聚二甲基硅氧烷/二氧化硅复合网络及环氧树脂/聚二甲基硅氧烷互穿网络的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
互穿聚合物网络(Interpenetrating Polymer Network,IPN)是由两种或两种以上聚合物通过网络的互相贯穿缠结而形成的一类独特的聚合物共混物或聚合物合金。网络之间的互穿为材料带来许多独特性能,如“强迫互容”和协同效应等,使得IPN在增韧树脂、增强橡胶、阻尼材料等多方面得到广泛应用。
     环氧树脂作为一种工业广泛使用的材料,它具有许多优异的性能,但质脆、耐冲击性较差和容易开裂的弱点限制了环氧树脂的应用。用聚二甲基硅氧烷(PDMS)改性环氧树脂既能降低环氧树脂的内应力,又能保持环氧树脂体系原有特性并提高其热稳定性和阻燃能力,因此PDMS用于改性环氧树脂是较好的选择。但由于PDMS与环氧树脂热力学不相容,故PDMS增韧环氧树脂仅限于官能团端基反应、嵌段及接枝改性等方法,这些方法在增韧环氧树脂的同时常会带来环氧树脂某些性能如模量的大幅下降。故合成环氧树脂/PDMS IPN成为一个研究热点。
     本文采用改性二氧化硅作为增容剂,设计了一种半分步、半同步的方法合成(双酚A型环氧树脂/环氧改性二氧化硅)/PDMS互穿网络[(DGEBA/e-silica)/PDMS IPN]。在制备过程中首先在二氧化硅表面接枝环氧基团,然后将经过适当预聚的PDMS与DGEBA、e-silica混合于三氯甲烷中。在此过程中,e-silica充当增容剂:一方面,e-silica表面的环氧基团能参与DGEBA固化反应;另一方面,二氧化硅表面的羟基与PDMS之间又发生氢键作用。依靠e-silica的增容,相分离被有效抑制。因氢键生成与作用时间有关,故在PDMS适当预聚后再与DGEBA及e-silica体系混合进行同步反应,这是该方法采用半分步、半同步的原因。在接下来的反应中,PDMS与DGEBA的反应同步但独立进行。合成的(DGEBA/m-silica)/PDMS IPN用示差扫描量热法(DSC)、透射电镜(TEM)及扫描电镜(SEM)等进行表征。DSC表征发现IPN存在三个玻璃化转变,其中两个玻璃化转变向中间靠拢并变宽,第三个玻璃化温度表明分子水平的互穿。TEM研究发现二氧化硅在IPN呈纳米水平分散,试样断面的SEM照片表明DGEBA由脆性断裂转变为IPN的韧性断裂。互穿网络拉伸强度随PDMS及二氧化硅含量的增加出现一个极大值,该值大于纯DGEBA的拉伸强度。冲击强度及断裂伸长率则随PDMS含量的增加而增加。IPN耐热性能随PDMS含量的增加而提高,热稳定性优于纯DGEBA。
     本文设计了共同溶剂法同步合成了最小相畴尺寸为5纳米的DGEBA/PDMS互穿网络。共同溶剂的使用保证了DGEBA与PDMS处于单体阶段的相容性。保证DGEBA与PDMS在凝胶前固化速率一致,就能够获得接近分子水平的互穿。与一般共混法制备的DGEBA/PDMS共混物相比,IPN中相畴显著变小,动态储能模量下降较少。DSC研究发现IPN呈现两个明显相互靠拢的玻璃化温度区。IPN扫描断面均较光滑,看不到明显的两相结构及界面。扫描电镜结合X射线能谱仪(SEM-EDX)结果发现IPN断面20μm区域中与其中任意局部约1μm区域中的元素分布相同。原子力显微镜(AFM)研究发现DGEBA/PDMS IPN的相畴尺寸为5~10 nm。
     本文提出了复合网络法用乙烯基二氧化硅(vi-silica)对PDMS进行增强的新方法。先通过干法用乙烯基三乙氧基硅烷对二氧化硅进行表面处理,得到的vi-silica能够参与硅氢化反应,从而在二氧化硅与PDMS之间形成化学键,形成无机-有机复合网络。在不同气氛及不同乙烯基与氢基摩尔比情况下测得的凝胶含量均证实vi-silica参与了硅氢化作用。正是由于无机有机复合网络的生成使二氧化硅填充PDMS体系具有良好的机械性能。
     针对二氧化硅填充PDMS体系的凝胶时间及性能,本文研究了二氧化硅预处理温度对改性的影响。当二氧化硅用六甲基二硅胺烷及六甲基环三硅氧烷(D3)处理时,发现二氧化硅预处理温度越高,二氧化硅填充PDMS体系凝胶时间越长,但机械性能并随之下降;预处理温度越低,二氧化硅填充体系凝胶时间越短,机械性能增强。
     本论文通过对DGEBA、PDMS、二氧化硅各种组合体系的系统研究,发现了DGEBA/PDMS互穿网络、增强PDMS的制备新方法,提出了上述体系增强、增韧的新机理,对实际生产具有一定的指导意义。
An interpenetrating polymer network (IPN) is a composition of two or more chemically distinct polymer networks held together exclusively by their permanent mutual entanglements. Three-dimensional cross-linked structures that contain entangled polymeric segments generate Synergistic effects induced by forced compatibility of the components and thus can be used for toughening, reinforcing, and damping, etc.
     As one of the most important engineering polymeric materials epoxy resin possesses excellent properties. However, the low crack growth resistance restricts application. Polydimethylsiloxane (PDMS) was generally selected as a modifier to improve the thermal stability, hydrophobicity, and flexibility at low temperatures of epoxy resin. Unfortunately, PDMS is immiscible with epoxy resins. In order to improve the miscibility of epoxy and PDMS, some approaches have been tried including functional group capping, block inserting, as well as grafting. However, the above approaches have some disadvantage, especially reducing the modulus of epoxy resin. It is interesting to notice that the IPN technique constituted an effective method to inhibit the decreasing of modulus.
     A novel semi-simultaneous, semi-sequential methodology wasdesigned to prepare a (diglycidylether of bisphenol A / epoxy modifiedsilica)/ PDMS IPN [(DGEBA/e-silica)/PDMS IPN] in this paper. Firstcrude silica was modified using silsisquioxane to introduce epoxy groupsonto the surface of silica. The vinyl-terminated PDMS (vinyl-DPMS) andhydrogen-containing PDMS(H-PDMS) were pre-cured throughhydrosilylation to some degree of crosslinking, into which DGEBA ande-silica were subsequently introduced as a solution in trichloromethane.The e-silica played a role as a compatibilizer: it co-cured with DGEBA andgenerated H-bonding with the oxygen atoms on the PDMS, and thus thecuring-induced phase separation was inhibited. Due to the formation ofH-bonding depending on time, the mixing of PDMS system with DGEBAsystem was carried out after an adequate pre-curing, consequently themethod was denoted as "semi-simultaneous, semi-sequential". In thesubsequent reactions, the curing reactions of DGEBA and the PDMSoccurred independently and simultaneously, an IPN structure was generated.The IPN sample was characterized using differential scanning calorimetry(DSC), (Transmission electron microscopy) TEM, and scanning electron microscopy (SEM). DSC indicated three glass transitions on the spectrum, with two for the parent polymers displaced toward the center of the spectrum, the third one indicating the intermolecular interactions between the components. TEM indicated that silica was dispersed in matrix in nanometer level. SEM showed that the interpenetrating of PDMS with DGEBA in form of networks caused a brittle-ductile transition of the latter resulting in better ductility and toughness. The tensile strength of the IPN exhibited a maximum as the fraction of PDMS network and e-silica increased. The elongations at break and impact strength kept increasing with increasing content of PDMS. Thermal stability increased with increasing content of PDMS, and a better thermal stability was obtained than the neat DGEBA.
     DGEBA/PDMS IPN with domains of about 5 nm diameter was prepared via a simultaneous approach in a common solvent of DGEBA and PDMS. The common solvent supplied the initial miscibility between DGEBA and PDMS. The comparable gelling rates of the two systems before gelation are critical to prepare IPN near molecular level. Compared with plain DGEBA/PDMS blends, the domains size of the IPN is obvious smaller and thus fewer reduction in storage modulus. DSC indicated that broadened and displaced glass transitions for the segments of DGEBA resin which revealed a three-dimensional interlock structure of the two components. SEM indicated that the surface of IPN was smooth and no obvious phase boundary. Scanning electron microscopy-Energy dispersive X-ray (SEM-EDX) showed that the dispersion of elements is not different between domains 20μm and 1μm. Atomic force microscopy (AFM) conformed that the domain size in the IPN ranged from 5-10 nm.
     A novel methodology of reinforcement of PDMS through formation of inorganic-organic hybrid network was proposed. Silica was modified with vinyltriethoxysilane through a dry method. The vinyl-modified silica (vi-silica) containing vinyl groups was employed to reinforce PDMS by participating in the hydrosilation reaction. An inorganic-organic hybrid network was formed to reinforce PDMS due to chemical bonding between vi-silica and PDMS. The gel contents resulting from various vinyl/hydrogen mole ratios and different atmospheres confirmed that vi-silica participated in the hydrosilation. The inorganic-organic hybrid network provided better mechanical properties.
     The influence of pre-treatment temperature on gel time and mechanical properties of modified silica (m-silica) filled PDMS system was studied. Silica was modified with hexamethyldisilazane and hexamethyltrisiloxane (D3) via dry method. When the pre-treatment temperature was increased, the gel time of m-silica filled PDMS system increased but mechanical properties decreased. However, when the pre-treatment temperature was too low, the gel time decreased and the mechanical properties increase. For this reason the pre-treatment should be carried out at an optimal temperature.
     In summary, the reinforcement and toughening approaches and mechanisms for various networks of DGEBA/PDMS/silica were explored in this dissertation. The discoveries made in this work will be valuable for the further research and practical production.
引文
[1] Gilman H, Atwell W H. Reaction of octaphenylcyclotetrasilane with mercuric acetate [J].J. Org. Chem., 1963, 28(10): 2905-2906
    [2] 李光亮.有机硅高分子化学[M].北京:科学出版社,1998.1-4
    [3] Schoeley P, Lisech G, Sczepanski C, Michel U. Adhesive RTV silicone rubber compounds [P]. United States Patent, 5969057. 1999-10-19
    [4] Kollmann G, Pfeffer H R, Puppe E. M. Room-temperature vulcanizing condensation-crosslinkind silicone rubbers [P]. United States Patent, 6172150 B1.2001-01-9
    [5] 谭必恩,赵华,潘慧铭.加成型硅橡胶铂催化剂的制备及其活性研究[J].中国胶粘剂,2001,10(4):1-4
    [6] 万有志,杨利民,张敬畅.Cu20/TMEDA催化硅氢加成合成氰基硅烷[J].北京化工大学学报,2004,31(1):60
    [7] 尹志平.铂催化硅氢加成反应硅橡胶[J].弹性体,2003,13(2):52
    [8] Amako M, Schinkel J, Freiburger L, Brook M A. Siloxane-supported organometallic compounds and their catalytic activities for the hydrosilylation of vinylsilanes and diense [J]. Dalton Trans., 2005,74-81
    [9] Takahashi T, Bao F Y, Gao G H, Ogasawara M. Titanocenne-catalyzed rcgioselective syn-hydrosilation of alkynes [J], Org. Lett., 2003, 5(19) 3479
    [10] 林满辉,刘东灿,黄素娟.加成型硅橡胶防中毒问题的研究[J].有机硅材料,2001,15(1):24-26
    [11] 葛建芳,贾德民.加成型硅橡胶硫化过程中催化剂的活性抑制和防失效研究[J].绝缘材料,2004,3:36-38
    [12] 尹志平.铂催化硅氢加成反应硅橡胶[J].弹性体,2003,13(2):52
    [13] Cochrane H,Lin C S.气相法白炭黑的性质对硅橡胶的加工、硫化以及增强性能的影响[J].有机硅材料及应用,1994,5:21-26
    [14] Xu C H, Feng S Y. Investigation of polysiloxanes containing phenylethynyl groups as cross-linkers of heat-curable silicone rubber [J]. J. Appl. Polym. Sci., 2000, 76:1554-1557
    [15] Zhao S, Feng S. Hydrogen-containing silicone resin as the crosslinking agent of heat-curable silicone rubber[J]. J. Appl. Polym. Sci., 2003, 88:3066-3069
    [16] Roth L E , Vall E M., Villar M A. Bulk hydrosilylation reaction of poly(dimethylsiloxane)chains catalyzed by a platinum salt:effect of the initial concentration of reactive groups on the final extent of reaction[J]. J. Polym. Sci.Pol. Chem.2003, 41:1099-1106
    [17] Pinho R O, Radovanovic E, Torriani I L, Yoshida I V P, Hybrid materials derived from divinylbenzene and cyclic siloxane [J]. Eur. Polym. J., 2004, 40:615
    [18] Boutevin B, Francine G P, Amédée R. Synthesis of photocrosslinkable fluorinated polydimethylsiloxanes: direct introduction of acrylic pendant groups via hydrosilylation[J].J. Polym. Sci. Pol. Chem., 2000, 38:3722
    [19] Henkensmeier D, Abele B C, Candussio A, Thiem J. Synthesis and characterization of terminal carbohydrate modified poly (dimethylsiloxane) s [J]. Macromol.Chem.Phys.,2004, 205:1851
    [20] Zhang Z C, Sherlock D, West R, West R. Cross-linked network polymer electrolytes based on a polysiloxane backbone with oligo(oxyethylene) side chains: synthesis and conductivity[J]. Macromolecules, 2003, 36:9176
    [21] Wagner R, Richter L, Wu Y, Weiland B, Weissmüller J, Reiners J, Hengge E, Kleewein A. Silicone-modified carbohydrate surfactants VI: synthesis of carbosilane, silane, polysilane and non-permethylated siloxane derivatives; the wetting behaviour of epoxy-modified precursor liquids on non-polar surfaces [J]. Appl. Organomet. Chem., 1998, 12:47
    [22] Dworak D P, Soucek M D, Synthesis of cycloaliphatic substituted silane monomers and polysiioxanes for photocuring [J]. Macromolecules, 2004, 37:9404
    [23] Mitchell T D, Kerr S R, Davis M W. Laminates containig addition curing silicone adhesive compositions[P]..United States Patent, 6004679A. 1999-12-21
    [24] Stein J, Wood C M D, Youssef E D. Curable silicon adhesive compositions[P]. United States Patent, 6447922 B1. 2002-9-10
    [25] Tyrone D, Mitchell, Mark W, Davis, Stuart R, Kerr, Ⅲ, Addition-curable silicone adhesive compositions[P]. United States Patent, 5164461, 1992-11-17
    [26] Bohin, Fabrice, Joubert, Gerare, Loubet, Olivier, Pouchelon, Alain, Lorennzetti, Dominique. Cross-linkabe adhesive silicone composition and use of said composition for bonding various substrates [P].United States Patent, 6562180. 2003-05-13
    [27] Mitchell T D, Davis M W, Kerr S R. Addition-curable silicone adhesive compositions[P]. United States Patent[P]. 5164461. 1992-11-17
    [28] Stein J, Wood C M D, Youssef E D. Curable silicone adhesive compositions[P]. United States Patent, 5447922 B1. 2002-09-10
    [29] Arai M, Jnoue Y. Adhesive compositions [P]. Adhesive compositions[P]. United States Patent, 5276086. 1994-1-4
    [30] Barthel H, Altenbuchner A, Schuster M, Heinemann M, Eismann L, Rothenaicher. Crosslinkable organopolysiloxane materials [P]. United States Patent, 6348557 B1,2002-2-19
    [31] Hajji P, David L, Gerard J F, Pascault J P, Vigier G, Synthesis, structure, and morphology of polymer-silica hybrid nanocomposites based on hydroxyethyl methacrylate [J]. J. Polym. Sci. Pol. Phys., 1999, 37:3172-3187
    [32] Fujiwara M, Kojima K, Tanaka Y, Nomura R, A simple preparation method of epcxy resin/silica nanocomposite for T_g loss material [J]. J. Mater. Chem., 2004, 14:1195-120
    [33] Polmanteer K E, Lentz C W. Reniforcement studies-effect of silica structure on properties and crosslink density [J]. Rubber Chem. Technol., 1975,48:795-805
    [34] Sertchook H, Elimelech H, Avnir D.Composite particles of silica/poly(dimethylsiloxane)[J].Chem. Mater.,2005,17(18):4711-4716
    [35] Vondrácek P, Schatz M. NH_3-modified swelling of silica-filled silicone rubber [J].J. Appl. Polym. Sci., 1979, 23:2681-2694
    [36] Okel T A, Waddell W H. Effect of precipitated silica physical properties of silicone rubber performance [J]. Rubber Chem. Technol., 1995,68:59-72
    [37] Waddell W H, Evans L R, Goralski E G, Snodgrass L J. Mechanism by which precipitated silica improves brass-coated wire-to-natural rubber adhision €
    € 1976,49:703-774
    [39] Wolff S.Filler-elastomer interaction.Ⅶ: Study on bond rubber [J].Rubber Chem.and Technol., 1993, 66(1):77.
    [40] Kolthoff I M, Gutmacher Rg. Sorption of GR-S type of polymer on carbon black Ⅲ. Sorption by commercial blacks[J]. J.Phys. Chem., 1952,56:740-745
    [41] Cohen-Addad J P, Huchot P, Jost P. Hydroxyl or methyl termizated poly(dimethylsiloxane)chains:kinetics of adsorption on silica in mechnical mixtures, polymer[J].1989,30:143-150
    [42] Sung-Seen C. Influence of storgae time and terperature and silane coupling agent on bound rubber formation in filled styrene-butadiene rubber compouds[J]. Polym.Test.,2002,21:201-208
    [43] Aranguren E M, Mora E, Degroot, Macosko C W. Effect of reinforcing fillers on the rhelogy of polymers melts[J]. J. Rheol.,1992,36(6): 1165-1183
    [44] Cochrane H, Lin S S. The influence of fumed silica properties on the processing, curing, and reinforement properties of silicone rubber[J]. Rubb. Chem. Technol., 1993,66:48-59
    [45] Leblanc J L, Hardy P. Evolution of bound rubber during the storage of uncured compouds[J]., Kautsch Gummi Kunstst, 1991,44:1110-1124
    [46] Leblanc J L, Stagliati B. A molecular explanation for the, origin of bound rubber in carbon black filled rubber compunds, J. Appl. Polym. Sci., 1997,63:959-970
    [47] Meissner B. Theory of bound rubber[J]. Rubber. Chem. Technol. 1975,48(5):810-819
    [48] 洪立福,金鑫.超细二氧化硅的制备与改性[J].北京化工大学学报,2004,31(5):69
    [49] 汪齐方,李春忠,王志庭,等.六甲基二硅胺烷对气相法二氧化硅的表面改性[J],华东理工大学学报,2001,27(6):626
    [50] Suzuki K, Siddiqui S, Chappell C, Siddiqui J A, Ottenbrite R M. Modification of porous silica particles with poly(acrylic acid)[J]. Polym. Advan. Technol., 2000, 11:92-97
    [51] Mathew G, Huh M Y, Rhee J M, Lee M H, Nah C. Improvement of properties of silica-filled styrene-butadiene rubber composites through plasma surface modification of silica [J]. Polym. Advan. Technol., 2004,15: 400-408.
    [52] Changwoon Nah, Mongyong Huh, John M Rhee, Taeho Yoon, Plasma surface modification of silica and its effect on properties of styrene-butadiene rubber compound[J]. Polym Int., 2002,51:510-518
    [53] Jesionowski T, Krysztafkiewicz A. Influence of silane coupling agents on surface properties of precipitated silicas [J]. Appl. Surf. Sci., 2001, 172:18-32
    [54] Jesionowski T, Krysztafkiewicz A. Comparison of the techniques used to modify amorphous hydrated silicas[J]. J. Non-Cryst Solids, 2000, 277:45-47
    [55] Jesionowski T, Krysztafkiewicz A. Influence of silane coupling agents on surface properties of precipitated silicas[J]. Appl. Surf. Sci., 2001, 172:18-32
    [56] Krysztafkiewicz A, Jesionowski T, Binkowski S. Precipitated silicas modified with 3-aminopropyltriethoxysilane [J]. Colloids. Surfaces. A., 2000, 173:73-84
    [57] Belyakova L A, Varvarin A M, Surfaces properties of silica gels modified with hydrophobic groups[J]. Colloids. Surfaces. A., 1999, 154:285-294
    [58] Gun'ko V M, Voronin E F, Pakhlov E M, Zarko V I, Turov V V, Guzenko N V, Leboda R, Chibowski E. Features of fumed silica coverage with sillanes having three or two groups reacting with the surface [J]. Colloids. Surfaces. A., 2000,166:187-201
    [59] Posthumus W, Magusin P C M M, Brokken-Zijp J C M, Tinnemans A HA, Linde R V. Surface modification of oxidic nanoparticles using 3-methacryloxypropyltrimethoxysilane[J]. J. Colloid Interf. Sci., 2004, 269:109
    [60] Bauer F, Glasel H J, Decker U, Ernst H, Freyer A, Hartmann E, Sauertand V, Mehnert R. Trialkoxysilane grafting onto nanoparticles for the preparation of clear coat polyacrylate systems with excellent scratch performance [J]. Prog. Org. Coat., 2003, 47:147-153
    [61] Bauer F, Glasel H J, Hartmann E, Bilz E, Mehnert R. Surface modification of nanoparticles for radiation curable acrylate clear coatings[J]. Nucl. Instrum. Meth. B., 2003, 208:267
    [62] Meyer T, Spange S, Hesse S, Jaiger C, Bellmann C. Radical grafting polymerization of vinylformamide with functionalized silica particles[J]. Macromol. Chem. and Phys., 2003,204:725-732
    [63] Ramos M A, Gil M H, Schacht E, Matthys G, Mondelaers W, Figueiredo M M. Physical and chemical characterization of some silicas and silica derivatives[J], Powder Technol.,1998,99:79-85
    [64] Yang F, Nelson G L. PMMA/Silica nanocomposite studies: synthesis and properties[J]. J. Appl. Polym. Sci., 2004, 91 : 3844-3850
    [65] Walkowiak M, Zalewska A, Jesionowski T, Waszak D, Czajka B, Effect of chemically modified silicas on the properties of hybrid gel electrolyte for Li-ion batteries [J]. J. Power Sources, 2006, 19:449-453
    [66] Liu Y L, Li S S, Poly(dimethylsiloxane) star polymers having nanosized silica cores[J]. Macromol. Rapid Comm., 2004, 25:1392-1395
    [67] Daoud W A, Xin J H, Tao X M. Synthesis and characterization of hydrophobic silica nanocomposites [J].Appl. Surf. Sci., 2006, 252:5368-5371
    [68] Que W X, Sun z, Zhou Y, Lam Y L, Chan Y C, Kam C H. Optical and mechanical properties of TiO2/SiO2/organically modified silane composite films prepared by sol-gel processing [J]. Thin Solid Films, 2000, 359:177-183
    [69] Bagwe R P, Hilliard L R, Tan W H. Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding[J]. Langmuir, 2006, 22:4357-4362
    [70] Sartore L, Penco M, Bignotti F, Peroni I, Gil M H, Ramos M A, D'Amore A. Grafting of selected presynthesized macromonomers onto various dispersions of silica particles[J]. J. Appl. Polym. Sci., 2002, 85:1287-1296
    [71] Jal P K, Patal S, Mishra B K. Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions[J]. Talanta, 2004,62:1005-1028
    [72] Li H L, Perkas N, Li Q L, Gofer Y, Koltypin Y, Gedanken A. Improved silanization modification of a silica surface and its application to the preparation of a silica-supported polyoxometalate catalyst [J]. Langmuir, 2003, 19:10409-10413
    [73] Jesionowski T. Synthesis of organic-inorganic hybrids via adsorption of dye on an aminosilane-functionalised silica surface[J]. Dyes Pigments, 2002, 55:133-141
    [74] Jia S J, Zhang Z C. Fan Y M. Study of the size and acrylonitrile-butadiene rubber by silica generated in situ[J]. Rubb. Chem. Technol. 1998, 71 (1):38-52
    [75] 史孝群,肖久梅,龚春秀,等.环氧树脂增韧研究进展[J].绝缘材料,2002,1:31-34
    [76] 肖久梅,陈章华,龚春秀,等.液体丁氰橡胶及纳米SiO_2 对环氧树脂的增韧机理[J].北京科技大学学报,2005,2:219-222
    [77] 乌云其其格.复合材料基体用环氧树脂增韧研究[J].工程塑料应用,2001,29(11):50-52
    [78] 涂春潮,齐暑华,周文英,等.环氧树脂增韧研究[J].化学推进剂与高分子材料,2005,3(3):12-15
    [79] Morancho J M, Salla J M. Relaxation in partically cured samples of an epoxy resin and of the same resin modified with a carboxyl-terminated robber [J]. Polymer, 1999, 40:2821-2828
    [80] Yu Y F, Zhang Z C, Gan W J, Wang M Hi, Li S J, Effect of polyethersulforne on the mechanical and rheological properties of polyetherimide-modified epoxy systems[J].Ind.Eng.Chem.Res., 2003, 42:3250-3256
    [81] Dinakaran K, Alagar M, Kumar, R S. Preparation and characterization of bismaleimide/1,3-dicyanatobenzene modified epoxy intercrosslinked matrices[J]. Eur. Polym. J., 2003, 39:2225-2233
    [82] Sung P H, Lin C Y. Polysiloxane modified epxoy polymer networks-Ⅰ.graft interpenetrating polymeric networks [J]. Eur. Polym. J., 1997, 33(6): 903-906
    [83] Rutnakornpituk M. Modification of epoxy-novolac resins with polysiloxane containing nitrile functional groups: synthesis and characterization [J]. Eur. Polym. J.,2005, 41:1043-1052
    [84] Morita Y. Curing of epoxy siloxane monomer with anhydride[J].J. Appl. Polym. Sci.,2005, 97:946-951
    [85] Zhao F, Sun Q C, Fang D P, Yao K D. Preparation and properties of polydimethylsiloxane-modified epoxy resins [J]. J. Appl. Polym. Sci., 2000, 76:1683-1690
    [86] Sung P H, Lin C Y. Polysiloxane modified epoxy polymer network-Ⅱ. Dynamic mechanical behavior of multicomponent graft-IPNs[J]. Eur. Polym. J., 1997,33(3):231-233
    [87] He W D, Zou Y F, Pan C Y, Influence of crosslinking degree of silicone robber particles on properties of epoxy resin[J]. J. Appl. Polym. Sci., 1998, 69:619-625
    [88] Ho T H, Wang C S, Synthesis of aralkyl novolac epoxy resins and their modification with polysiloxane thermoplastic polyurethane for semiconductor encapsulation[J]. J. Appl. Polym. Sci., 1999, 74:1905-1916
    [89] Shin W C, Ma C M., Yang J C, Chen H D, Polydimethylsiloxane containing isocyanute group-modified epoxy resin: curing, characterization, and properties[J]. J. Appl. Polym. Sci. 1999,73:2739-2747
    [90] Sung P H, Wu S Y, Polysiloxane modified epoxy networks strain-induced crystallization of jointed interpenetrating polymer networks in fracture mode [J]. Polymer, 1998,39(26):7033-7039
    [91] Wu S Y, Lee S L, Chang W L, Sung P H, Polysiloxane modified epoxy networks. Ⅳ. Catalytic effect on fracture behaviors of jointed interpenetrating polymer networks[J]. J. Appl. Polym. Sci., 2002, 84:2352-2357
    [92] Lin S T, Huang S K. Synthesis and impact properties of siloxane-DGEBA epoxy copolymers [J], J. Poym. Sci. Pol. Chem., 1996, 34:1907-1922
    [93] Abbasi F, Mirzadeh H. Properties of poly (dimethylsiloxane)/Hydrogel multicomponent systems [J]. J. Polym. Sci. Pol. Phys., 2003, 41 : 2145-2156
    [94] Abbasi F, Mirzadeh H, Katbab A A. Comparision of viscoelastic polydimethylsiloxane/poly(2-hydrogyethyl metharylate) IPNs with their physical blends[J]. J. Appl. Polym. Sci. 2002, 86:3480-3485
    [95] Linag L, Ruckenstein E. Pervaporation of ethanol-water mixtures through polydimetylsiloxane-polystyrene interpenetrating polymer network supported membranes [J]. J. Membrane Sci., 1996, 114: 227-234
    [96] Turner J S, Cheng Y L. Preparation of PDMS-PMAA interpenetrating polymer network membranes using the monomer immersion method[J]. Macromolecules, 2000, 33: 3714-3718
    [97] Turner J S , Cheng Y L. Morphology of PDMS-PMAA IPN membranes[J]. Macromolecules, 2003,36: 1962-1966
    [98] Kwok A Y, Qiao G G, Solomon D H. Interpenetrating Amphiphilic Polymer Networks of Poly(2-hydroxyethyl methacrylate) and Poly(ethylene oxide)[J]. Chem. Mater., 2004, 16: 5650-5658
    
    [99] 斯珀林L H.互穿聚合物网络和有关材料[M].1987,11-20
    [100] Kwok AY, Qiao G G, Solomon D H. Interpenetrating amphiphilic polymer networks of poly(2-hydroxyethyl methacrylate) and poly(ethylene oxide)[J]. Chem. Mater. 2004, 16: 5650-5658
    [101] Wang M, Pramoda K P, Goh S H. Mechanical behavior of pseudo-semi-interpenetrating polymer networks based on double-C60-end-capped poly(ethylene oxide) and poly(methyl methacrylate)[J]. Chem. Mater. 2004, 16, 3452-3456
    [102] Turner J S, Cheng Y L, Preparation of PDMS-PMAA interpenetrating polymer network membranes using the monomer immersion method[J].Macromolecules, 2000,33: 3714-3718
    [103] Ribelles J L G, Pradas M M, Ferrer G G. Poly (methyl acrylate)/poly (hydroxyethyl acrylate) sequential interpenetrating polymer networks miscibility and water sorption behavior [J].J. Polym. Sci. Pol. Phys, 1999, 37: 1587-1599
    
    [104] Song M, Hourston J, Sehafer F U. Correlation between mechanical damping and interphase content in interpenetrating polymer networks [J]. J. Appl. Polym. Sci., 2001, 81: 2439-2442
    [105] Jansen B J P, Rastogi S, Meijer H E H. Rubber-modified glassy amorphous polymers prepared via chemically induced phase separation. 4: comparison of properties of se(?)i- and full-IPNs, and copolymers of acrylate-aliphatic epoxy systems [J]. Macromolecules, 1999,32:6290-6297
    
    [106] Turner J S, Cheng Y L. Preparation of PDMS-PMAA interpenetrating polymer network membranes using the monomer immersion method [J].Macromolecules, 2000, 33: 3714-3718
    [107] Allcock H R, Visscher K B, Kim Y B. New polyphosphazenes with unsaturated side groups: use as reaction intermediates, cross-linkable polymers, and components of interpenetrating polymer networks[J].Macromolecules, 1996,29:2721-2728
    [108] Miyata T, Higuchi, J I, Okuno H. Preparation of polydimethylsiloxane/polystyrene interpenetrating polymer network membranes and permeation of aqueous ethanol solutions through the membranes by pervaporation[J]. J. Appl. Polym. Sci., 1996,61: 1315-1324
    [109] Abbasi F, Mirzadeh H, Katbab A A. Comparison of viscoelastic properties of polydimethylsiloxane/poly(2-hydroxyethyl methacrylate) IPNs with their physical blends[J].J. Appl.Polym. Sci., 2002, 86: 3480-3485
    [110] Liang L, Ruckenstein E. Pervaporation of ethanol-water mixtures through polydimethylsiloxane-polystyrene interpenetrating polymer network supported membranes[J].Journal of Membrane Science, 1996,114 : 227-234
    [111] Vlad S, Vlad A, Oprea S. Interpenetrating polymer networks based on polyurethane and Polysiloxane[J].Eur. Polym. J., 2002, 38:829-835
    [112] Dadbin S, Chaplin R P. Morphology and mechanical properties of interpenetrating Polymer networks of poly (allyl diglycol carbonate) and rigid polyurethane [J]. J. Appl. Polym. Sci., 2001, 81: 3361-3370
    [113] Yang J, Winnik M A, Ylitalo D. Polyurethane-polyacrylate interpenetrating networks: (?) .Preparation and Morphology [J].Macromolecules, 1996, 29:7047-7054
    [114] Cao X D, Zhang L N. Effects of molecular weight on the miscibility and properties of polyurethane/benzyl starch semi-interpenetrating polymer networks [J]. Biomacromolecules, 2005, 6: 671 -677
    [115] Lim B Y, Kim S C. Morphology of crosslinked poly(butyl methacrylate-co-methyl methacrylate) porous membranes[J].J.Membrane Sci., 2002,209: 293-307
    [116] Turner J S, Cheng Y L. Morphology of PDMS-PMAA IPN membranes [J].Macromolecules, 2003, 36:1962-1966
    [117] Galante M J, Borrajo J, Williams R J J. Double phase separation induced by polymerization in ternary blends of epoxies with polystyrene and poly(methyl methacrylate) [J].Macromolecules, 2001,34:2686-2694
    [118] Fichet O, Vidal F, Laskar J. Polydimethylsiloxane—cellulose acetate butyrate interpenetrating polymer networks synthesis and kinetic study. Part I [J].Polymer, 2005, 46 :37-47
    [119] Kim Y S, Kim S, C. Properties of polyetherimide/dicyanate semi-interpenetrating polymer network having the morphology spectrum [J].Macromolecules, 1999, 32:2334-2341
    [120] Dhara D, Rathna G V N, Chatterji P R. Volume phase transition in interpenetrating networks of poly(N-isopropylacrylamide) with gelatin[J].Langmuir, 2000, 16: 2424-2429
    [121] Bonnet A, Pascault J P, Sautereau H. Epoxy-diamine thermoset/thermoplastic blends: 2. rheological behavior before and after phase separation [J]. Macromolecules, 1999, 32: 8524-8530
    [122] Dean K, Cook W D. Effect of curing sequence on the photopolymerization and thermal curing kinetics of dimethacrylate/epoxy interpenetrating polymer networks, Macromolecules, 2002,35:7942-7954
    [123] Clark A H, Eyre S C E, Ferdinando D P. Interpenetrating network formation in gellan-maltodextrin gel composites [J].Macromolecules, 1999, 32: 7897-7906
    [124] Dean K, Cook W D, Rey L. Near-infrared and rheological investigations of epoxy-vinyl ester interpenetrating polymer networks [J].Macromolecules, 2001,34:6623-6630
    
    [125] Kwok A Y, Qiao G G, Solomon D H. Interpenetrating amphiphilic polymer networks of poly(2-hydroxyethyl methacrylate) and poly(ethylene oxide)[J].Chem. Mater. 2004, 16: 5650-5658
    [126] Darras V, Fichet O, Franc. Polysiloxaneepoly (fluorinated acrylate) interpenetrating polymer networks: Synthesis and characterization [J]. Polymer, 2007, 48: 687-695
    [127] Bearinger J P, Castner D G, Golledge S L. P(AAm-co-EG) interpenetrating polymer networks grafted to oxide surfaces: surface characterization, protein adsorption, and cell detachment studies[J]. Langmuir, 1997, 13: 5175-5183
    [128] Turner J S, Cheng Y L.PH dependence of PDMS-PMAA IPN morphology and transport properties[J].J. Membrane Sci., 2004,240 :19-24
    [129] Kwok A Y, Qiao G G, Solomon D H. Interpenetrating amphiphilic polymer networks of poly(2-hydroxyethyl methacrylate) and poly(ethylene oxide)[J] Chem. Mater. 2004, 16: 5650-5658
    [130] Kim Y S, Kim S C. Properties of polyetherimide/dicyanate semi-interpenetrating polymer network having the morphology spectrum [J].Macromolecules, 1999,32:2334-2341
    [131] Gitsov I, Zhu C. Novel functionally grafted pseudo-semi-interpenetrating Networks constructed by reactive linear-dendritic copolymersl [J]. J. Am. Chem. Soc. 2003,125:11228-11234
    [1] Sereda L, Lopez-Gonzalez M M, Visconte L L Y. Influence of silica and black rice husk ash fillers on the diffusivity andsolubility of gases in silicone rubbers[J].Polymer, 2003, 44:3085-3093
    [2] Sereda L, Visconte L L Y, Nunes R C R. Effect of silica and rice husk ash fillers on the modulusof polysiloxane networks [J]. J. Appl. Polym. Scie., 2003, 90:421-429
    [3] Gui Q G, Zhou Q L. Preparation of high strength and opticallytransparent silicone rubber [J]. Eur. Polym. J., 1998, 34(11): 1727-1733
    [4] Okel T A, Waddell W H. Effect of precipitated silica physical properties of silicone rubber performance [J]. Rubber Chem. Technol., 1995,68:59-72
    [5] Dong J, Liu Z L, Han N F. Preparation, morphology, and mechanical properties of elastomers based on α,ω-dihydroxy-polydimethylsiloxane/polystyrene blends [J]oJ. Appl. Polym.Sci., 2004, 92:3542 - 3548
    [6] Jia S J, Zhang Z C, Fan Y M. Study of the size and acrylonitrile-butadiene robber by silica generated in situ. Rubb. Chem. Technol., 1998,71(1): 38-52
    [7] Daoud W A, Xin J H., Tao X M. Synthesis and Characterization of Hydrophobic Silica Nanocomposites [J]. Applied Surface Science, 2006, 252:5368~5371
    [8] Kwan K S, Harrington D A, Moore P A, et al. Synthesis and Use of Colloidal Silica for Reinforcement in silicone elastomers [J]. Rubber Chemistry and Technology, 2001, 74: 630.
    [9] 伍林,易德莲,曹淑超,等.六甲基二硅胺烷改性纳米二氧化硅[J].武汉科技大学学报,2005,28(1):33
    [10] Fadeev A Y, Kazakevich Y V, Covalently Attached Monolayers of Oligo(dimethylsiloxane)s on Silica: A Siloxane Chemistry Approach for Surface Modification[J]. Langmuir, 2002,18(7): 2667
    [11] Kuznetsova A, Wovchko E A, Yates J T, et al. FTIR Study of the Adsorption and Thermal Behavior of Vinyltriethoxysilane Chemisorbed on γ-A1_2O_3 [J]. Langmuir, 1997, 13(20):5323
    [12] Daoud W A, Xin J H, Tao X M. Synthesis and Characterization of Hydrophobic Silica Nanocomposites [J]. Applied Surface Science, 2006, 252:5368~5371
    [13] 幸松民, 王一璐.有机硅合成T艺及产品应用[M].化学工业出版社,2002:819
    [14] Wagner M P, Reinforcing silicas and silicates, Rubber. Chem. Technol[J]. 1976,49:703-774
    [15] Cochrane H, Lin C S. The influence of fumed silica properties on the processing, curing,and reinforcement properties of silicone rubber[J]. Rubber Chem. Technol., 1993, 66:48-58
    [16] 吴友平,贾清秀,刘力等.橡胶增强理论.合成橡胶工业,2004,27(1):1-5
    [1] 张密林,丁立国,景晓燕,等.纳米二氧化硅制备、改性与应用[J].无机硅化合物,2006,1:10~13.
    [2] 毋伟,陈建峰,邵磊,等.聚合物接枝改性超细二氧化硅表面状况及形成机理[J].北京化工大学学报,2003,30(2):1.
    [3] 洪立福,金鑫.超细二氧化硅的制备与改性[J].北京化工大学学报,2004,31(5):69.
    [4] 汪齐方,李春忠,王志庭,等.六甲基二硅胺烷对气相法二氧化硅的表面改性[J],华东理工大学学报,2001,27(6):626.
    [5] 吉小利,王君,李爱元,等.纳米二氧化硅粉体的表面改性研究[J],安徽理工大学学报(自然科学版),2004,24(5):83.
    [6] Daoud W A, Xin J H., Tao X M. Synthesis and Characterization of Hydrophobic Silica Nanocomposites [J]. Applied Surface Science, 2006, 252:5368~5371.
    [7] 贾丽亚,杜中杰,张晨,等.二氧化硅表面处理及其对聚二甲基硅氧烷体系凝胶时间的影响[J].中国塑料,(已录用).
    [8] Kwan K S, Harrington D A, Moore P A, et al. Synthesis and Use of Colloidal Silica for Reinforcement in silicone elastomers [J]. Rubber Chemistry and Technology, 2001, 74: 630.
    [9] Fadeev A Y, Kazakevich Y V, Covalently Attached Monolayers of Oligo(dimethylsiloxane)s on Silica: A Siloxane Chemistry Approach for Surface Modification[J]. Langmuir, 2002,18(7): 2667.
    [10] Kuznetsova A, Wovchko E A, Yates J T, et al. FTIR Study of the Adsorption and Thermal Behavior of Vinyltriethoxysilane Chemisorbed on γ-Al203 [J]. Langmuir, 1997,13(20):5323.
    [11] 幸松民, 王一璐.有机硅合成工艺及产品应用[M].化学工业出版社,2002:819.
    [12] V.M. Litvinov, H. Banhel and J. Weis, Structure of a PDMS grafted onto a silica surface studied by means of DSC and solic-state NMR. Macromolecules,2002,35,4356-4364.
    [13] Wolff S, Wang M J and Tan E H. Filler-elastomer interactions. Part Ⅶ. Study on bound robber[J]. Rubber Chem. Technol., 1993,66: 163
    [14] Payne A R. The dynamic properties of carbon blackloaded natural robber vulcanizates. Part Ⅰ[J]. J. Appl. Polym.Sci., 1962,6(19):57-63.
    [1] Dinakaran K, Alagar M, Kumar R S. Preparation and characterization of bismaleimide/l,3-dicyanatobenzene modified epoxy intercrosslinked matrices [J]. Eur. Polym. J., 2003, 39(11): 2225-2233
    [2] Jansen B J P, Rastogi S, Meijer H E H, Lemstra P J. Rubber-Modified Glassy Amorphous Polymers Prepared via Chemically Induced Phase Separation. 2. Mode of Microscopic Deformation Studied by in-Situ Small-Angle X-ray Scattering during Tensile Deformation [J]. Macromolecules, 2001,34(12): 4007-4018
    
    [3] Grubbs R B, Dean J M, Broz M E, Bates F S. Reactive Block Copolymers for Modification of Thermosetting Epoxy [J]. Macromolecules, 2000,33(26): 9522-9534
    [4] Rebizant V, Venet A S, Tournilhac F, Girard-Reydet E, Navarro C, Pascault J-P, Leibler L. Chemistry and Mechanical Properties of Epoxy-Based Thermosets Reinforced by Reactive and Nonreactive SBMX Block Copolymers [J]. Macromolecules, 2004, 37(21): 8017-8027
    [5] Marieta C, Remiro P M, Garmendia G, Harismendy I, Mondragon I. AFM approach toward understanding morphologies in toughened thermosetting matrices [J]. Eur. Polym. J., 2003, 39(10): 1965-1973
    [6] Dworak D P, Soucek M D. Synthesis of Cycloaliphatic Substituted Silane Monomers and Polysiloxanes for Photocuring [J]. Macromolecules, 2004, 37(25): 9402-9417
    [7] Frigione M E, Mascia L, Acierno D. Oligomeri(?) and polymeric modifiers for toughening of epoxy resins [J]. Eur. Polym. J., 1995, 31(11): 1021-1029
    [8] Cabanelas J C, Serrano B, Gonzalez M G, Baselga J. Confocal microscopy study of phase morphology evolution in epoxy/polysiloxane thermosets [J]. Polymer. 2005, 46(17): 6633-6639
    [9] Gonzalez M, Kadlec P, Stepanek P, Strachota A, Matejka L. Crosslinking of epoxy-polysiloxane system by reactive blending [J]. Polymer, 2004,45(16): 5533-5541
    
    [10] Ho T H, Wang C S. Modification of epoxy resins with polysiloxane thermoplastic polyurethane for electronic encapsulation [J]. Polymer, 1996, 37(13): 2733-2742
    [11] Hou S S, Chung Y P, Chan C K, Kuo P L. Function and performance of silicone copolymer. Part IV. Curing behavior and characterization of epoxy-siloxane copolymers blended with diglycidyl ether of bisphenol-A [J]. Polymer, 2000, 41(9): 3263-3272
    [12] Sung P H, Lin C Y. Polysiloxane modified epoxy polymer networks—I. Graft interpenetrating polymeric networks [J]. Eur. Polym. J., 1997, 33(6): 903-906
    [13] Sung P H, Wu S Y. Polysiloxane modified epoxy networks (III) strain-induced crystallization of jointed interpenetrating polymer networks in fracture mode [J]. Polymer, 1998, 39(26): 7033-7039.
    [14] Jesionowski T, Krysztafkiewicz A. Comparison of the techniques used to modify amorphous hydrated silicas [J]. J. Non-Cryst. Solids., 2000, 277(1):45-57
    [15] Ahmad S, Gupta A P, Sharmin E, Alam M, Pandey S K. Synthesis, characterization and development of high performance siloxane-modified epoxy paints [J]. Prog. Org. Coat., 2005, 54(3): 248-255
    [16] Li H L, Perkas N, Li Q L, Gofer Y, Koltypin Y, Gedanken A. Improved Silanization Modification of a Silica Surface and Its Application to the Preparation of a Silica-Supported Polyoxometalate Catalyst [J]. Langmuir, 2003, 19(24): 10409-10413
    [17] Akovali G, Rzaev Z M O, Mamedov D G Plasma surface modification of polyethylene with organosilicon and organotin monomers [J]. Eur. Polym. J., 1996,32(3): 375-383
    [18] Allcock H R, Visscher K B, Kim Y B. New Polyphosphazenes with Unsaturated Side Groups: Use as Reaction Intermediates, Cross-Linkable Polymers, and Components of Interpenetrating Polymer Networks [J]. Macromolecules, 1996,29(8): 2721-2728
    [19] Li M S, Ma C C, Chen J L, Lin M L, Chang F C. Epoxy-Polycarbonate Blends Catalyzed by a Tertiary Amine. 1. Mechanism of Transesterification and Cyclization [J]. Macromolecules, 1996, 29(2): 499-506
    [20] Abayasinghe N K, Smith D W. Terpolymers from Lactide and Bisphenol A Derivatives: Introducing Renewable Resource Monomers into Commodity Thermoplastics [J]. Macromolecules, 2003, 36(26): 9681-9683
    [21] She H Q, Malotky D, Chaudhury M K. Estimation of Adhesion Hysteresis at Polymer/Oxide Interfaces Using Rolling Contact Mechanics [J]. Langmuir, 1998, 14(11): 3090-31003
    [1] Turner J S, Cheng Y L. Morphology of PDMS-PMAA IPN membranes[J]. Macromolecules, 2003,36: 1962-1966
    [2] Kwok A Y, Qiao G G, Solomon D H. Interpenetrating Amphiphilic Polymer Networks of Poly(2-hydroxyethyl methacrylate) and Poly(ethylene oxide)[J]. Chem. Mater., 2004,16: 5650-5658
    
    [3] Dinakaran K, Alagar M, Kumar R S. Preparation and characterization of bismaleimide/l,3-dicyanatobenzene modified epoxy intercrosslinked matrices [J]. Eur. Polym. J., 2003, 39(11): 2225-2233
    [4] Jansen B J P, Rastogi S, Meijer HEH, Lemstra P J. Rubber-Modified Glassy Amorphous Polymers Prepared via Chemically Induced Phase Separation. 2. Mode of Microscopic Deformation Studied by in-Situ Small-Angle X-ray Scattering during Tensile Deformation [J]. Macromolecules, 2001,34(12): 4007-4018
    
    [5] Rutnakornpituk M. Modification of epoxy-novolac resins with polysiloxane containing nitrile functional groups: synthesis and characterization [J]. Eur. Polym. J., 2005, 41(5): 1043-1052
    [6] Frigione M E, Mascia L, Acierno D. Oligomeric and polymeric modifiers for toughening of epoxy resins [J]. Eur. Polym. J., 1995, 31(11): 1021-1029
    [7] Cabanelas J C, Serrano B, Gonzalez M G., Baselga J. Confocal microscopy study of phase morphology evolution in epoxy/polysiloxane thermosets [J]. Polymer, 2005, 46(17): 6633-6639
    [8] Gonzalez M, Kadlec P, Stepanek P, Strachota A, Matejka L. Crosslinking of epoxy-polysiloxane system by reactive blending [J]. Polymer, 2004, 45(16): 5533-5541
    
    [9] Ho T H, Wang C S. Modification of epoxy resins with polysiloxane thermoplastic polyurethane for electronic encapsulation: (?)[J]. Polymer, 1996, 37(13): 2733 -2742
    [10] Hou S S, Chung Y P, Chan C K, Kuo P L. Function and performance of silicone copolymer. Part IV. Curing behavior and characterization of epoxy-siloxane copolymers blended with diglycidyl ether of bisphenol-A [J]. Polymer, 2000, 41(9): 3263-3272
    [11] Sung P H, Lin C Y. Polysiloxane modified epoxy polymer networks—I. Graft interpenetrating polymeric networks [J]. Eur. Polym. J., 1997, 33(6): 903 -906
    [12] Sung P H, Wu S Y. Polysiloxane modified epoxy networks (III) strain-induced crystallization of jointed interpenetrating polymer networks in fracture mode [J]. Polymer, 1998, 39(26): 7033-7039
    [13] Yang J, Winnik M A, Ylitalo D, DeVoe R J. Polyurethane-Polyacrylate Interpenetrating Networks. 1. Preparation and Morphology [J]. Macromolecules, 1996, 29(22): 7047-7054
    [14] Ahmad S, Gupta A P, Sharmin E, Alam M, Pandey S K. Synthesis, characterization and development of high performance siloxane-modified epoxy paints [J]. Prog. Org. Coat., 2005, 54(3): 248-255
    [15] Li H L, Perkas N, Li Q L, Gofer Y, Koltypin Y, Gedanken A. Improved Silanization Modification of a Silica Surface and Its Application to the Preparation of a Silica-Supported Polyoxometalate Catalyst [J]. Langmuir, 2003, 19(24): 10409-10413
    [16] Akovali G, Rzaev Z M O, Mamedov D G Plasma surface modification of polyethylene with organosilicon and organotin monomers [J]. Eur. Polym. J., 1996, 32(3): 375-383
    [17] Allcock H R, Visscher K B, Kim Y B. New Polyphosphazenes with Unsaturated Side Groups: Use as Reaction Intermediates, Cross-Linkable Polymers, and Components of Interpenetrating Polymer Networks [J]. Macromolecules, 1996, 29(8): 2721-2728
    [18] Li M S, Ma C C, Chen J L, Lin M L, Chang F C. Epoxy-Polycarbonate Blends Catalyzed by a Tertiary Amine. 1. Mechanism of Transesterification and Cyclization [J]. Macromolecules, 1996,29(2): 499-506
    [19] Abayasinghe N K, Smith D W. Terpolymers from Lactide and Bisphenol A Derivatives: Introducing Renewable Resource Monomers into Commodity Thermoplastics [J]. Macromolecules, 2003,36(26): 9681-9683
    [20] Dworak D P, Soucek M D. Synthesis of Cycloaliphatic Substituted Silane Monomers and Polysiloxanes for Photocuring [J]. Macromolecules, 2004, 37(25): 9402-9417
    
    [21] Gitsov I, Zhu C. Novel Functionally Grafted Pseudo-Semi-interpenetrating Networks Constructed by Reactive Linear-Dendritic Copolymers [J]. J. Am Chem. Soc, 2003, 125(37): 11228-11234
    [22] Ragosta G, Musto P, Scarinzi G, Mascia L. Effects of perfluoroether concentration and curing protocol on morphology and mechanical properties of toughened TGDDM/MNA resin systems [J]. Polymer, 2003, 44(7), 2081-2090
    [23] Navabpour P, Nesbitt A, Mann T.Comparison of the Curing Kinetics of a DGEBA/Acid Anhydride Epoxy Resin System Using Differential Scanning Calorimetry and a Microwave-Heated Calorimeter Journal of Applied Polymer Science[J] 2007,104:2054 - 2063
    [24] Kwok A Y, Qiao G G, Solomon D H. Interpenetrating Amphiphilic Polymer Networks of Poly(2-hydroxyethyl methacrylate) and Poly(ethylene oxide) [J]. Chem. Mater., 2004 16(26): 5650-5658

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700