lubricant molecular weight on the frictional characteristics of nylon 6,6 fibers. J Appl Polym Sci 1999, 73: 129-36.
    76. Ratway RJ, Balik CM. Surface modification of chlorobutyl rubber by plasma polymerization. J Polym Sci, Polym Phys 1997, 35:1651-60
    77. Luo XL, He B, Li S, Zhong YP. Surface UV photo-grafting lubncation modification of medical polyurethane material. Polym Mater Sci Eng 2000, 16(2): 132-5. (Written in Chinese)
    78. Hu X. Tribological behavior of modified polyacetal against MC nylon without tubrication. Tribol Lett 1998, 5:313-7
    79. Sreedhar MK, Anirudhan TS. Preparation of an adsorbent by graft polymerization of acrylamide onto coconut husk for mercury(Ⅱ) removal from aqueous solution and chloralkali industry wastewater. J Appl Polym Sci 2000, 75:1261-9
    80. Kawai T, Saito K, Sugita K, Kawakami T, Kanno J, Katakai A, Seko N, Sugo T. Preparation of hydrophilic amidoxime fibers by cografting acrylonitrile and methacrylic acid from an optimized monomer composition. Radiat Phys Chem 2000, 59:405-11
    81. Lin W, Hsieh Y-L. Ionic absorption of polypropylene functionalized by surface grafting and reactions. J Polym Sci, Part A: Polym Chem 1997, 35:631-42
    82. Richey T, Iwata H, Oowaki H, Uchida E, Matsuda S, Ikada Y. Surface modification of polyethylene balloon catheters for local drug delivery. Biomatedals 2000, 21:1057-65
    83. Tretinnikov ON, Kato K, Ikada Y. In vitro hydroxyapatite deposition onto a film surface-grafted with organophosphate polymer. J Biomed Mater Res 1994, 28:1365-73
    84. Kato K, Eika Y, Ikada Y. Deposition of a hydroxyapatite thin layer onto a polymer surface carrying grafted phosphate polymer chains. J Biomed Mater Res 1996, 32: 687-91
    85. Yamamoto M, Kato K, Ikada Y. Ultrastructure of the interface between cultured osteoblasts and surface-modified polymer substrates. J Biomed Mater Res 1997, 37: 29-36
    86. Kamei S, Tomita N, Tamai S, Kato K, Ikada Y. Histologic and mechanical evaluation for bone bonding of polymer surfaces grafted with a phosphate-containing polymer. J Biomad Mater Res 1997, 37:384-93
    87. Tamada Y, Furuzono T, Taguchi T, Kishida A, Akashi M. Ca-adsorption and apatite deposition on silk fabrics modified with phosphate polymer chains. J Biomater Sci, Polym Ed 1999, 10:787-93
    88. Piletsky SA, Piletska EV, Chen B, Kerim K, Weston D, Barrett G, Lowe P, Turner APF. Chemical grafting of molecularly imprinted homopolymers to the surface of microplates. Application of artificial adrenergic receptor in enzyme-liked assay for b-agonists determination. Anal Chem 2000, 72:4381-5
    89. Sergeyava TA, Matuschewski H, Piletsky SA, Bandig J, Schedler U, Ulbricht M. Molecularly imprinted polymer membranes for substrate-selective solid-phase extraction from water by surface photo-grafting polymerization. J Chromatgr A 2001, 907:89-99
    90. Ikada Y. Surface modification of polymers for biomedical application. Biomaterials 1994, 15:725-36
    91. Ratner BD, Hoffman AS, Hanson SR, Harker LA, Whiffen JD. Blood compatibilitywater-content relationships for radiation-grafted hydrogels. J Polym Sci, Polym Symp 1979, 66:363-75
    92. Horbett TA. Protein adsorption to hydrogels. In: Peppas NA, editor. Hydrogels in medicine and pharmacy: fundamentals, vol. 1. Boca Raton, FL: CRC Press; 1979. p. 95-12
    93. Klee D, Ho"cker H. Polymers for biomedical applications: improvement of the interface compatibility. Adv Polym Sci 1999, 149:1-57
    94. Kishida A, Mishima K, Corretge E, Konishi H, Ikada Y. Interactions of poly(ethylene glycol)-grafted cellulose membranes with proteins and platelets. Biomaterials 1992, 13: 113-8
    95. Kato K, Sano S, Ikada Y. Protein adsorption onto ionic surfaces. Colloids Surf B Biointerf 1995, 4:221-30
    96. Kidoaki S, Nakayama Y, Matsuda T. Measurement of the interaction forces between proteins and iniferter-based graft polymerized surfaces with an atomic force microscope in aqueous media. Langmuir 2001, 17:1080-7
    97. Kim M, Sasaki M, Saito K, Sugita K, Sugo T. Protein adsorption characterization of a sulfonic-acid-group -containing nonwoven fabric. Biotechnol Prog 1998, 14:661-3
    98. Kishida A, Iwata H, Tamada Y, Ikada Y. Cell behaviour on polymer surfaces grafted with non-ionic and ionic monomers. Biomaterials 1991, 12:786-92
    99. Lee JH, Khang G, Lee JW, Lee HB. Platelet adhesion onto chargeable functional group gradient surfaces. J Biomed Mater Res 1998, 40:180-6
    100. Lee JH, Lee JW, Khang G, Lee HB. Interaction of cell on chargeable functional group gradient surfaces. Biomaterials 1997, 18:351-8
    101. Brauers A, Jung PK, Thissen H, Pfannschmidt O, Michaeli W, Hoecker H, Jakse G. Biocompatibility, cell adhesion, and degradation of surface-modified biodegradable polymers designed for the upper urinary tract. Tech Urol 1998, 4:214-20
    102. Altankov G, Thorn V, Groth T, Jankova K, Jonsson G, Ulbricht M. Modulating the biocompatibility of polymer surfaces with poly(athylene glycol): effect of fibronectin. J Biomed Mater Res 2000, 52:219-30
    103. Guan J, Gao C, Feng L, Sheng J. Surface photo-grafting of polyurethane with 2-hydroxyathyl acrylate for promotion of human endothelial cell adhesion and growth. J Biomater Sci, Polym Ed 2000, 11: 523-36
    104. Hsu SH, Chen WC. Improved cell adhesion by plasmainduced grafting of L-lactide onto polyurethane surface. Biomaterials 2000, 21: 359-67.
    105. Inoue H, Fujimoto K, Uyama Y, Ikada Y. Ex vivo and in vivo evaluation of the blood compatibility of surface modified polyurethane catheters. J Biomed Mater Res 1997, 35: 255-64
    106. Kato K, Sane S, Ikada Y. Protein adsorption onto ionic surfaces. Colloids Surf B Biointerf 1995, 4:221-30
    107. Ivanchenko MI, Kulik EA, Ikada Y. Serum protein adsorption and platelet adhesion to polyurethane grafted with methoxypoly(athylene glycol) methacrylate polymers. In: Brush JL, Horbett TA, editors. Protein at Interfaces Ⅱ. ACS Symp Ser, Washington, DC: ACS Press; 1995. p. 463-77
    108. Fujimoto K, Inoue H, Ikada Y. Protein adsorption and platelet adhesion onto polyurethane grafted with methoxypoly( ethylene glycol) methacrylate by plasma technique.J Biomed Mater Res 1993, 27:1559-67
    109. Wang P, Tan KL, Kang KL. Surface modification of poly(tetrafluoroethylene) films via grafting of poly(ethylene glycol) for reduction in protein adsorption. J Biomater Sci, Polym Ed 2000, 11: 169-86
    110. Lee JH, Jeong BJ, Lee HB. Plasma protein adsorption and platelet adhesion onto comb-like PEO gradient surfaces. J Biomed Mater Res 1997, 34:105-14
    111. Ishihara K, Lee Iwasaki Y, Ebihara S, Shindo Y, Nakabayashi N. Photoinduced graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on polyethylene membrane surface for obtaining blood cell adhesion resistance. Colloids Surf B Biointerf 2000, 18: 325-35
    112. Ishihara K, Nomura H, Mihara T, Kudta K, Iwasaki Y, Nakabayashi N. Why do phospholipid polymers reduce protein adsorption? J Biomed Mater Res 1998, 39:323-30
    113. Hsiue GH, Lee SD, Shang PC, Kao CY. Surface characterization and biological properties study of silicone rubber membrane grafted with phospholipid as biomaterial via plasma induced graft copolymerization. J Biomed Mater Res 1998, 42:134-47
    114. Ishihara K, Fukumoto K, Miyazaki H, Nakabayeshi N. Improvement of hemocompatibility on a cellulose dialysis membrane with a novel biomedical polymer having a phospholipid polar group. Artif Organs 1994, 18:559-64
    115. Furuzono T, Ishihara K, Nakabayashi N, Tamada Y. Chemical modification of silk fibroin with 2-methacryloyloxyethyl phosphorylcholine. Ⅱ. Graft-polymerization onto fabric through 2-methacryloyloxyethyl isocyanate and interaction between fabric and platelets. Biomaterials 2000, 21:327-33
    116. Kato S, Kishida A, Hanyu N, Maruyama I, Akashi M. Study of cellular responses to polymeric biomaterials using the differential display method. J Biomater Sci, Polym Ed 2000, 11:333-40
    117. Kishida A, Kato S, Ohmura K, Sugimura K, Akashi M. Evaluation of biological responses to polymeric biomatenals by RKPCR analysis. Ⅰ. Study of IL-1 beta mRNA expression. Biomaterials 1996, 17:1301-5
    118. Kato S, Akagi T, Kishida A, Sugimura K, Akashi M. Evaluation of biological responses to polymeric biomaterials by RT-PCR analysis. Ⅱ. Study of HSP 70 mRNA expression. J Biomater Sci, Polym Ed 1997, 8:809-14
    119. Kato S, Akagi T, Sugimura K, Kishida A, Akashi M. Evaluation of biological responses to polymeric biomatedals by RT-PCR analysis. Ⅲ. Study of HSP 70, 90 and 47 mRNA expression. Biomatedals 1998, 19:821-7
    120. Kato S, Akagi T, Sugimura K, Kishida A, Akashi M. Evaluation of biological responses to polymeric biomaterials by RT-PCR analysis. Ⅳ. Study of c-myc, c-fos and p53 mRNA expression. Biomaterials 2000, 21:521-7
    121. Kang ET, Neoh KG, Huang SW, Lira SL, Tan KL, Surface functionalized polyaniline films. J Phys Chem B 1997, 101:10744-50
    122. Ji LY, Kang ET, Neoh KG, Tan KL. Chemical modification of Si(100) surface by consecutive graft polymerization of 4-vinylaniline and aniline. React Funct Polym 2000, 46:145-56
    123. Ji LY, Kang ET, Neoh KG. Surface metallization of poly(tetrafluroethylene) films with a synthetic metal. In: Mittal KL, editor. Metallizecl plastics 7: fundamental and applied aspects. Utrecht: VSP; 2001, 97-115
    124. Kang ET, Kato K, Uyama Y, Ikada Y. Plasma treatment of polyaniline films: effect on the intrinsic oxidation states.J Mater Res 1996;11:1570-3] 或臭氧[Kang ET, Neeh KG, Zhang X, Tan KL, Liaw DJ. Surface modification of electroactive polymer films by ozone treatment. Surf Interf Anal 1996, 24: 51-8
    125. Kang ET, Neoh KG, Tan KL, Uyama Y, Morikawa N, Ikada Y. Surface modification of polyaniline films by graft copolymerization. Macromolecules 1992; 25: 1959-66: Loh FC, Tan KL, Kang ET, Kato K, Uyama Y, Ikada Y. XPS characterization of surface functionalized electroactive polymers. Surf Interf Anal 1996, 24: 597-604
    126. Xie HQ, Xiang Q. Surface-graft polymerization of doped polyaniline with hydrophilic monomers. Eur Polym J 2000, 36: 509-17
    127. Chen Y, Kang ET, Neoh KG, Wang P, Tan KL. Surface modification of polyaniline film by grafting of poly(ethylene glycol) for reduction in protein adsorption and platelet adhesion. Synth Met 2000, 110: 47-55
    128. Masuda T, Kotoura M, Tsuchihara K, Higashimura T. Glow discharge induced graft polymerization of acrylic acid onto poly(1-trimethylsilyl)-1-propyne) film. J Appl Polym Sci 1991. 43: 423-33
    129. Kang ET, Neoh KG, Tan KL, Liaw DJ. Surface photodegradation and modification of some substituted polyacetylene films. Polym Degrad Stab 1993, 40: 45-52
    130. Kang ET, Tan KL, Liaw DJ, Chiang HH. Surface modification and functionalization of electroactive polymer films via grafting of polyelectrolyte, polyampholyte and polymeric acids J Mater Sci 1996.31: 1295-301
    131. Chen Y, Kang ET, Neoh KG, Tan KL. Oxidative graft polymerization of aniline on modified Si(100) surface. Macromolec(?): 38 2001, 34: 3133-41
    132. Ji LY, Kang ET, Neoh KG, Tan KL. Surface modification of poly(tetrafluoroethylene) films by consecutive graft copolymenzation with 4-vinylaniline and aniline Macromolecules 1999, 32: 8183-8
    133. Chen Y, Kang ET. Neoh KG, Tan KL. Surface funchonalization of poly(tetrafluoroethylene) films via consecutive graft copolymerization with glycidyl methacrylate and aniline. J Phys Chem B 2000, 104 9171-8
    134. Zhang MC, Kang ET, Neoh KG, Tan KL. Consecutive graft copolymerization of glycidyl methacrylate and aniline on poly(tetrafluoroethylene) films Langmuir. 2000. 16 9666-72
    135. Wang T, Kang ET, Neoh KG, Tan KL, Cui CQ, Chakravorty KK, Lim TB Modification of substrate surface for BGA overmold adhesion enhancement by graft copolymerization Mater Res Bull 1996, 31: 1361-73
    136 Liu YX, Kang ET, Neoh KG, Zhang JF, Cui CQ, Lim TB. Surface graft copolymerization enhanced adhesion of an epoxy-based printed circuit board substrate (FR-4w) to copper. IEEE Trans Adv Pack 1999, 22: 214-20
    137. Zhang Y, Tan KL, Liaw DJ, Kang ET. Thermal imidization of poly(amic acid)precursors on glycidyl methacrylate (GMA) graft-polymerized Si(100) surface Thin Solid Films 2000; 374: 70-9: Yu ZJ, Kang ET, Neoh KG, Cui CQ, Lira TB. Grafting of epoxy resin on surface-modified poly(tetrafluoroethylene) film. J Adhes 2000, 73: 417-39
    138. Sacher E. Fluoropolymer metallization for microelectronic applications. Prog Surf Sci 1994; 47: 273-300; Maier G. Low dielectric constant polymers for microelectronics. Prog Polym Sci 2001, 26: 3-65
    139. Zhang Y, Tan KL, Liaw DJ Kang ET. Thermal imidization of poly(amic acid) precursors on glycidyl methacrylate (GMA) graft-polymerizad Si(100) surface. Thin Solid Films 2000, 374:70-9
    140. Buchwalter LP. Adhesion of polyimides to metal and ceramics surfaces-an overview. J Adhes Sci Technol 1990, 4:697-721
    141. Linde HG, Gleason RT. Thermal stability of the silica-aminopropylsilaneolyimide interface. J Polym Sci, Polym Chem Ed 1984, 22:3043-62
    142. Kong DI, Park CE, Hong ST, Yang HC, Kim KT. Effects of coupling agent thickness on residual stress in polyimide/gamma-APS/silicon wafer joints. J Adhes Sci Technol 1999, 13:805-18
    143. Zhang JF, Cui CQ, Lim TB, Kang ET, Neoh KG. Adhesion improvement of poly(tetrafluoroethylene)/metal interface by graft copolymerization. Surf Interf Anal 1999, 28:235-9
    144. Zhang JF, Cui CQ, Lim TB, Kang ET, Neoh KG. Modification of poly(tetrafluoroethyl-ene) and gold surfaces by thermal graft copolymerization for adhesion improvement. J Adhes Sci Technol 2000, 14:507-27
    145. Wu JZ, Kang ET, Neoh KG, Cui CQ, Lim TB. Modification of poly(tetrafluoroethylene) and copper foil surfaces by graft polymerization for adhesion improvement. Int J Adhes Adhes 2000, 20:467-76
    146. Zhang MC, Kang ET, Neoh KG. Tan KL. Surface modification of aluminum foil and PTFE film by graft polymerization for adhesion enhancement. Colloids Surf A 2001, 176:139-50
    147. Avakian P, Starkweather HW. Dielectric properties of fluoropolymers. In: Scheirs J, editor. Modern fluoropolymers: high performance polymers for diverse applications. Chichester: Wiley; 1997. Chapter 3
    148. Jimbo T, Higa M, Minoura N, Tanioka A. Surface characterization of poly(acrylonitrile) membranes graftpolymerized with ionic monomer as revealed by zpotential. Macromolecules 1998, 31:1277-84
    149. Guan J, Gao C, Feng L, Shen J. Functionalizing of polyurethane surfaces by photografting with hydrophilic monomers. J Appl Polym Sci 2000, 77:2505-12
    150. Lee S-D, Hsiue G-H, Kao C-Y. Preparation and characterization of a homobifunctional silicone rubber membrane grafted with acrylic acid via plasma-induced graft copolymerization. J Polym Sci, Part A: Polym Chem 2000, 34:141-8
    151. Kang ET, Ma ZH, Tan KL, Zhu BR, Uyama Y, Ikada Y. Surface modification and functionalization of electroactive polymer films. Polym Adv Technol 1999, 10:421-8
    152. Lei J, Gao J, Zhou R, Zhang B, Wang J. Photografting of acrylic acid on high density polyethylene powder in vapor phase. Polym Int 2000, 49:1492-5
    153. Sodergard A. Preparation of poly(1-caprolactone)-co-poly (acrylic acid) by radiation-induced grafting. J Polym Sci, Part A: Polym Chem 1998, 36:1805-12
    154. Yuhai G, Jianchun Z, Meiwu S. Surface graft copolymerization of acrylic acid onto corona-treated poly(ethylene terepnthalate) fabric. J Appl Polym Sci 1999, 73:1161-4
    155. Kulik EA, Ivanchenko MI, Kato K. Sano S, Ikada Y. Peroxide generation and decomposition on polymer surface. J Polym Sci, Part A: Polym Chem 1995, 33:323-30
    156. Chun HJ, Cho SM, Lee YM, Lee HK, Suh TS, Shinn KS. Graft copolymerization of mixtures of acrylic acid and aonylamide onto polypropylene film. J Appl Polym Sci 1999, 72:251-6
    157. Eckert AW, Gro'be D, Rothe U. Surface-modification of polystyrene-microtitre plates via grafting of glycidylmethacrylate and coating of poly-glycidylmethacrylate. Biomaterials 2000, 21:441-7
    158. Yu JJ, Ryu SH. Ultraviolet-irradiated photografting of glycidyl methacrylate onto styrene-butadiene rubber. J Appl Polym Sci 1999, 73: 1733-9.
    159. Inagaki N, Tasaka S, Goto Y. Surface modification of poly(tetrafluoroethylene) film by plasma graft polymerization of sodium vinylsulfonate. J Appl Polym Sci 1997, 66: 77-84.
    160. Liu YX, Kang ET, Neoh KG, Tan KL, Huang CC, Liaw DJ. Lamination of polytetrafluoroethylene films via surface thermal graft copolymedzation with ionic and zwitterionic monomers. J Appl Polym Sci 1999, 74: 816-24.
    161. Wu JZ, Kang ET, Neoh KG, Wu P-L, Liaw DJ. Surface modification of low-density polyethylene films by UV-induced graft copolymerization with a fluorescent monomer. J Appl Polym Sci 2001, 80: 1526-34.
    162. Sano S, Kato K, Ikada Y. Introduction of functional groups onto the surface of polyethylene for protein immobilization. Biomateriala 19930 14:817-22
    163. Wirsen A, Ohrlander M, Albertsson AC. Bioactive heparin surfaces from derivatization of polyecrylamide-grafted LLDPE. Biomaterials 1996, 17: 1881-9.
    164. Kato K, Ikada Y. Immobilization of DNA onto a polymer support and its potentiality as immunoadsorbent. Biotechnol Bioengng 1996, 51: 581-90.
    165. Deng JP, Yang WT, Ra'nby B. Surface photografting polymerization of vinyl acetate (VAc), maleic anhydride, and their charge transfer complex. Ⅱ. VAc(2). J Appl Polym Sci 2000, 77: 1522-31.
    166. Ito Y, Ochida Y, Park YS. Imanishi Y. DR-sensitive grafting by contormational change of a polypeptide brush grafted onto a porous polymer membrane. J Am Chem Soc 1997, 119: 1619-23.
    167. Jaworek T, Neher D, Wegner G, Wieringa RH, Schouten AJ. Electromechanical properties of an ultrathin layer of directionally aligned helical polypeptides Science 1998, 279: 57-60.
    168. Peng T, Cheng Y-L. PNIPAAm and PMAA co-grafted porous PE membranes: living radical co-grafting mechanism and multi-stimuli responsive permeability. Polymer 2001, 42: 2091-100.
    169.察东梅,孙小梅,丁志刚.中南民族学院学报,2001,20(3):70-73
    170.王勤菊.杨云峰.山西师范大学学报.2001,15(4):49-51
    171.龙春梅,蒋文伟.应用化工.2005.34(2):128-130
    172. Tomoyuki Tada, Yasuhiro Ishida, Kazuhiko Saigo. J. Org. Chem. 2006, 71: 1633-1639
    173. Chao Gao, Yi Zheng Jin, Hao Kong, Raymond L. D. Whithy, Steve F. A. Acquah, G. Y. Chen, Huihong Qian, Achim Hartschuh, S. R. P. Silva, Simon Henley, Peter Fearon, Harold W. Kroto, and David R. M. Walton. J. Phys. Chem. B. 2005, 109:11925-11932
    174. Youyong Xu, Chao Gao, Hao Kong, Deyue Yan, Yi Zheng Jin, and Paul C. P. Watt. Macromolecules 2004, 37:8846-8853
    175. Guang Xin Chen, Hun Sik Kim, Byung Hyun Park, and Jin-San Yoon. J. Phys. Chem. B. 2005,109:22237-22243
    176. Timonthy J. Johnson, Robert S. Disselkamp, Yin-Fong Su, Robert J. Fellows, Michael L. Alexander, and Crystal J. Driver. J. Phys. Chem. A. 2003, 107:6183-6190
    177.石宁,高性能环氧树脂的开发和应用趋势[J].热固性树脂,2000,15(2):30-33
    178.宜英男,蹇锡高,徐志勇,左莉.含氮杂环结构新型环氧树脂合成与表征[J].大连理工学报,2001,41(3):292-295
    179.陈平,韩冰,张春华,高巨龙.固体火箭发动机壳体用环氧树脂基体的研究进展[J].2000,1(3):54-56
    180.熊涛,王锦艳,兰建武,丁艳,蹇锡高.含有二氮杂萘酮结构新型环氧树脂的合成[J].石油化工,2003 32(5):426-429
    181. Learning Spa. Improvements in or relating to Epoxy Resin Composition[P], USP 963507, 1961
    182.日座操,山崎肇,松元刚,染谷佳昭.热硬化性樹脂组成物[P].JP6333414,1988
    183. Watanabe et al. Composition of tetraglycidyl, Triglycidyl and Diglycidyl Epoxy Resin[P]. USP 5317068. 1994
    184. Dodiuk. Triglycidyl Ether/Tetraglycidyl Ether/Alkadiene Rubber/Polyalkyene Polyamine Formulation[P]. USP 4841010,1989
    185.王小华,刘润山,李立,范和平.聚酰亚胺改性环氧树脂研究进展[J].热固性树脂,2004,19(2):34-39
    186.关长参,张恩天,张斌.J-27耐高温环氧胶粘剂的研究[J].化学与粘合,1993,4:193-198
    187.关长参,张斌.双马来酰亚胺改性无溶剂环氧胶粘剂的研究[J].中国胶粘剂,1993,2(4):5-8
    188.王超,张斌,李奇力,关长参.耐高温环氧树脂胶粘剂的研制[J].中国胶粘剂,1999,8(3):12-13
    189.白永平,张志谦,顾辉,魏月贞.马来酰亚胺改性E-51环氧树脂的研究[J].宇航材料工艺,1996,4:12-16
    190.赵传石,秦传香,张宏波.聚酰胺酸改性环氧胶粘剂的研究[J].中国胶粘剂,2000,9(1):1-4
    191.沈敏敏,哈成勇.脂环族环氧树脂的合成[J].广州化工.2000,25(1):50-57
    192.李丽娟,沃善康,张忠武,董金伟,于浩.脂环族环氧化物的合成与应用(1)脂环族环氧树脂性能及其固化机理[J].热固性树脂,1998,4:30-36
    193.于浩,沃善康,李丽娟,张忠武,董金伟.脂环族环氧化物的合成应用(四)二氧化双环戊二烯[J].热固性树脂,2000,15(1):36-40
    194.储九荣.环氧树脂高性能化的方法与机理[J].化工新型材料,10:16-19
    195.王德中.环氧树脂生产与应用[J].北京:化学工业出版社,2000
    196. Kuboki et al. Modified Epoxy Resin, Epoxy Resin Composition and Cured Product Thereof[P]. USP 006043333A, 2000
    197.谢丹,阮湘泉.萘系环氧树脂的研究与开发[J].热固性树脂,1998,2:34-38
    198.徐海全,郑嘉明,阮湘泉等.新型萘基环氧树脂的合成与表征[J].热固性树脂,1999,1:8-11
    199.郭艳宏.环氧树脂的高性能化[J].化学工程师,2003,97(4):59-60
    200.田中良平.高耐热性优特殊树脂[J] Japan Energy&Technology Intelligence,1991, 39(8): 58-59
    201.张春铃,那辉,刘晨光,葛震宇.含有联苯结构二缩水甘油醚的合成与表征[J].热固性树脂,2002,17(1):1-3
    202.张春铃,那辉,牟建新,于文志,付铁柱,仉新功,李子传,吴忠文.含联苯结构的环氧树脂固化性能的研究[J].高等学校化学学报,2004,25(9):1756-1758
    203.宣宜宁,刘伟区,陈精华.含有联萘结构的新型环氧树脂的合成与性能研究[J].广州化学,2003,28(4):1-5
    204. Schlaudt L. M. Toughenable Epoxy Resin for Elevated Temperature Applications[A]. In: Zakrzew ski G A, ed The 34th International SAMPE Symposinm (May8-11)[C]. Covina Calif. SAMPE, 1989, 917-920
    205.张炜,申蕾,王新庆等.含(艹勿)结构环氧树脂的合成与性能[J].复合材料学报,2003,20(4):81-97
    206. Ridph F. Sellers, Middlebush, N.J. Tetraglycidyl Ethers of Tris (hydroxyl. benzyl) phenol[P]. USP 3285938, 1966
    207.中原武,藤本俊.N,N,N′,N′-[P].JP5315326,1978
    208.佐藤胜男,佐藤文孝.N,N,N′,N′-.及制造方法[P].JP5622771,1981
    209. Soo-Jin Park, Fan-Long Jin, Jae-Rock Lee. Thermal and mechanical properties of tetrafunctional epoxy resin toughened with epoxidized soybean oil[J]. Materials Science and Engineering A, 2004, 374:109-114
    210.吴毅为,汪毓海,王海燕,高红核.4,4′—二氨基二苯基醚四缩水甘油胺的合成[J].首都师范大学学报,1997,17(3):73-75
    211. Dobinson et al. N-glycidyl compound[P]. USP5362849, 1994
    212.铃木五郎.耐热性树脂开发应用[J].Japan Energy&Technology Intelligence,1991,39(8):55-57
    213.陈平,王德中,环氧树脂及其应用.北京:化学工业出版社,2004
    214.陈晓欢,李峰,梁世飘,王海燕.固化体系对环氧树脂耐高温性能的影响[J].中国胶粘剂,2005,14(3):14-17
    215.满吉特.含锌环氧树脂的合成[J].化学工程师,1996,52:52-55
    216. Nuanphun Chantarasiri, Thawatchai Tuntulain, Pan Tongraung, Ratana Seangpraserkit-Magee, Walee Wannarong. New metal-containing epoxy polymers from diglycidyl ether of bisphenol A and tetradentate Schiff base metal complexes[J]. European Polymer Journal, 2000, 36:695-702
    217. Nuanphun Chantarasiri, Nongnuch Sutivisedsek, Chulapom Pouyuan. Thermally stable metal-containing epoxy polymers from an epoxy resin-Schiff base metal complex-maleic anhydride system[J]. European Polymer Journal, 2001, 37:2031-2038
    218. Livant, P.; Webb, T. R.; Xu, W. Z. J. Org. Chem. 1997, 62, 737-742
    219. Sumitomo Chem. Co. Ltd.. Jpn Patent 80,139,383, 1980
    220. Harada, H.; Usui, M. Jpn. Patnet JP 62,103,085, 1987
    221. Harada, H.; Usui, M. Jpn. Patent 62.111,988, 1987
    222.陈少锋,谢建良,邓龙江.DSC法研究聚异氰酸酯/环氧树脂胶粘剂的固化反应动力学及固化工艺[J].四川化工,2006,2(9):1-4
    223.徐刚.用DSC法研究环氧树脂/环氧封端酚酞聚芳醚腈的固化特性[J].中国胶粘剂, 1999,9(3):24-26
    224.何劲.陈连喜.刘全文.田华.间甲苯胺改性双氰胺固化环氧树脂的DSC研究[J].武汉理工大学学报.2006.128(6):28-30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700