蛋白质组学高效酶解新技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章概述了蛋白质组学目前发展的概况,简要介绍了蛋白质组学的仪器技术及其在当今生物科学研究中的地位和作用;说明了当前酶解新技术的发展现状,就新型酶解反应器和用于促进酶解的微波、超声等技术的发展进行了综述;对富集技术的发展概况进行了简要说明。提出了本论文选题的目的和意义。本论文主要发展了一系列新颖方便的高效酶解技术,还对用于磷酸化多肽富集的纳米材料进行了一些研究。主要内容摘要如下:
     在第二章,为用于高效蛋白酶解制备了一种四组分的纳米复合物;固定了胰蛋白酶的聚苯胺包覆的Fe_3O_4/碳纳米管复合物。在含有金属离子Fe~(2+)和Fe~(3+)以及碳纳米管的溶液中滴加氨水,制备了nano-Fe_3O_4/CNT纳米复合物。之后在含有胰蛋白酶的溶液中,使苯胺(PA)在nano-Fe_3O_4/CNT纳米复合物的表面组装聚合,得到固定了胰蛋白酶的PA/Fe_3O_4/CNT纳米复合物。对所得的1维超顺磁性复合物进行了多种方法的表征:TEM,SEM,XRD,以及磁性分析。以BSA、MYO为典型蛋白质的酶解-MALDI-TOF-MS实验说明由这种材料所催化的酶解可以在5 min内给出比传统溶液酶解12 h更高的肽段覆盖度,更多匹配的肽段。此材料具有很好的生物相容性和极好的分散性,这有利于在酶解过程中酶与蛋白质的重复接触。利用纳米Fe_3O_4的顺磁性,还可以在酶解后利用外磁场的帮助将此复合物与反应体系方便地分离,从而避免复合物对体系的污染并有利于后续的质谱鉴定。这种固定了胰蛋白酶的纳米复合物可以通过简单的两步沉积制备,也许它还会得到除蛋白质组学外更多的生物学应用。
     第三章介绍了一种纤维内芯酶反应器。内芯由玻璃纤维制作:首先在玻璃纤维表面构建壳聚糖、和海藻酸钠的静电自组装层,再将此纤维浸入胰蛋白酶溶液中以固定胰酶。将此玻璃纤维插入微量进样器的不锈钢针头内制得高效方便的酶解反应器。此针孔内的酶解器可以通过更换纤维内芯进行再生。室温下(25℃)当蛋白质(BSA和LYS)溶液流经此针头时,在针头内仅仅与内芯接触5 s。对流出的溶液进行质谱分析的结果表明,蛋白质在针头中被酶解,并且在质谱分析中得到了正确的鉴定,并且其序列覆盖度与传统溶液酶解方法的结果相近。该针内酶反应器酶解的高效性,可归因于在纤维内芯上包附的高浓度的胰酶,和针内纤维的高比表面积,从而使底物和酶的能够有高频率的相互作用。另外,由于CTS和SA(两种天然高聚物)的生物相容性,最大限度地减少了被固定胰酶的变性。除了酶解的高效性,此方法的另外一个优势是它的简便性,其内芯的制备仅需在不同溶液中反复浸泡和清洗玻璃纤维,其使用和更换也都十分方便,而且多个纤维酶反应器的阵列可以来实现高通量的蛋白质组研究。
     在第四章,低电压交流电(AC,通常为5V)产生的交变电场(AEF)被用来提高用于肽谱分析的胰蛋白酶酶解的效率。在蛋白质的溶液酶解过程中,在溶液中插入一对电极,并在电极上加低压交流电产生一个交变电场。使用这种新颖的AEF辅助酶解方法,结合MALDI-TOF-MS,对几种标准蛋白质和SDS-PAGE胶内的HSA蛋白质进行了酶解和肽谱分析。结果显示交变电场可以显著地加速溶液酶解并使酶解时间缩短至5 min。得到的序列覆盖度接近12 h传统溶液酶解的结果,也以电泳分离的人血清白蛋白为例证实了该方法对实际蛋白质样品的适应性。本酶解方法十分简便高效,必将在蛋白质鉴定中得到广泛的应用。
     在第五章,我们发展了低压交流电辅助的靶上酶解。AC辅助靶上酶解是一种十分新颖的技术,与MALDI-TOF MS联用的它是蛋白质肽谱分析的有力工具。在交流电的帮助下,酶解时间可以从传统溶液酶解的12 h缩短至5 min。靶上酶解需要的样品量很少,这也是本方法的优点。本章也对AEF对酶解的促进原理作了探讨,认为酶解效率的提高主要是因为交变电场中带电组分的运动方向和偶极距的方向都会周期性地改变(50 Hz导致每秒100次的方向转换),从而增加了蛋白质和酶的相互作用,而且在蛋白质和多肽上的带电基团如氨基羧基等也会受到交变电场的影响而使多肽振动。但本方法操作还不够简便。如果多个样品需要同时进行靶上酶解,则需要多个铂电极的阵列。而水电解反应在电极上的发生,也将限制本酶解方法对一些含有巯基的蛋白质的分析应用。
     在第六章首次提出采用红外(IR)辐照来促进肽谱分析中的胰蛋白酶(trypsin)酶解。这种红外辅助的酶解方法简单,花费低廉而效率很高,十分适用于蛋白质的高通量鉴定。红外辅助酶解的操作:在透明的eppendorf离心管中,蛋白溶液在37℃在红外灯辐照下被trypsin酶解,反应进行5 min。BSA和MYO在此方法中的酶解时间从常规的12 h被显著地缩短为5 min,证明了此新颖的酶解方法的可行性和有效性。酶解后的肽段用MALDI-TOF-MS进行分析,序列覆盖度为69%(BSA)和90%(MYO),而这都大大高于传统溶液酶解所得的覆盖度。这说明红外辐照对酶解过程起了很大的促进作用。并且研究了红外辐照对糜蛋白酶的酶解过程的加速作用,其结果表明红外辐照对糜蛋白酶的酶解也有类似的促进作用。并且通过对人类血清进行的酶解验证了红外辐助糜蛋白酶酶解方法对复杂样品的适应性。
     红外线辐照对酶解效率的提高的机理应该是,红外线辐照可以提高酶解反应中反应物在反应位点上的局部振动能级,降低了反应的活化能,故而能够大大加速酶解的过程。另外,在蛋白质中,红外辐射所激发的肽链振动也可能诱使更多的酶切位点暴露给胰酶,使得酶解更加容易,从而得到较高多肽覆盖度,即匹配更多肽段。
     第七章发展了红外辐照辅助靶上(on-plate)酶解技术。使用红外线对在MALDI靶板上的含有trypsin的蛋白质溶液进行辐照。用BSA和Cyt-c的酶解研究了这种新颖的酶解方法的效果。酶解后的肽段用MALDI TOFMS进行分析。结果表明红外辐射显著地增强了酶解的效率并且酶解的时间被显著缩短至5min以内:肽段覆盖度为55%(BSA)和75%(Cyt-c),这与传统溶液酶解的结果相差无几。通过对人血清和牛奶中提取的酪蛋白的酶解验证了红外辅助靶上酶解这种方法对较为复杂的样品的适应性。此种酶解方法简单而且高效,特别适合LC-MALDI,是高通量蛋白质鉴定的一个新的优良的技术平台。
     在第八章,针对翻译后修饰蛋白中磷酸化蛋白及肽段的分离富集问题,发展了一种制备磁性IMAC纳米材料的新方法。先用水热法制备了表面包含氨基的Fe_3O_4纳米磁球,用三氯氧磷将氨基表面改性为磷酸根表面,再将磁球在金属离子溶液中浸泡。并用所得的纳米磁珠用于对β-casein酶解肽段中磷酸化肽段的富集,将磷酸化多肽洗脱后进行MALDI-TOF分析。研究发现固定不同的金属离子制作的纳米粒子对磷酸化多肽的富集能力是不同的的。其中固定Fe(Ⅲ)的纳米磁珠表现最好:富集磷酸化多肽的灵敏度低于20 fmol/μL;β-casein和BSA以1:1000的质量比混合后,仍能够富集检测到其中的磷酸化肽,显示了其良好的抗非特异性吸附的能力。
In chapter 1,a bird view of proteomics advancement and achievements were given.Instruments and methods used in proteomics were summarized,along with the impacts of proteomics on modern biological science.And the proteolysis techniques ever developed was summarized with two parts:1) the new types of enzyme reactor,2) microwave and ultrasound techniques.Enrichment techniques used in proteomics was also briefly introduced.The new strategies of high efficient proteolysis in this thesis were briefed at the end of this chapter,demonstrating their importance and usefulness. This dissertation contributes a series of new strategies of high efficient proteolysis for proteomic analysis.And a short study on nanomaterial for phosphopeptides enrichment was described.The main contents are:
     In Chapter 2,a four-component nanocomposite,trypsin-immobilized polyaniline-coated Fe_3O_4/carbon nanotube composite,was synthesized for highly efficient protein digestion.Fe_3O_4 was deposited by the chemical coprecipitation of Fe~(2+) and Fe~(3+) in an alkaline solution containing carbon nanotubes(CNTs) to prepare nano-Fe_3O_4/CNT composite.Subsequently,polyaniline(PA) was assembled on the Fe_3O_4/CNT composite by the in situ polymerization of aniline in the presence of trypsin to obtain trypsin-immobilized PA/Fe_3O_4/CNT nanocomposite.The novel 1D superparamagnetic biomaterial has been characterized by TEM,SEM,XRD,and magnetometric analysis.The feasibility and performance of the unique magnetic biomaterial have been demonstrated by the tryptic digestion of bovine serum albumin, myoglobin,and lysozyme within 5 min.The digests were identified by MALDI-TOF MS with sequence coverages that were comparable to those obtained from the conventional in-solution tryptic digestion.The present biocomposite offers considerable promise for protein analysis due to its high magnetic responsivity and excellent dispersibility.It can be easily isolated from the digests with the aid of an external magnetic field.Because the enzyme-immobilized nanocomposite can be prepared by a simple two-step deposition approach with low cost,it may find a wide range of biological applications including proteome research.
     In Chapter 3,a core-changeable needle enzymatic reactor was developed for highly efficient proteolysis.Self-assembled layers of CTS and SA were first constructed on the surface of a glass fiber;this glass fiber was then immersed in trypsin solution to immobilize trypsin.A piece of enzyme-immobilized fiber core was inserted into the needle of a syringe pump to form a flow-through bioreactor.The novel in-needle bioreactor could be regenerated by changing its fiber core.The feasibility and performance of the unique bioreactor were demonstrated by the tryptic digestion of bovine serum albumin and lysozyme,and the digestion time was significantly reduced to less than 5 s.The digests were identified by MALDI-TOF-MS with sequence coverage comparable to those obtained by the conventional in-solution tryptic digestion.The significantly enhanced digestion efficiency of the in-needle fiber bioreactor can be attributed to the high concentration of trypsin in the modified layer on the fiber core and the higher surface area of the fiber core in the needle,increasing the interaction frequency between trypsin and proteins.In addition,the biocompatibility of CTS and SA(two naturally occurring polymers) may provide milder environmental conditions so that the denaturation of the immobilized trypsin was minimized.Besides the high digestion efficiency,an additional advantage of the present approach is its simplicity,which is promising for the automatic high-throughput protein analysis using a platform containing multiple in-needle fiber bioreactors.
     In Chapter 4,Sinusoidal alternating voltages(typically 5V) were employed to enhance the efficiency of proteolysis for peptide mapping.Protein solutions containing trypsin were allowed to digest with the assistance of alternating electric fields(AEFs) between a pair of platinum wire electrodes in Eppendorf tubes.The feasibility and performance of the novel proteolysis approach were investigated by the digestion of several standard proteins.It was demonstrated that AEFs significantly accelerated in-solution proteolysis and the digestion time was substantially reduced to 5 min.The digests were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry(MALDI-TOF-MS) with sequence coverages that were comparable to those obtained by using conventional 12-h in-solution proteolysis. The suitability of AEF-assisted proteolysis to real protein samples was demonstrated by digesting and identifying human serum albumin in gel separated from human serum by sodium dodecyl sulphate/polyacrylamide gel electrophoresis(SDS-PAGE). The present proteolysis strategy is simple and efficient and will find a wide range of applications in protein identification.
     In Chapter 5,alternating current-assisted on-plate proteolysis has been developed for rapid peptide mapping.Protein solutions containing trypsin were allowed to digest directly on the spots of a stainless steel MALDI plate with the assistance of low-voltage alternating current electricity.Alternating current(AC) was allowed to pass through the protein solutions via the MALDI plate and a platinum disc electrode. The feasibility and performance of the novel proteolysis approach were investigated by the digestion of BSA and cytochrome c(Cyt-c).It was demonstrated that AC substantially enhanced the efficiency of proteolysis and the digestion time was significantly reduced to 5 min.The digests were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry(MALDI-TOF MS) with sequence coverages of 42%(BSA) and 77%(Cyt-c) that were comparable to those obtained by using conventional in-solution tryptic digestion.The present proteolysis strategy is simple and efficient,offering great promise for MALDI-TOF-MS peptide mapping.
     In Chapter 6,infrared(IR) radiation was employed to enhance the efficiency of tryptic proteolysis for peptide mapping.The ease,simplicity,efficiency,and low cost of the novel proteolysis approach indicate great promise for the high-throughput protein identification.Protein solutions containing trypsin in sealed transparent Eppendorf tubes were allowed to digest under IR lamp radiation at 37℃.The feasibility and performance of the novel proteolysis approach were demonstrated by the digestion of bovine serum albumin(BSA) and myoglobin(MYO) and the digestion time was significantly reduced to 5 min.The obtained digests were identified by MALDI-TOF MS with the sequence coverage of 69%(BSA) and 90% (MYO) that were much better than those obtained by conventional in-solution tryptic digestion.The present IR-assisted proteolysis strategy is simple and efficient,offering great promise for high-throughput protein identification.
     Infrared(IR) radiation was also employed to enhance the efficiency of chymotryptic proteolysis for peptide mapping.The suitability of IR-assisted chymotryptic proteolysis to complex proteins was demonstrated by digesting human serum.The present proteolysis strategy is simple and efficient,offering great promise for high-throughput protein identification.
     The significantly enhanced digestion efficiency of the present proteolysis approach can be attributed to IR radiation,which increases the energy level of vibrations of peptide bonds so as to decrease the activation energy of proteolysis reaction,which might lead to a great increase in the reaction speed.In addition,the IR-induced vibrations of the chains in proteins might also lead to more cleavage sites exposed to enzymes,resulting in easier cleavage of peptide bonds.It might be the reason why there were more matched peptides in the PMF spectra of the digests obtained by using IR-assisted digestion.
     In Chapter 7,infrared(IR)-assisted on-plate proteolysis has been developed for rapid peptide mapping.Protein solutions containing trypsin were allowed to digest directly on the spots of MALDI plates under IR radiation.The feasibility and performance of the novel proteolysis approach were investigated by the digestion of bovine serum albumin(BSA) and cytochrome c(Cyt-c).It was demonstrated that IR radiation substantially enhanced the efficiency of proteolysis and the digestion time was significantly reduced to 5 min.The digests were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry(MALDI-TOF MS) with sequence coverages of 55%(BSA) and 75%(Cyt-c) that were comparable to those obtained by using conventional in-solution tryptic digestion.The suitability of IR-assisted on-plate proteolysis to complex proteins was demonstrated by digesting human serum and casein extracted from commercially available milk sample.The present proteolysis strategy is simple and efficient,offering great promise for high-throughput protein identification.
     In Chapter 8,to faciliate the enrichment of phosphopeptide or phosphoprotein several kinds of metal ions Ga(Ⅲ),Al(Ⅲ),Zr(Ⅳ),Zn(Ⅱ),Fe(Ⅲ),Ni(Ⅱ),were trapped on the surface of Fe_3O_4 magnetic nanoparticles with phosphate group binding. Amine functioned Fe_3O_4 nanoparticles were synthesized first,then the amine groups on the surface was reacted with POCl_3,resulting in a phosphate group functioned surface.Then the nanoparticles were immersed in solutions of different kinds of metal ions to immobilize metal ions on its surface.And the ability of those magnetic particles in isolating phosphopeptides was studied withβ-casein tryptic digest.Results show that only Fe(Ⅲ) modified magnetic nanoparticles work best.When the magnetic nanoparticle enrichment was coupled with MALDI TOF mass analysis,a detection limit lower than 20 fmol/μL was observed.And good specificity was demonstrated whenβ-casein digest was mixed with BSA in the ration of 1:1000.
引文
[1]Aebersold,R.,and Mann,M.(2003) Mass spectrometry-based proteomics,Nature 422,198-207.
    [2]Hanash,S.(2003) Disease proteomics,Nature 422,226-232.
    [3]Pandey,A.,and Mann,M.(2000) Proteomics to study genes and genomes,Nature 405,837-846.
    [4]Ro,K.W.,Nayalk,R.,and Knapp,D.R.(2006) Monolithic media in microfluidic devices for proteomics,Electrophoresis 27,3547-3558.
    [5]Spisak,S.,Tulassay,Z.,Molnar,B.,and Guttman,A.(2007) Protein microchips in biomedicine and biomarker discovery,Electrophoresis 28, 4261-4273.
    [6]Smith,J.C.,and Figeys,D.(2006) Proteomics technology in systems biology,Molecular Biosystems 2,364-370.
    [7]Lv,L.L.,and Liu,B.C.(2008) Clinical application of antibody microarray in chronic kidney disease:How far to go?,Proteomics Clinical Applications 2,989-996.
    [8]Berggard,T.,Linse,S.,and James,P.(2007) Methods for the detection and analysis of protein-protein interactions,Proteomics 7,2833-2842.
    [9]Dong,M.Q.,Venable,J.D.,Au,N.,Xu,T.,Park,S.K.,Cociorva,D.,Johnson,J.R.,Dillin,A.,and Yates,J.R.(2007) Quantitative mass spectrometry identifies insulin signaling targets in C-elegans,Science 317,660-663.
    [10]Domon,B.,and Aebersold,R.(2006) Review-Mass spectrometry and protein analysis,Science 312,212-217.
    [11]Snyder,A.P.(1996) Electrospray:A popular ionization technique for mass spectrometry,in Biochemical and Biotechnological Applications of Electrospray Ionization Mass Spectrometry,pp 1-20.
    [12]Senko,M.W.,and McLafferty,F.W.(1994) Mass-Spectrometry of Macromolecules-Has Its Time Now Come,Annual Review of Biophysics and Biomolecular Structure 23,763-785.
    [13]Vertes,A.,Balazs,L.,and Gijbels,R.(1990) Matrix-Assisted Laser Desorption of Peptides in Transmission Geometry,Rapid Communications in Mass Spectrometry 4,263-266,
    [14]Karas,M.,Bachmann,D.,Bahr,U.,and Hillenkamp,F.(1987)Matrix-Assisted Ultraviolet-Laser Desorption of Nonvolatile Compounds,International Journal of Mass Spectrometry and Ion Processes 78,53-68.
    [15]Whitehouse,C.M.,Dreyer,R.N.,Yamashita,M.,and Fenn,J.B.(1985)Electrospray Interface for Liquid Chromatographs and Mass Spectrometers,Analytical Chemistry 57,675-679.
    [16]Teer,D.,and Dole,M.(1975) Electrospray Mass-Spectroscopy of Macromolecule Degradation in Electrospray,Journal of Polymer Science Part B-Polymer Physics 13,985-995.
    [17]Dole,M.,Cox,H.L.,and Gieniec,J.(1971) Electrospray Mass Spectroscopy,Abstracts of Papers of the American Chemical Society,44-&.
    [18]Wang,W.,Tai,F.J.,and Chen,S.N.(2008) Optimizing protein extraction from plant tissues for enhanced proteomics analysis, Journal of Separation Science 31, 2032-2039.
    [19] Gundry, R. L., Boheler, K. R., Van Eyk, J. E., and Wollscheid, B. (2008) A novel role for proteomics in the discovery of cell-surface markers on stem cells: Scratching the surface, Proteomics Clinical Applications 2, 892-903.
    [20] Gutstein, H. B., MorriS, J. S., Annangudi, S. P., and Sweedler, J. V. (2008) Microproteomics: Analysis of protein diversity in small samples, Mass Spectrometry Reviews 27, 316-330.
    [21] Gutstein, H. B., and Morris, J. S. (2007) Laser capture sampling and analytical isues in proteomics, Expert Review of Proteomics 4, 627-637.
    [22] Christ, D., and Winter, G. (2006) Identification of protein domains by shotgun proteolysis, Journal of Molecular Biology 358, 364-371.
    [23] Speers, A. E., and Cravatt, B. F. (2005) A tandem orthogonal proteolysis strategy for high-content chemical proteomics, Journal of the American Chemical Society 127, 10018-10019.
    [24] Wang, H., and Hanash, S. M. (2008) Increased throughput and reduced carryover of mass spectrometry-based proteomics using a high-efficiency nonsplit nanoflow parallel dual-column capillary HPLC system, Journal of Proteome Research 7, 2743-2755.
    [25] Chen, G. D., and Pramanik, B. N. (2008) LC-MS for protein characterization: current capabilities and future trends, Expert Review of Proteomics 5, 435-444.
    [26] Brown, K. J., and Fenselau, C. (2004) Investigation of doxorubicin resistance in MCF-7 breast cancer cells using shot-gun comparative proteomics with proteolytic 0-18 labeling, Journal of Proteome Research 3, 455-462.
    [27] Moon, M. H., Myung, S., Plasencia, M., Hilderbrand, A. E., and Clemmer, D. E. (2003) Nanoflow LC/ion mobility/CID/TOF for proteomics: analysis of a human urinary Proteome, Journal of Proteome Research 2, 589-597.
    [28] Appella, E., and Anderson, C. W. (2007) New prospects for proteomics - electron-capture (ECD) and electron-transfer dissociation (ETD) fragmentation techniques and combined fractional diagonal chromatography (COFRADIC), Febs Journal 274, 6255-6255.
    [29] Vandenbogaert, M., Li-Thiao-Te, S., Kaltenbach, H. M., Zhang, R. X., Aittokallio, T., and Schwikowski, B. (2008) Alignment of LC-MS images, with applications to biomarker discovery and protein identification, Proteomics 8, 650-672.
    [30] America, A. H. P., and Cordewener, J. H. G. (2008) Comparative LC-MS: A landscape of peaks and valleys, Proteomics 8, 731-749.
    [31] McAlister, G. C., Berggren, W. T., Griep-Raming, J., Horning, S., Makarov, A., Phanstiel, D., Stafford, G., Swaney, D. L., Syka, J. E. P., Zabrouskov, V., and Coon, J. J. (2008) A proteomics grade electron transfer dissociation-enabled hybrid linear ion trap-orbitrap mass spectrometer, Journal of Proteome Research 7, 3127-3136.
    [32] Ouvry-Patat, S. A., Torres, M. P., Quek, H. H., Gelfand, C. A., O'Mullan, P., Nissum, M., Schroeder, G. K., Han, J., Elliott, M, Dryhurst, D., Ausio, J., Wolfenden, R., and Borchers, C. H. (2008) Free-flow electrophoresis for top-down proteomics by Fourier transform ion cyclotron resonance mass spectrometry, Proteomics 8, 2798-2808.
    [33] Collier, T. S., Hawkridge, A. M, Georgianna, D. R., Payne, G. A., and Muddiman, D. C. (2008) Top-down identification and quantification of stable isotope labeled proteins from Aspergillus flavus using online nano-flow reversed-phase liquid chromatography coupled to a LTQ-FTICR mass spectrometer, Analytical Chemistry 80, 4994-5001.
    [34] Brosch, M, Swamy, S., Hubbard, T., and Choudhary, J. (2008) Comparison of mascot and X!Tandem performance for low and high accuracy mass spectrometry and the development of an adjusted Mascot threshold, Molecular & Cellular Proteomics 7, 962-970.
    [35] Leung, K. Y., Lescuyer, P., Campbell, J., Byers, H. L., Allard, L., Sanchez, J. C., and Ward, M. A. (2005) A novel strategy using MASCOT Distiller for analysis of cleavable isotope-coded affinity tag data to quantify protein changes in plasma, Proteomics 5, 3040-3044.
    [36] Martinez-Bartolome, S., Navarro, P., Martin-Maroto, F., Lopez-Ferrer, D., Ramos-Fernandez, A., Villar, M., Garcia-Ruiz, J. P., and Vazquez, J. (2008) Properties of average score distributions of SEQUEST, Molecular & Cellular Proteomics 7, 1135-1145.
    [37] Zhang, J. Y., Li, J. Q., Xie, H. W., Zhu, Y. P., and He, F. C. (2007) A new strategy to filter out false positive identifications of peptides in SEQUEST database search results, Proteomics 7, 4036-4044.
    [38] Mann, M. (2006) Functional and quantitative proteomics using SILAC, Nature Reviews Molecular Cell Biology 7, 952-958.
    [39] Carreira, R. J., Rial-Otero, R., Lopez-Ferrer, D., Lodeiro, C, and Capelo, J. L. (2008) Ultrasonic energy as a new tool for fast isotopic 0-18 labeling of proteins for mass spectrometry-based techniques: Preliminary results, Talanta 76, 400-406.
    [40] Mirza, S. P., Greene, A. S., and Olivier, M. (2008) 0-18 labeling over a coffee break: A rapid strategy for quantitative proteomics, Journal of Proteome Research 7, 3042-3048.
    [41] Hekmat, O., He, S. M., Warren, R. A. J., and Withers, S. G. (2008) A mechanism-based ICAT strategy for comparing relative expression and activity levels of glycosidases in biological systems, Journal of Proteome Research 7, 3282-3292.
    [42] Vaughn, C. P., Crockett, D. K., Lim, M. S., and Elenitoba-Johnson, K. S. (2005) Analytical characteristics of ICAT-LC-MS/MS for quantitative proteomics studies, Journal of Molecular Diagnostics 7, 691-692.
    [43] Garbis, S. D., Tyritzis, S. I., Roumeliotis, T., Zerefos, P., Giannopoulou, E. G., Vlahou, A., Kossida, S., Diaz, J., Vourekas, S., Tamvakopoulos, C., Pavlakis, K., Sanoudou, D., and Constantinides, C. A. (2008) Search for potential markers for prostate cancer diagnosis, prognosis and treatment in clinical tissue specimens using amine-specific isobaric tagging (iTRAQ) with two-dimensional liquid chromatography and tandem mass spectrometry, Journal of Proteome Research 7, 3146-3158.
    [44] Song, X. M., Bandow, J., Sherman, J., Baker, J. D., Brown, P. W., McDowell, M. T., and Molloy, M. P. (2008) iTRAQ experimental design for plasma biomarker discovery, Journal of Proteome Research 7, 2952-2958.
    [45] Andersen, J. S., and Mann, M. (2006) Organellar proteomics: turning inventories into insights, Embo Reports 7, 874-879.
    [46] Cusick, M. E., Klitgord, N., Vidal, M., and Hill, D. E. (2005) Interactome: gateway into systems biology, Human Molecular Genetics 14, R171-R181.
    [47] Vendruscolo, M. (2008) Protein dynamics under light control, Nature Chemical Biology 4, 449-450.
    [48] Michnick, S. W. (2004) Proteomics in living cells, Drug Discovery Today 9, 262-267.
    [49] Danial, N. N., Gramm, C. F., Scorrano, L., Zhang, C. Y., Krauss, S., Ranger, A. M., Datta, S. R., Greenberg, M. E., Licklider, L. J., Lowell, B. B., Gygi, S. P., and Korsmeyer, S. J. (2003) BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis, Nature 424, 952-956.
    [50] Harada, H., Becknell, B., Wilm, M., Mann, M., Huang, L. J. S., Taylor, S. S., Scott, J. D., and Korsmeyer, S. J. (1999) Phosphorylation and inactivation of BAD by mitochondria-anchored protein kinase A, Molecular Cell 3, 413-422.
    [51] Gatenby, R. A., and Gillies, R. J. (2004) Why do cancers have high aerobic glycolysis?, Nature Reviews Cancer 4, 891-899.
    [52] Wang, X. D. (2001) The expanding role of mitochondria in apoptosis, Genes & Development 15, 2922-2933.
    [53] Danial, N. N., Walensky, L. D., Zhang, C. Y., Choi, C. S., Fisher, J. K., Molina, A. J. A., Datta, S. R., Pitter, K. L., Bird, G. H., Wikstrom, J. D., Deeney, J. T., Robertson, K., Morash, J., Kulkarni, A., Neschen, S., Kim, S., Greenberg, M. E., Corkey, B. E., Shirihai, O. S., Shulman, G. I., Lowell, B. B., and Korsmeyer, S. J. (2008) Dual role of proapoptotic BAD in insulin secretion and beta cell survival, Nature Medicine 14, 144-153.
    [54] Khan, S. M., Franke-Fayard, B., Mair, G. R., Lasonder, E., Janse, C. J., Mann, M., and Waters, A. P. (2005) Proteome analysis of separated male and female gametocytes reveals novel sex-specific Plasmodium biology, Cell 121, 675-687.
    [55] Manning, G., Whyte, D. B., Martinez, R., Hunter, T., and Sudarsanam, S. (2002) The protein kinase complement of the human genome, Science 298, 1912-+.
    [56] Matsuoka, S., Ballif, B. A., Smogorzewska, A., McDonald, E. R., Hurov, K. E., Luo, J., Bakalarski, C. E., Zhao, Z. M., Solimini, N., Lerenthal, Y., Shiloh, Y., Gygi, S. P., and Elledge, S. J. (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage, Science 316, 1160-1166.
    [57] Shiloh, Y. (2006) The ATM-mediated DNA-damage response: taking shape, Trends in Biochemical Sciences 31, 402-410.
    [58] Mann, M. (2006) Functional and quantitative proteomics using SILAC, Nature Reviews Molecular Cell Biology 7, 952-958.
    [59] Oda, Y, Huang, K., Cross, F. R., Cowburn, D., and Chait, B. T. (1999) Accurate quantitation of protein expression and site-specific phosphorylation, Proceedings of the National Academy of Sciences of the United States of America 96, 6591-6596.
    [60] Wang, B., Matsuoka, S., Ballif, B. A., Zhang, D., Smogorzewska, A., Gygi, S. P., and Elledge, S. J. (2007) Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response, Science 316, 1194-1198.
    [61] Smogorzewska, A., Matsuoka, S., Vinciguerra, P., McDonald, E. R., Hurov, K. E., Luo, J., Ballif, B. A., Gygi, S. P., Hofmann, K., D'Andrea, A. D., and Elledge, S. J. (2007) Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair, Cell 129, 289-301.
    [62] Garcia, B. A., Pesavento, J. J., Mizzen, C. A., and Kelleher, N. L. (2007) Pervasive combinatorial modification of histone H3 in human cells, Nature Methods 4, 487-489.
    [63] Kim, S. C., Sprung, R., Chen, Y., Xu, Y. D., Ball, H., Pei, J. M., Cheng, T. L., Kho, Y, Xiao, H., Xiao, L., Grishin, N. V., White, M., Yang, X. J., and Zhao, Y. M. (2006) Substrate and functional diversity of lysine acetylation revealed by a proteomics survey, Molecular Cell 23, 607-618.
    [64] Ong, S. E., Mittler, G., and Mann, M. (2004) Identifying and quantifying in vivo methylation sites by heavy methyl SILAC, Nature Methods 1, 119-126.
    [65] Khidekel, N., Ficarro, S. B., Clark, P. M., Bryan, M. C, Swaney, D. L., Rexach, J. E., Sun, Y. E., Coon, J. J., Peters, E. C., and Hsieh-Wilson, L. C. (2007) Probing the dynamics of O-GlcNAc glycosylation in the brain using quantitative proteomics, Nature Chemical Biology 3, 339-348.
    [66] Peng, J. M., Schwartz, D., Elias, J. E., Thoreen, C. C., Cheng, D. M., Marsischky, G., Roelofs, J., Finley, D., and Gygi, S. P. (2003) A proteomics approach to understanding protein ubiquitination, Nature Biotechnology 21, 921-926.
    [67] Siuti, N., and Kelleher, N. L. (2007) Decoding protein modifications using top-down mass spectrometry, Nature Methods 4, 817-821.
    [68] Zabrouskov, V., Senko, M. W., Du, Y, Leduc, R. D., and Kelleher, N. L. (2005) New and automated MSn approaches for top-down identification of modified proteins, Journal of the American Society for Mass Spectrometry 16, 2027-2038.
    [69] Gerber, S. A., Rush, J., Stemman, O., Kirschner, M. W., and Gygi, S. P. (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS,Proceedings of the National Academy of Sciences of the United States of America 100,6940-6945.
    [70]Conrads,T.P.,Anderson,G.A.,Veenstra,T.D.,Pasa-Tolic,L.,and Smith,R.D.(2000) Utility of accurate mass tags for proteome-wide protein identification,Analytical Chemistry 72,3349-3354.
    [71]Nowak,R.(1995) Entering the Postgenome Era,Science 270,368-&.
    [72]Washburn,M.P.,Wolters,D.,and Yates,J.R.(2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology,Nature Biotechnology 19,242-247.
    [73]Kelleher,N.L.(2004) Top-down proteomics,Analytical Chemistry 76,196A-203A.
    [74]Slysz,G.W.,and Schriemer,D.C.(2005) Blending protein separation and peptide analysis through real-time proteolytic digestion,Analytical Chemistry 77,1572-1579.
    [75]Lazar,I.M.,Ramsey,R.S.,and Ramsey,J.M.(2001) On-chip proteolytic digestion and analysis using "wrong-way-round" electrospray time-of-flight mass spectrometry,Analytical Chemistry 73,1733-1739.
    [76]Yates,J.R.(1998) Mass spectrometry and the age of the proteome,Journal of Mass Spectrometry 33,1-19.
    [77]Chang,J.P.,Kiehl,D.E.,and Kennington,A.(1997) Separation and characterization of the tryptic peptide mapping of recombinant bovine growth hormone by reversed-phase high-performance liquid chromatography electrospray mass spectrometry,Rapid Communications in Mass Spectrometry 11,1266-1270.
    [78]Shui,W.Q.,Fan,J.,Yang,P.Y.,Liu,C.L.,Zhai,J.J.,Lei,J.,Yan,Y.,Zhao,D.Y.,and Chen,X.(2006) Nanopore-based proteolytic reactor for sensitive and comprehensive proteomic analyses,Analytical Chemistry 78,4811-4819.
    [79]Bonneil,E.,and Waldron,K.C.(2000) On-line system for peptide mapping by capillary electrophoresis at sub-micromolar concentrations,Talanta 53,687-699.
    [80]Hsieh,Y.L.F.,Wang,H.Q.,Elicone,C.,Mark,J.,Martin,S.A.,and Regnier,F.(1996)Automated analytical system for the examination of protein primary structure,Analytical Chemistry 68,455-462.
    [81]Tyan,Y.C.,Jong,S.B.,Liao,J.D.,Liao,P.C.,Yang,M.H.,Liu,C.Y., Klauser, R., Himmelhaus, M., and Grunze, M. (2005) Proteomic profiling of erythrocyte proteins by proteolytic digestion chip and identification using two-dimensional electrospray ionization tandem mass spectrometry, Journal of Proteome Research 4, 748-757.
    [82] Cooper, J. W., Chen, J. Z., Li, Y., and Lee, C. S. (2003) Membrane-based nanoscale proteolytic reactor enabling protein digestion, peptide separation, and protein identification using mass spectrometry, Analytical Chemistry 75, 1067-1074.
    [83] Gao, J., Xu, J. D., Locascio, L. E., and Lee, C. S. (2001) Integrated microfluidic system enabling protein digestion, peptide separation, and protein identification, Analytical Chemistry 73, 2648-2655.
    [84] Amankwa, L. N., and Kuhr, W. G. (1992) Trypsin-Modified Fused-Silica Capillary Microreactor for Peptide-Mapping by Capillary Zone Electrophoresis, Analytical Chemistry 64, 1610-1613.
    [85] Bossi, A., Guizzardi, L., D'Acunto, M. R., and Righetti, P. G (2004) Controlled enzyme-immobilisation on capillaries for microreactors for peptide mapping, Analytical and Bioanalytical Chemistry 378, 1722-1728.
    [86] Guo, Z., Xu, S. Y., Lei, Z. D., Zou, H. F., and Guo, B. C. (2003) Immobilized metal-ion chelating capillary microreactor for peptide mapping analysis of proteins by matrix assisted laser desorption/ionization-time of flight-mass spectrometry, Electrophoresis 24, 3633-3639.
    [87] Geiser, L., Eeltink, S., Svec, F., and Frechet, J. M. J. (2008) In-line system containing porous polymer monoliths for protein digestion with immobilized pepsin, peptide preconcentration and nano-liquid chromatography separation coupled to electrospray ionization mass spectroscopy, Journal of Chromatography A 1188, 88-96.
    [88] Peterson, D. S., Rohr, T., Svec, F., and Frechet, J. M. J. (2002) Enzymatic microreactor-on-a-chip: Protein mapping using trypsin immobilized on porous polymer monoliths molded in channels of microfluidic devices, Analytical Chemistry 74, 4081-4088.
    [89] Svec, F. (2006) Less common applications of monoliths: I. Microscale protein mapping with proteolytic enzymes immobilized on monolithic supports, Electrophoresis 27, 947-961.
    [90] Wu, H. L., Zhai, J. J., Tian, Y. P., Lu, H. J., Wang, X. Y., Jia, W. T., Liu, B. H., Yang, P. Y., Xu, Y. M, and Wang, H. H. (2004) Microfluidic enzymatic-reactors for peptide mapping: strategy, characterization, and performance, Lab on a Chip 4, 588-597.
    [91] Liu, Y., Lu, H. J., Zhong, W., Song, P. Y., Kong, J. L., Yang, P. Y., Girault, H. H., and Liu, B. H. (2006) Multi layer-assembled microchip for enzyme immobilization as reactor toward low-level protein identification, Analytical Chemistry 78, 801-808.
    [92] Petro, M., Svec, F., and Frechet, J. M. J. (1996) Immobilization of trypsin onto "molded" macroporous poly(glycidyl methacrylate-co-ethylene dimethacrylate) rods and use of the conjugates as bioreactors and for affinity chromatography, Biotechnology and Bioengineering 49, 355-363.
    [93] Peterson, D. S., Rohr, T., Svec, F., and Frechet, J. M. J. (2003) Dual-function microanalytical device by in situ photolithographic grafting of porous polymer monolith: Integrating solid-phase extraction and enzymatic digestion for peptide mass mapping, Analytical Chemistry 75, 5328-5335.
    [94] Krenkova, J., Bilkova, Z., and Foret, F. (2005) Characterization of a monolithic immobilized trypsin microreactor with on-line coupling to ESI-MS, Journal of Separation Science 28, 1675-1684.
    [95] Luo, Q. Z., Mao, X. Q., Kong, L., Huang, X. D., and Zou, H. F. (2002) High-performance affinity chromatography for characterization of human immunoglobulin G digestion with papain, Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 776, 139-147.
    [96] Ye, M. L., Hu, S., Schoenherr, R. M., and Dovichi, N. J. (2004) On-line protein digestion and peptide mapping by capillary electrophoresis with post-column labeling for laser-induced fluorescence detection, Electrophoresis 25, 1319-1326.
    [97] Zhang, K., Wu, S., Tang, X. T., Kaiser, N. K., and Bruce, J. E. (2007) A bifunctional monolithic column for combined protein preconcentration and digestion for high throughput proteomics research, Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 849, 223-230.
    [98] Palm, A. K., and Novotny, M V. (2004) Analytical characterization of a facile porous polymer monolithic trypsin microreactor enabling peptide mass mapping using mass spectrometry, Rapid Communications in Mass Spectrometry 18, 1374-1382.
    [99] Palms, A. K., and Novotny, M. V. (2005) A monolithic PNGase F enzyme microreactor enabling glycan mass mapping of glycoproteins by mass spectrometry, Rapid Communications in Mass Spectrometry 19, 1730-1738.
    [100] Peterson, D. S., Rohr, T., Svec, F., and Frechet, J. M. J. (2002) High-throughput peptide mass mapping using a microdevice containing trypsin immobilized on a porous polymer monolith coupled to MALDI TOF and ESI TOF mass spectrometers, Journal of Proteome Research 1, 563-568.
    [101] Liu, Y., Xue, Y., Ji, J., Chen, X., Kong, J., Yang, P. Y, Girault, H. H., and Liu, B. H. (2007) Gold nanoparticle assembly microfluidic reactor for efficient on-line proteolysis, Molecular & Cellular Proteomics 6, 1428-1436.
    [102] Ji, J., Zhang, Y., Zhou, X., Kong, J., Tang, Y, and Liu, B. (2008) Enhanced protein digestion through the confinement of nanozeolite-assembled microchip reactors, Analytical Chemistry 80, 2457-2463.
    [103] Li, Y., Yan, B., Deng, C. H., Yu, W. J., Xu, X. Q., Yang, P. Y, and Zhang, X. M. (2007) Efficient on-chip proteolysis system based on functionalized magnetic silica microspheres, Proteomics 7, 2330-2339.
    [104] Li, Y, Xu, X. Q., Yan, B., Deng, C. H., Yu, W. J., Yang, P. Y, and Zhang, X. M. (2007) Microchip reactor packed with metal-ion chelated magnetic silica microspheres for highly efficient proteolysis, Journal of Proteome Research 6, 2367-2375.
    [105] Juan, H. F., Chang, S. C., Huang, H. C., and Chen, S. T. (2005) A new application of microwave technology to proteomics, Proteomics 5, 840-842.
    [106] Pramanik, B. N., Mirza, U. A., Ing, Y H., Liu, Y H., Bartner, P. L., Weber, P. C, and Bose, M. K. (2002) Microwave-enhanced enzyme reaction for protein mapping by mass spectrometry: A new approach to protein digestion in minutes, Protein Science 11, 2676-2687.
    [107] Lin, S. S., Wu, C. H., Sun, M. C., Sun, C. M., and Ho, Y. P. (2005) Microwalve-assisted enzyme-catalyzed reactions in various solvent systems, Journal of the American Society for Mass Spectrometry 16, 581-588.
    [108] Zhong, H. Y, Zhang, Y, Wen, Z. H., and Li, L. (2004) Protein sequencing by mass analysis of polypeptide ladders after controlled protein hydrolysis, Nature Biotechnology 22, 1291 -1296.
    [109] Zhong, H. Y, Marcus, S. L., and Li, L. (2005) Microwave-assisted acid hydrolysis of proteins combined with liquid chromatography MALDI MS/MS for protein identification, Journal of the American Society for Mass Spectrometty 16, 471-481.
    [110] Lin, S., Yao, G. P., Qi, D. W., Li, Y., Deng, C. H., Yang, P. Y, and Zhang, X. M. (2008) Fast and efficient proteolysis by microwave-assisted protein digestion using trypsin-immobilized magnetic silica microspheres, Analytical Chemistry 80, 3655-3665.
    [111] Lin, S., Yun, D., Qi, D. W., Deng, C. H., Li, Y, and Zhang, X. M. (2008) Novel microwave-assisted digestion by trypsin-immobilized magnetic nanoparticles for proteomic analysis, Journal of Proteome Research 7, 1297-1307.
    [112] Vale, G, Pereira, S., Mota, A., Fonseca, L., and Capelo, J. L. (2007) Enzymatic probe sonication as a tool for solid-liquid extraction for total selenium determination by electrothermal-atomic absorption spectrometry, Talanta74, 198-205.
    [113] Rial-Otero, R., Carreira, R. J., Cordeiro, F. M., Moro, A. J., Santos, H. M., Vale, G., Moura, I., and Capelo, J. L. (2007) Ultrasonic assisted protein enzymatic digestion for fast protein identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry Sonoreactor versus ultrasonic probe, Journal of Chromatography A 1166,101-107.
    [114] Carreira, R. J., Cordeiro, F. M., Moro, A. J., Rivas, M. G, Rial-Otero, R., Gaspar, E. M., Moura, I., and Capelo, J. L. (2007) New findings for in-gel digestion accelerated by high-intensity focused ultrasound for protein identification by matrix-assisted laser desorption ionization time-of-flight mass spectrometry, Journal of Chromatography A 1153, 291-299.
    [115] Lopez-Ferrer, D., Capelo, J. L., and Vazquez, J. (2005) Ultra fast trypsin digestion of proteins by high intensity focused ultrasound, Journal of Proteome Research 4, 1569-1574.
    [116] Pena-Farfal, C., Moreda-Pineiro, A., Bermejo-Barrera, A., Bermejo-Barrera, P., Pinochet-Cancino, H., and de Gregori-Henriquez, I. (2004) Ultrasound bath-assisted enzymatic hydrolysis procedures as sample pretreatment for the multielement determination in mussels by inductively coupled plasma atomic emission spectrometry, Analytical Chemistry 76, 3541-3547.
    [117] Guzman, N. A., Blanc, T., and Phillips, T. M. (2008) Immunoaffinity capillary electrophoresis as a powerful strategy for the quantification of low-abundance biomarkers drugs and metabolites in biological matrices, Electrophoresis 29, 3259-3278.
    [118] Ackermann, B. L., and Berna, M. J. (2007) Coupling immunoaffinity techniques with MS for quantitative analysis of low-abundance protein biomarkers, Expert Review of Proteomics 4, 175-186.
    [119] Paradela, A., and Albar, J. P. (2008) Advances in the analysis of protein phosphorylation, Journal of Proteome Research 7, 1809-1818.
    [120] Mairal, T., Ozalp, V. C., Sanchez, P. L., Mir, M., Katakis, I., and O'Sullivan, C. K. (2008) Aptamers: molecular tools for analytical applications, Analytical and Bioanalytical Chemistry 390, 989-1007.
    [121] Liu, S. Q., Wollenberger, U., Halamek, J., Leupold, E., Stocklein, W., Warsinke, A., and Scheller, F. W. (2005) Affinity interactions between phenylboronic acid-carrying self-assembled monolayers and flavin adenine dinucleotide or horseradish peroxidase, Chemistry-a European Journal 11, 4239-4246.
    [122] Gontarev, S., Shmanai, V., Frey, S. K., Kvach, M., and Schweigert, F. J. (2007) Application of phenylboronic acid modified hydrogel affinity chips for high-throughput mass spectrometric analysis of glycated proteins, Rapid Communications in Mass Spectrometry 21, 1-6.
    [123] Hirabayashi, J. (2008) Concept, strategy and realization of lectin-based glycan profiling, Journal of Biochemistry 144, 139-147.
    [124] Shen, W. W., Xiong, H. M., Xu, Y., Cai, S. J., Lu, H. J., and Yang, P. Y (2008) ZnO-poly(methyl methacrylate) nanobeads for enriching and desalting low-abundant proteins followed by directly MALDI-TOF MS analysis, Analytical Chemistry 80, 6758-6763.
    [125] Jia, W. T., Chen, X. H., Lu, H. J., and Yang, P. Y. (2006) CaCO3-poly(methyl methacrylate) nanoparticles for fast enrichment of low-abundance peptides followed by CaCO3-core removal for MALDI-TOF MS analysis, Angewandte Chemie-lnternational Edition 45, 3345-3349.
    [126] Wada, Y., Tajiri, M., and Yoshida, S. (2004) Hydrophilic affinity isolation and MALDI multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics, Analytical Chemistry 76, 6560-6565.
    [127] Hemstrom, P., and Irgum, K. (2006) Hydrophilic interaction chromatography, Journal of Separation Science 29, 1784-1821.
    [128] Zhang, H., Li, X. J., Martin, D. B., and Aebersold, R. (2003) Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry, Nature Biotechnology 21, 660-666.
    [129] Tao, W. A., Wollscheid, B., O'Brien, R., Eng, J. K., Li, X. J., Bodenmiller, B., Watts, J. D., Hood, L., and Aebersold, R. (2005) Quantitative phosphoproteome analysis using a dendrimer conjugation chemistry and tandem mass spectrometry, Nature Methods 2, 591-598.
    [130] Mattila, K., Ora, M., and Lonnberg, H. (2006) Tagging of phosphopeptides by phosphate elimination and Michael addition: The effect of nearest neighbors on the reaction kinetics, Letters in Organic Chemistry 3, 514-518.
    [131] Salih, E. (2005) Phosphoproteomics by mass spectrometry and classical protein chemistry approaches, Mass Spectrometry Reviews 24, 828-846.
    [132] Sui, S. H., Wang, J. L., Yang, B., Song, L., Zhang, J. Y., Chen, M., Liu, J. F., Lu, Z., Cai, Y., Chen, S., Bi, W., Zhu, Y P., He, F. C., and Qian, X. H. (2008) Phosphoproteome analysis of the human Chang liver cells using SCX and a complementary mass spectrometric strategy, Proteomics 8, 2024-2034.
    [133] Choi, H., Lee, H. S., and Park, Z. Y. (2008) Detection of multiphosphorylated peptides in LC-MS/MS analysis under low pH conditions, Analytical Chemistry 80, 3007-3015.
    [134] Villen, J., Beausoleil, S. A., Gerber, S. A., and Gygi, S. P. (2007) Large-scale phosphorylation analysis of mouse liver, Proceedings of the National Academy of Sciences of the United States of America 104, 1488-1493.
    [135] Lewandrowski, U., Zahedi, R. P., Moebius, J., Walter, U., and Sickmann, A. (2007) Enhanced N-glycosylation site analysis of Sialoglycopeptides by strong cation exchange prefractionation applied to platelet plasma membranes, Molecular & Cellular Proteomics 6, 1933-1941.
    [1]Sweet,S.M.M.,and Cooper,H.J.(2007) Electron capture dissociation in the analysis of protein phosphorylation,Expert Review of Proteomics 4,149-159.
    [2]Satake,H.,Hasegawa,H.,Hirabayashi,A.,Hashimoto,Y.,and Baba,T.(2007)Fast multiple electron capture dissociation in a linear radio frequency quadrupole ion trap,Analytical Chemistry 79,8755-8761.
    [3]Appella,E.,and Anderson,C.W.(2007) New prospects for proteomics-electron -capture(ECD) and electron-transfer dissociation(ETD)fragmentation techniques and combined fractional diagonal chromatography (COFRADIC),Febs Journal 274,6255-6255.
    [4]Good,D.M.,Wirtala,M.,McAlister,G.C.,and Coon,J.J.(2007)Performance characteristics of electron transfer dissociation mass spectrometry,Molecular & Cellular Proteomics 6,1942-1951.
    [5]Lane,C.S.,Wang,Y.Q.,Betts,R.,Griffiths,W.J.,and Patterson,L.H.(2007) Comparative cytochrome P450 proteomics in the livers of Immunodeficient mice using O-18 stable isotope labeling,Molecular &Cellular Proteomics 6,953-962.
    [6]Miyagi,M.,and Rao,K.C.S.(2007) Proteolytic O-18-1abeling strategies for quantitative proteomics,Mass Spectrometry Reviews 26,121-136.
    [7]Mason,C.J.,Therneau,T.M.,Eckel-Passow,J.E.,Johnson,K.L.,Oberg,A.L.,Olson,J.E.,Nair,K.S.,Muddiman,D.C.,and Bergen,H.R.(2007) A method for automatically interpreting mass spectra of 180-labeled isotopic clusters,Molecular & Cellular Proteomics 6,305-318.
    [8]Ramos-Fernandez,A.,Lopez-Ferrer,D.,and Vazquez,J.(2007) Improved method for differential expression proteomics using trypsin-catalyzed O-18labeling with a correction for labeling efficiency,Molecular & Cellular Proteomics 6,1274-1286.
    [9]Sevinsky,J.R.,Brown,K.J.,Cargile,B.J.,Bundy,J.L.,and Stephenson,J.L.(2007) Minimizing back exchange in O-18/O-16 quantitative proteomics experiments by incorporation of immobilized trypsin into the initial digestion step, Analytical Chemistry 79, 2158-2162.
    [10] Ibanez, A. J., Muck, A., Halim, V., and Svatos, A. (2007) Trypsin-linked copolymer MALDI chips for fast protein identification, Journal of Proteome Research 6, 1183-1189.
    [11] Zhang, Y. H., Liu, Y., Kong, J. L., Yang, P. Y., Tang, Y., and Liu, B. H. (2006) Efficient proteolysis system: A nanozeolite-derived microreactor, Small 2, 1170-1173.
    [12] Calleri, E., Temporini, C., Perani, E., De Palma, A., Lubda, D., Mellerio, G., Sala, A., Galliano, M, Caccialanza, G., and Massolini, G. (2005) Trypsin-based monolithic bioreactor coupled on-line with LC/MS/MS system for protein digestion and variant identification in standard solutions and serum samples, Journal of Proteome Research 4, 481-490.
    [13] Massolini, G., and Calleri, E. (2005) Immobilized trypsin systems coupled on-line to separation methods: Recent developments and analytical applications, Journal of Separation Science 28, 7-21.
    [14] Wu, H. L., Zhai, J. J., Tian, Y. P., Lu, H. J., Wang, X. Y., Jia, W. T., Liu, B. H., Yang, P. Y., Xu, Y. M., and Wang, H. H. (2004) Microfluidic enzymatic-reactors for peptide mapping: strategy, characterization, and performance, Lab on a Chip 4, 588-597.
    [15] Bilkova, Z., Slovakova, M., Minc, N., Futterer, C., Cecal, R., Horak, D., Benes, M., le Potier, I., Krenkova, J., Przybylski, M., and Viovy, J. L. (2006) Functional ized magnetic micro- and nanoparticles: Optimization and application to mu-chip tryptic digestion, Electrophoresis 27, 1811-1824.
    [16] Choi, J. W., Oh, K. W., Thomas, J. H., Heineman, W. R., Halsall, H. B., Nevin, J. H., Helmicki, A. J., Henderson, H. T., and Ahn, C. H. (2002) An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities, Lab on a Chip 2, 27-30.
    [17] Berggard, T., Linse, S., and James, P. (2007) Methods for the detection and analysis of protein-protein interactions, Proteomics 7, 2833-2842.
    [18] Li, Y., Xu, X. Q., Deng, C. H., Yang, P. Y., and Zhang, X. M. (2007) Immobilization of trypsin on superparamagnetic nanoparticles for rapid and effective proteolysis, Journal of Proteome Research 6, 3849-3855.
    [19] Aphesteguy, J. C., and Jacobo, S. E. (2007) Synthesis of a soluble polyaniline-ferrite composite: magnetic and electric properties, Journal of Materials Science 42, 7062-7068.
    [20] Jacobo, S. E., Aphesteguy, J. C., Anton, R. L., Schegoleva, N. N., and Kurlyandskaya, G. V. (2007) Influence of the preparation procedure on the properties of polyaniline based magnetic composites, European Polymer Journal 43, 1333-1346.
    [21] Kurlyandskaya, G. V., Cunanan, J., Bhagat, S. M., Aphesteguy, J. C., and Jacobo, S. E. (2007) Field-induced microwave absorption in Fe3O4 nanoparticles and Fe3O4/polyaniline composites synthesized by different methods, Journal of Physics and Chemistry of Solids 68, 1527-1532.
    [22] Ma, J. M., Wang, Y., Niu, J. S., and Shen, X. Y. (2006) Synthesis and characterization of La-doped Fe3O4-polyaniline magnetic response nanocomposites, Journal of Macromolecular Science Part B-Physics 45, 533-540.
    [23] Reddy, K. R., Lee, K. P., Gopalan, A. I., and Showkat, A. M. (2007) Synthesis and properties of magnetite/poly (aniline-co-8-amino-2-naphthalenesulfonic acid) (SPAN) nanocomposites, Polymers for Advanced Technologies 18, 38-43.
    [24] Reddy, K. R., Lee, K. P., and Iyengar, A. G. (2007) Synthesis and characterization of novel conducting composites of Fe3O4 nanoparticles and sulfonated polyanilines, Journal of Applied Polymer Science 104, 4127-4134.
    [25] Lu, X. F., Mao, H., Chao, D. M., Zhang, W. J., and Wei, Y. (2006) Ultrasonic synthesis of polyaniline nanotubes containing Fe3O4 nanoparticles, Journal of Solid State Chemistry 179, 2609-2615.
    [26] Deng, J. G., He, C. L., Peng, Y. X., Wang, J. H., Long, X. P., Li, P., and Chan, A. S. C. (2003) Magnetic and conductive Fe3O4-polyaniline nanoparticles with core-shell structure, Synthetic Metals 139, 295-301.
    [27] Iijima, S. (1991) Helical Microtubules of Graphitic Carbon, Nature 354, 56-58.
    [28] Chae, H. G., and Kumar, S. (2008) Materials science - Making strong fibers, Science 319, 908-909.
    [29] Koziol, K., Vilatela, J., Moisala, A., Motta, M., Cunniff, P., Sennett, M., and Windle, A. (2007) High-performance carbon nanotube fiber, Science 318, 1892-1895.
    [30] Chen, Z. H., Appenzeller, J., Lin, Y. M., Sippel-Oakley, J., Rinzler, A. G., Tang, J. Y., Wind, S. J., Solomon, P. M., and Avouris, P. (2006) An integrated logic circuit assembled on a single carbon nanotube, Science 311,1735-1735.
    [31] Sun, L., Banhart, F., Krasheninnikov, A. V., Rodriguez-Manzo, J. A., Terrones, M., and Ajayan, P. M. (2006) Carbon nanotubes as high-pressure cylinders and nanoextruders, Science 312, 1199-1202.
    [32] Zhang, M., Fang, S. L., Zakhidov, A. A., Lee, S. B., Aliev, A. E., Williams, C. D., Atkinson, K. R., and Baughman, R. H. (2005) Strong, transparent, multifunctional, carbon nanotube sheets, Science 309, 1215-1219.
    [33] Zhang, M., Atkinson, K. R., and Baughman, R. H. (2004) Multifunctional carbon nanotube yarns by downsizing an ancient technology, Science 306, 1358-1361.
    [34] Song, R., Yang, D. B., and He, L. H. (2008) Preparation of Semi-aromatic polyamide (PA) multi-wall carbon nanotube (MWCNT) composites and its dynamic mechanical properties, Journal of Materials Science 43, 1205-1213.
    [35] Lim, J. Y., Kim, S. T., Park, B. J., and Choi, H. J. (2007) Preparation and electrorheological characteristics of PANI/MWNT nanocomposite, International Journal of Modern Physics B 21, 5003-5009.
    [36] Lu, X. F., Chao, D. M, Zheng, J. N., Chen, J. Y., Zhang, W. J., and Wei, Y. (2006) Preparation and characterization of polydiphenylamine/multi-walled carbon nanotube composites, Polymer International 55, 945-950.
    [37] Showkat, A. M., Lee, K. P., Gopalan, A. I., Kim, S. H., Choi, S. H., and Sohn, S. H. (2006) Characterization and preparation of new multiwall carbon nanotube/conducting polymer composites by in situ polymerization, Journal of Applied Polymer Science 101, 3721-3729.
    [38] Wu, T. M., and Lin, Y. W. (2006) Doped polyaniline/multi-walled carbon nanotube composites: Preparation, characterization and properties, Polymer 47, 3576-3582.
    [39] Jiang, F. J., Pu, H. T., Yang, Z. L., and Yin, J. L. (2007) Preparation and properties of soft magnetic composites based on Fe3O4 coated carbon nanotubes, New Carbon Materials 22, 371-31A.
    [40] Tang, D. S., Xie, S. S., Pan, Z. W., Sun, L. F., Liu, Z. Q., Zou, X. P., Li, Y. B., Ci, L. J., Liu, W., Zou, B. S., and Zhou, W. Y. (2002) Preparation of monodispersed multi-walled carbon nanotubes in chemical vapor deposition, Chemical Physics Letters 356, 563-566.
    [41] Qu, S., Wang, J., Kong, J. L., Yang, P. Y., and Chen, G. (2007) Magnetic loading of carbon nanotube/nano-Fe3O4 composite for electrochemical sensing, Talanta 71, 1096-1102.
    [42] Peng, X. J., Luan, Z. K., Di, Z. C, Zhang, Z. G., and Zhu, C. L. (2005) Carbon nanotubes-iron oxides magnetic composites as adsorbent for removal of Pb(Ⅱ) and Cu(Ⅱ) from water, Carbon 43, 880-883.
    [43] Zengin, H., Zhou, W. S., Jin, J. Y., Czerw, R., Smith, D. W., Echegoyen, L., Carroll, D. L., Foulger, S. H., and Ballato, J. (2002) Carbon nanotube doped polyaniline, Advanced Materials 14, 1480-+.
    [44] Ding, Y., Padias, A. B., and Hall, H. K. (1999) Chemical trapping experiments support a cation-radical mechanism for the oxidative polymerization of aniline, Journal of Polymer Science Part a-Polymer Chemistry 37, 2569-2579.
    [45] Li, Y. M., and Wan, M. X. (1998) Studies of transparent and conducting film of polyaniline by a dipping polymerization method, Acta Polymerica Sinica, 177-183.
    [46] Zhu, W. Z., Miser, D. E., Chan, W. G., and Hajaligol, M. R. (2003) Characterization of multiwalled carbon nanotubes prepared by carbon arc cathode deposit, Materials Chemistry and Physics 82, 638-647.
    47. Deng, Y. H., Wang, C. C., Hu, J. H., Yang, W. L., and Fu, S. K. (2005) Investigation of formation of silica-coated magnetite nanoparticles via sol-gel approach, Colloids and Surfaces a-Physicochemical and Engineering Aspects 262, 87-93.
    [1]Wu,H.L.,Yang,P.Y.,Fan,G R.,Tian,Y.P.,Lu,H.J.,and Jin,H.(2006)Sol-gel-derived poly(dimethylsiloxane) enzymatic reactor for microfluidic peptide mapping,Chinese Journal of Chemistry 24,903-909.
    [2]Wu,H.L.,Tian,Y.P.,Liu,B.H.,Lu,H.J.,Wang,X.Y.,Zhai,J.J.,Jin,H.,Yang,P.Y.,Xu,Y.M.,and Wang,H.H.(2004) Titania and alumina sol-gel-derived microfluidics enzymatic-reactors for peptide mapping:Design,characterization,and performance,Journal of Proteome Research 3,1201-1209.
    [3]Wu,H.L.,Zhai,J.J.,Tian,Y.P.,Lu,H.J.,Wang,X.Y.,Jia,W.T.,Liu,B.H.,Yang,P.Y.,Xu,Y.M.,and Wang,H.H.(2004) Microfluidic enzymatic-reactors for peptide mapping:strategy,characterization,and performance,Lab on a Chip 4,588-597.
    [4]Li,Y.,Xu,X.,Deng,C.,Yang,P.,and Zhang,X.(2007) Immobilization of trypsin on superparamagnetic nanoparticles for rapid and effective proteolysis,J Proteome Res 6,3849-3855.
    [5]Liu,Y.,Liu,B.H.,Yang,P.Y.,and Girault,H.H.(2008) Microfluidic enzymatic reactors for proteome research,Analytical and Bioanalytical Chemistry 390,227-229.
    [6]Liu,Y.,Xue,Y.,Ji,J.,Chen,X.,Kong,J.,Yang,R Y.,Girault,H.H.,and Liu,B.H.(2007) Gold nanoparticle assembly microfluidic reactor for efficient on-line proteolysis,Molecular & Cellular Proteomics 6,1428-1436.
    [7]Liu,Y.,Lu,H.J.,Zhong,W.,Song,R Y.,Kong,J.L.,Yang,P.Y.,Girault,H.H.,and Liu,B.H.(2006) Multi layer-assembled microchip for enzyme immobilization as reactor toward low-level protein identification,Analytical Chemistry 78,801-808.
    [8]Liu,Y.,Zhong,W.,Meng,S.,Kong,J.L.,Lu,H.J.,Yang,P.Y.,Girault,H.H.,and Liu,B.H.(2006) Assembly-controlled biocompatible interface on a microchip:Strategy to highly efficient proteolysis,Chemistry-a European Journal 72,6585-6591.
    [9] Krenkova, J., Kleparnik, K., and Foret, F. (2007) Capillary electrophoresis mass spectrometry coupling with immobilized enzyme electrospray capillaries, Journal of Chromatography A 1159, 110-118.
    [10] Licklider, L., Kuhr, W. G., Lacey, M. P., Keough, T., Purdon, M. P., and Takigiku, R. (1995) Online Microreactors Capillary Electrophoresis Mass-Spectrometry for the Analysis of Proteins and Peptides, Analytical Chemistry 67,4170-4177.
    [11] Fan, H. Z., and Chen, G. (2007) Fiber-packed channel bioreactor for microfluidic protein digestion, Proteomics 7, 3445-3449.
    [12] Li, Y., Xu, X. Q., Yan, B., Deng, C. H., Yu, W. J., Yang, P. Y, and Zhang, X. M. (2007) Microchip reactor packed with metal-ion chelated magnetic silica microspheres for highly efficient proteolysis, Journal of Proteome Research 6, 2367-2375.
    [1] Yates, J. R. (1998) Mass spectrometry and the age of the proteome, Journal of Mass Spectrometry 33, 1-19.
    [2] Nowak, R. (1995) Entering the Postgenome Era, Science 270, 368-&.
    [3] Domon, B., and Aebersold, R. (2006) Review - Mass spectrometry and protein analysis, Science 312, 212-217.
    [4] Hanash, S. (2003) Disease proteomics, Nature 422, 226-232.
    [5] Mann, M. (2006) Functional and quantitative proteomics using SILAC, Nature Reviews Molecular Cell Biology 7, 952-958.
    [6] Aebersold, R., and Mann, M. (2003) Mass spectrometry-based proteomics, Nature 422, 198-207.
    [7] Park, Z. Y., and Russell, D. H. (2000) Thermal denaturation: A useful technique in peptide mass mapping, Analytical Chemistry 72, 2667-2670.
    [8] Slysz, G. W., Lewis, D. F., and Schriemer, D. C. (2006) Detection and identification of sub-nanogram levels of protein in a nanoLC-trypsin-MS system, Journal of Proteome Research 5, 1959-1966.
    [9] Wu, H. L., Tian, Y. P., Liu, B. H., Lu, H. J., Wang, X. Y., Zhai, J. J., Jin, H., Yang, P. Y., Xu, Y. M., and Wang, H. H. (2004) Titania and alumina sol-gel-derived microfluidics enzymatic-reactors for peptide mapping: Design, characterization, and performance, Journal of Proteome Research 3, 1201-1209.
    [10] Wu, H. L., Yang, P. Y., Fan, G. R., Tian, Y. P., Lu, H. J., and Jin, H. (2006) Sol-gel-derived poly(dimethylsiloxane) enzymatic reactor for microfluidic peptide mapping, Chinese Journal of Chemistry 24, 903-909.
    [11] Wu, H. L., Zhai, J. J., Tian, Y. P., Lu, H. J., Wang, X. Y., Jia, W. T., Liu, B. H., Yang, P. Y., Xu, Y. M., and Wang, H. H. (2004) Microfluidic enzymatic-reactors for peptide mapping: strategy, characterization, and performance, Lab on a Chip 4, 588-597.
    [12] Li, Y., Yan, B., Deng, C. H., Yu, W. J., Xu, X. Q., Yang, P. Y., and Zhang, X. M. (2007) Efficient on-chip proteolysis system based on functionalized magnetic silica microspheres, Proteomics 7, 2330-2339.
    [13] Liu, Y., Zhong, W., Meng, S., Kong, J. L., Lu, H. J., Yang, P. Y., Girault, H. H., and Liu, B. H. (2006) Assembly-controlled biocompatible interface on a microchip: Strategy to highly efficient proteolysis, Chemistry-a European Journal 12, 6585-6591.
    [14] Wang, S., Chen, Z., Yang, P. Y., and Chen, G. (2008) Trypsin-immobilized fiber core in syringe needle for highly efficient proteolysis, Proteomics 8, 1785-1788.
    [15] Kato, M., Inuzuka, K., Sakai-Kato, K., and Toyo'oka, T. (2005) Monolithic bioreactor immobilizing trypsin for high-throughput analysis, Analytical Chemistry 77, 1813-1818.
    [16] Lee, J., Musyimi, H. K., Soper, S. A., and Murray, K. K. (2008) Development of an automated digestion and droplet deposition microfluidic chip for MALDI-TOF MS, Journal of the American Society for Mass Spectrometry 19, 964-972.
    [17] Ternporini, C., Called, E., Campese, D., Cabrera, K., Felix, G., and Massolini, G.. (2007) Chymotrypsin immobilization on epoxy monlithic silica columns: Development and characterization of a bioreactor for protein disgestion, Journal of Separation Science 30, 3069-3076.
    [18] Ji, J., Zhang, Y., Zhou, X., Kong, J., Tang, Y., and Liu, B. (2008) Enhanced protein digestion through the confinement of nanozeolite-assembled microchip reactors, Analytical Chemistry 80, 2457-2463.
    [19] Qiao, L., Liu, Y., Hudson, S. P., Yang, P. Y., Magner, E., and Liu, B. H. (2008) A nanoporous reactor for efficient proteolysis, Chemistry-a European Journal 14, 151-157.
    [20] Peterson, D. S., Rohr, T., Svec, F., and Frechet, J. M. J. (2003) Dual-function microanalytical device by in situ photolithographic grafting of porous polymer monolith: Integrating solid-phase extraction and enzymatic digestion for peptide mass mapping, Analytical Chemistry 75, 5328-5335.
    [21] Liu, Y., Xue, Y., Ji, J., Chen, X., Kong, J., Yang, P. Y., Girault, H. H., and Liu, B. H. (2007) Gold nanoparticle assembly microfluidic reactor for efficient on-line proteolysis, Molecular & Cellular Proteomics 6, 1428-1436.
    [22] Amankwa, L. N., and Kuhr, W. G. (1992) Trypsin-Modified Fused-Silica Capillary Microreactor for Peptide-Mapping by Capillary Zone Electrophoresis, Analytical Chemistry 64, 1610-1613.
    [23] Wang, S., Bao, H. M., Yang, P. Y., and Chen, G. (2008) Immobilization of trypsin in polyaniline-coated nano-Fe3O4/carbon nanotube composite for protein digestion, Analytica Chimica Acta 612, 182-189.
    [24] Lin, S., Lin, Z. X., Yao, G. P., Deng, C. H., Yang, P. Y., and Zhang, X. M. (2007) Development of microwave-assisted protein digestion based on trypsin-immobilized magnetic microspheres for highly efficient proteolysis followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis, Rapid Communications in Mass Spectrometry 21, 3910-3918.
    [25] Lin, S., Yun, D., Qi, D. W., Deng, C. H., Li, Y., and Zhang, X. M. (2008) Novel microwave-assisted digestion by trypsin-immobilized magnetic nanoparticles for proteomic analysis, Journal of Proteome Research 7, 1297-1307.
    [26] Olsen, J. V., Ong, S. E., and Mann, M. (2004) Trypsin cleaves exclusively C-terminal to arginine and lysine residues, Molecular & Cellular Proteomics 3, 608-614.
    [27] Zhong, H. Y., Marcus, S. L., and Li, L. (2005) Microwave-assisted acid hydrolysis of proteins combined with liquid chromatography MALDI MS/MS for protein identification, Journal of the American Society for Mass Spectrometry 16, 471 -481.
    [28] Lin, S., Yao, G. P., Qi, D. W., Li, Y., Deng, C. H., Yang, P. Y., and Zhang, X. M. (2008) Fast and efficient proteolysis by microwave-assisted protein digestion using trypsin-immobilized magnetic silica microspheres, Analytical Chemistry 80, 3655-3665.
    [29] Lopez-Ferrer, D., Capelo, J. L., and Vazquez, J. (2005) Ultra fast trypsin digestion of proteins by high intensity focused ultrasound, Journal of Proteome Research 4,1569-1574.
    [30] Ionescutirgoviste, C, Phleckkhhayan, Danciu, A., Bigu, V., and Cheta, D. (1981) The Treatment of Peripheral Polyneuritis by Electroacupuncture, American Journal of Acupuncture 9, 303-309.
    [31] Janigro, D., Perju, C., Fazio, V., Hallene, K., Dini, G., Agarwal, M. K., and Cucullo, L. (2006) Alternating current electrical stimulation enhanced chemotherapy: a novel strategy to bypass multidrug resistance in tumor cells, Bmc Cancer 6.
    [32] Makletsov, B. V., Perfilev, V. V., and Peseleva, F. M. (1980) [PEP-1 multichannel electronic apparatus for electropuncture], Med Tekh, 58-59.
    [33] Soto, A. M. G., Jaffari, S. A., and Bone, S. (2001) Characterisation and optimisation of AC conductimetric biosensors,Biosensors & Bioelectronics 16,23-29.
    [34]Laemmli,U.K.(1970) Cleavage of Structural Proteins During Assembly of Head of Bacteriophage-T4,Nature 227,680-&.
    [35]Luraschi,P.,Dalla Dea,E.,and Franzini,C.(2003) Capillary zone electrophoresis of serum proteins:Effects of changed analytical conditions,Clinical Chemistry and Laboratory Medicine 41,782-786.
    [1]Park,Z.Y.,Russell,D.H.,Thermal denaturation:a useful technique in peptide mass mapping.Anal.Chem.2000,72,2667-2670.
    [2]Slysz,G.W.,Lewis,D.F.,Schriemer,D.C.,Detection and identification of sub-nanogram levels of protein in a nanoLC-trypsin-MS system.J.Proteome Res.2006,5,1959-1966.
    [3]Harris,W.A.,Reilly,J.P.,On-probe digestion of bacterial ptoteins for MALDI-MS.Anal.Chem.2002,74,4410-4416.
    [4]Dogruel,D.,Williams,P.,Nelson,R.W.,Rapid Tryptic mapping using enzymatically active mass spectrometer probe tips.Anal.Chem.1995,67,4343-4348.
    [5]Lin,S.S.,Wu,C.H.,Sun,M.C.,Sun,C.M.,Ho,Y.P.,Microwave-assisted enzyme-catalyzed reactions in various solvent systems.J.Am.Soc.Mass Spectrom.2005,16,581-588.
    [6]Pramanik,B.N.,Mirza,U.A.,Iing,Y.H.,Liu,Y.H.,Bartner,R L.,Weber,R C.,Bose,A.K.,Microwave-enhanced enzyme reaction for protein mapping by mass spectrometry:A new approach to protein digestion in minutes.Protein Sci.2002,11,2676-2687.
    [7]Rial-Otero,R.,Carreira,R.J.,Cordeiro,F.M.,Moro,A.J.,Santos,H.M.,Vale,G.,Moura,I.,Capelo,J.L.,Ultrasonic assisted protein enzymatic digestion for fast protein identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry sonoreactor versus ultrasonic probe.J.Chromatogr.A 2007,166,101-107.
    [8]Soto,A.M.G.,Jaffari,S.A.,Bone,S.,Characterisation and optimisation of AC conductimetric biosensors.Biosens.Bioelectron.2001,16,23-29.
    [9]Ionescu-Tirgoviste,C.,Phleck-Chhayan,Visinesc,U.R,Danciu,A.,Acupuncture and electroacupuncture therapy in the treatmentof hyperlipoproteinemia.Am.J.Acupunct.1981,9,57-62.
    [10]Janigro,D.,Perju,C.,Fazio,V.,Hallene,K.,Dini,G.,Agarwal,M.K.,Cucullo,L.,Alternating current electrical stimulation enhanced chemotherapy:a novel strategy to bypass multidrug resistance in tumor cells.BMC Cancer 2006,6,72.
    [11]Ueno,S.,Lovsund,P.,Oberg,P.A.,Effect of alternating magnetic fields and low-frequency electric currents on human skin blood flow.Med.Biol.Eng.Comput.1986,24,57-61.
    [12]Walsh,K.A.,Trypsinogens and trypsins of various species.Meth.Enzymol.1970,19,41-63.
    [13]Van Gelder,B.F.,Slater,E.C.,The extinction coefficient of cytochrome C.Biochim.Biophys.Acta 1962,58,593-595.
    [14]Peng,Z.G.,Hidajat,K.,M.S.,Uddin J.,Adsorption of bovine serum albumin on nanosized magnetic particles.Col.Inter.Sci.2004,271,277-283.
    [1]Aebersold,R.,and Mann,M.(2003) Mass spectrometry-based proteomics,Nature 422,198-207.
    [2]Hanash,S.(2003) Disease proteomics,Nature 422,226-232.
    [3]Peng,J.M.,Schwartz,D.,Elias,J.E.,Thoreen,C.C.,Cheng,D.M.,Marsischky,G.,Roelofs,J.,Finley,D.,and Gygi,S.P.(2003) A proteomics approach to understanding protein ubiquitination,Nature Biotechnology 21,921-926.
    [4]Domon,B.,and Aebersold,R.(2006) Review-Mass spectrometry and protein analysis,Science 312,212-217.
    [5]Park,Z.Y.,and Russell,D.H.(2000) Thermal denaturation:A useful technique in peptide mass mapping,Analytical Chemistry 72,2667-2670.
    [6]Slysz,G.W.,Lewis,D.F.,and Schriemer,D.C.(2006) Detection and identification of sub-nanogram levels of protein in a nanoLC-trypsin-MS system,Journal of Proteome Research 5,1959-1966.
    [7]Wu,H.L.,Tian,Y.R,Liu,B.H.,Lu,H.J.,Wang,X.Y.,Zhai,J.J.,Jin,H.,Yang,R Y.,Xu,Y.M.,and Wang,H.H.(2004) Titania and alumina sol-gel-derived microfluidics enzymatic-reactors for peptide mapping:Design,characterization,and performance,Journal of Proteome Research 3,1201-1209.
    [8]Wu,H.L.,Yang,P.Y.,Fan,G.R.,Tian,Y.P.,Lu,H.J.,and Jin,H.(2006) Sol-gel-derived poly(dimethylsiloxane) enzymatic reactor for microfluidic peptide mapping, Chinese Journal of Chemistry 24, 903-909.
    [9] Wu, H. L., Zhai, J. J., Tian, Y. P., Lu, H. J., Wang, X. Y., Jia, W. T., Liu, B. H., Yang, P. Y., Xu, Y. M., and Wang, H. H. (2004) Microfluidic enzymatic-reactors for peptide mapping: strategy, characterization, and performance, Lab on a Chip 4, 588-597.
    [10] Liu, Y., Lu, H. J., Zhong, W., Song, P. Y, Kong, J. L., Yang, P. Y., Girault, H. H., and Liu, B. H. (2006) Multi layer-assembled microchip for enzyme immobilization as reactor toward low-level protein identification, Analytical Chemistry 78, 801-808.
    [11] Liu, Y, Xue, Y, Ji, J., Chen, X., Kong, J., Yang, P. Y., Girault, H. H., and Liu, B. H. (2007) Gold nanoparticle assembly microfluidic reactor for efficient on-line proteolysis, Molecular & Cellular Proteomics 6, 1428-1436.
    [12] Wang, S., Chen, Z., Yang, P. Y., and Chen, G. (2008) Trypsin-immobilized fiber core in syringe needle for highly efficient proteolysis, Proteomics 8, 1785-1788.
    [13] Amankwa, L. N., and Kuhr, W. G. (1992) Trypsin-Modified Fused-Silica Capillary Microreactor for Peptide-Mapping by Capillary Zone Electrophoresis, Analytical Chemistry 64, 1610-1613.
    [14] Wang, S., Bao, H. M., Yang, P. Y., and Chen, G. (2008) Immobilization of trypsin in polyaniline-coated nano-Fe3O4/carbon nanotube composite for protein digestion, Analytica Chimica Acta 612, 182-189.
    [15] Li, Y, Xu, X., Deng, C., Yang, P., and Zhang, X. (2007) Immobilization of trypsin on superparamagnetic nanoparticles for rapid and effective proteolysis, J Proteome Res 6, 3849-3855.
    [16] Lin, S., Lin, Z. X., Yao, G. P., Deng, C. H., Yang, P. Y, and Zhang, X. M. (2007) Development of microwave-assisted protein digestion based on trypsin-immobilized magnetic microspheres for highly efficient proteolysis followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis, Rapid Communications in Mass Spectrometry 21, 3910-3918.
    [17] Lin, S., Yun, D., Qi, D. W., Deng, C. H., Li, Y., and Zhang, X. M. (2008) Novel microwave-assisted digestion by trypsin-immobilized magnetic nanoparticles for proteomic analysis, Journal of Proteome Research 7, 1297-1307.
    [18] Chen, W. Y., and Chen, Y. C. (2007) Acceleration of microwave-assisted enzymatic digestion reactions by magnetite beads, Analytical Chemistry 79, 2394-2401.
    [19] Rial-Otero, R., Carreira, R. J., Cordeiro, F. M, Moro, A. J., Santos, H. M., Vale, G, Moura, I., and Capelo, J. L. (2007) Ultrasonic assisted protein enzymatic digestion for fast protein identification by matrix-assisted laser desorption/ionization time-of-fiight mass spectrometry Sonoreactor versus ultrasonic probe, Journal of Chromatography A 1166, 101-107.
    [20] Gore, R. C. (1954) Infrared Spectroscopy, Analytical Chemistry 26, 11-19.
    [21] Wang, S., Zhang, L. Y, Yang, P. Y, and Chen, G. (2008) Infrared-assisted tryptic proteolysis for peptide mapping, Proteomics 8, 2579-2582.
    [22] Luraschi, P., Dalla Dea, E., and Franzini, C. (2003) Capillary zone electrophoresis of serum proteins: Effects of changed analytical conditions, Clinical Chemistry and Laboratory Medicine 41, 782-786.
    [23] Wang, S., Bao, H. M., Zhang, L. Y, Yang, P. Y, and Chen, G (2008) Infrared-assisted on-plate proteolysis for MALDI-TOF-MS peptide mapping, Analytical Chemistry 80, 5640-5647.
    [22] Bell, C. E., Jr., Taber, D. F.,Clark A. K., Organic Chemistry Laboratory with Qualitative Analysis, Standard and Microscale Experiments, 3rd Ed., Brooks/Cole-Thomson Learning, Pacific Grove, 2001.
    [23] Wang, J. D., Chen, Z. R., Gu, B. H., Luo, Y H., Wang, T. S., Study on spectral emission characteristics of infrared lamps, Spectrosc. Spect. Anal. 1999, 19, 185-186.
    [1] Wang, S., Zhang, L. Y., Yang, P. Y, and Chen, G. (2008) Infrared-assisted tryptic proteolysis for peptide mapping, Proteomics 8, 2579-2582.
    [2] Kalli, A., and Hakansson, K. (2008) Comparison of the electron capture dissociation fragmentation behavior of doubly and triply protonated peptides from trypsin, Glu-C, and chymotrypsin digestion, Journal of Proteome Research 7, 2834-2844.
    [3] Salplachta, J., Marchetti, M., Chmelik, J., and Allmaier, G. (2005) A new approach in proteomics of wheat gluten: combining chymotrypsin cleavage and matrix-assisted laser desorption/ionization quadrupole ion trap reflectron tandem mass spectrometry, Rapid Communications in Mass Spectrometry 19, 2725-2728.
    [4] Lin, S., Lin, Z. X., Yao, G. P., Deng, C. H., Yang, P. Y, and Zhang, X. M. (2007) Development of microwave-assisted protein digestion based on trypsin-immobilized magnetic microspheres for highly efficient proteolysis followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis, Rapid Communications in Mass Spectrometry 21, 3910-3918.
    [5] Rial-Otero, R., Carreira, R. J., Cordeiro, F. M., Moro, A. J., Santos, H. M., Vale, G, Moura, I., and Capelo, J. L. (2007) Ultrasonic assisted protein enzymatic digestion for fast protein identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry Sonoreactor versus ultrasonic probe, Journal of Chromatography A 1166, 101-107.
    [6] Slysz, G. W., Lewis, D. F., and Schriemer, D. C. (2006) Detection and identification of sub-nanogram levels of protein in a nanoLC-trypsin-MS system, Journal of Proteome Research 5, 1959-1966.
    [1]Pandey,A.,and Mann,M.(2000) Proteomics to study genes and genomes,Nature 405,837-846.
    [2]Domon,B.,and Aebersold,R.(2006) Review-Mass spectrometry and protein analysis,Science 312,212-217.
    [3]Khan,S.M.,Franke-Fayard,B.,Mair,G.R.,Lasonder,E.,Janse,C.J.,Mann,M.,and Waters,A.P.(2005) Proteome analysis of separated male and female gametocytes reveals novel sex-specific Plasmodium biology,Cell 121,675-687.
    [4]Aebersold,R.,and Mann,M.(2003) Mass spectrometry-based proteomics,Nature 422,198-207.
    [5]Slysz,G.W.,Lewis,D.F.,and Schriemer,D.C.(2006) Detection and identification of sub-nanogram levels of protein in a nanoLC-trypsin-MS system,Journal of Proteome Research 5,1959-1966.
    [6]Park,Z.Y.,and Russell,D.H.(2000) Thermal denaturation:A useful technique in peptide mass mapping,Analytical Chemistry 72,2667-2670.
    [7]Neubert,H.,Bonnert,T.P.,Rumpel,K.,Hunt,B.T.,Henle,E.S.,and James,I.T.(2008) Label-free detection of differential protein expression by LC/MALDI mass spectrometry,Journal of Proteome Research 7,2270-2279.
    [8] Kanie, Y., Enomoto, A., Goto, S., and Kanie, O. (2008) Comparative RP-HPLC for rapid identification of glycopeptides and application in off-line LC-MALDI-MS analysis, Carbohydrate Research 343, 758-768.
    [9] Schmidt, F., Hustoft, H. K., Strozynski, M, Dimmler, C., Rude, T., and Thiede, B. (2007) Quantitative proteome analysis of cisplatin-induced apoptotic Jurkat T cells by stable isotope labeling with amino acids in cell culture,SDS-PAGE, and LC-MALDI-TOF/TOF MS, Electrophoresis 28, 4359-4368.
    [10] Wu, W. W., Wang, G. H., Baek, S. J., and Shen, R. F. (2006) Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF, Journal of Proteome Research 5, 651-658.
    [11] Harris, W. A., and Reilly, J. P. (2002) On-probe digestion of bacterial proteins for MALDI-MS, Analytical Chemistry 74, 4410-4416.
    [12] Arnold, R. J., and Reilly, J. P. (1999) Observation of Escherichia coli ribosomal proteins and their posttranslational modifications by mass spectrometry, Analytical Biochemistry 269, 105-112.
    [13] Dogruel, D., Williams, P., and Nelson, R. W. (1995) Rapid Tryptic Mapping Using Enzymatically Active Mass-Spectrometer Probe Tips, Analytical Chemistry 67, 4343-4348.
    [14] Ibanez, A. J., Muck, A., Halim, V., and Svatos, A. (2007) Trypsin-linked copolymer MALDI chips for fast protein identification, Journal of Proteome Research 6, 1183-1189.
    [15] Li, Y., Yan, B., Deng, C., Tang, J., Liu, J., and Zhang, X. (2007) On-plate digestion of proteins using novel trypsin-immobilized magnetic nanospheres for MALDI-TOF-MS analysis, Proteomics 7, 3661-3671.
    [16] Lin, S. S., Wu, C. H., Sun, M. C., Sun, C. M., and Ho, Y. P. (2005) Microwalve-assisted enzyme-catalyzed reactions in various solvent systems, Journal of the American Society for Mass Spectrometry 16, 581 -588.
    [17] Pramanik, B. N., Mirza, U. A., Ing, Y. H., Liu, Y. H., Bartner, P. L., Weber, P. C, and Bose, M. K. (2002) Microwave-enhanced enzyme reaction for protein mapping by mass spectrometry: A new approach to protein digestion in minutes, Protein Science 11, 2676-2687.
    [18]Rial-Otero,R.,Carreira,R.J.,Cordeiro,F.M.,Moro,A.J.,Santos,H.M.,Vale,G.,Moura,I.,and Capelo,J.L.(2007) Ultrasonic assisted protein enzymatic digestion for fast protein identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry Sonoreactor versus ultrasonic probe,Journal of Chromatography A 1166,101-107.
    [19]Encrenaz,T.(2008) Infrared spectroscopy of solar-system planets,Space Science Reviews 135,11-23.
    [20]Wang,S.,Zhang,L.Y.,Yang,P.Y.,and Chen,G.(2008) Infrared-assisted tryptic proteolysis for peptide mapping,Proteomics 8,2579-2582.
    [21]Wang,S.,Bao,H.M.,Zhang,L.Y.,Yang,P.Y.,and Chen,G.(2008)Infrared-assisted on-plate proteolysis for MALDI-TOF-MS peptide mapping,Analytical Chemistry 80,5640-5647.
    [22]Luraschi,P.,Dalla Dea,E.,and Franzini,C.(2003) Capillary zone electrophoresis of serum proteins:Effects of changed analytical conditions,Clinical Chemistry and Laboratory Medicine 41,782-786.
    [1] Zeng, X., Tamai, K., Doble, B., Li, S. T., Huang, H., Habas, R., Okamura, H., Woodgett, J., and He, X. (2005) A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation, Nature 438, 873-877.
    [2] Wilkinson, S., Paterson, H. F., and Marshall, C. J. (2005) Cdc42-MRCK and Rho-ROCK signalling cooperate in myosin phosphorylation and cell invasion, Nature Cell Biology 7, 255-U245.
    [3] Jia, J. H., Tong, C., Wang, B., Luo, L. P., and Jiang, J. (2004) Hedgehog signalling activity of Smoothened requires phosphorylation by protein kinase A and casein kinase I, Nature 432, 1045-1050.
    [4] Blagoev, B., Ong, S. E., Kratchmarova, I., and Mann, M. (2004) Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics, Nature Biotechnology 22, 1139-1145.
    [5] Yamauchi, T. (2002) Molecular constituents and phosphorylation-dependent regulation of the post-synaptic density, Mass Spectrometry Reviews 21, 266-286.
    [6] Whelan, S. A., and Hart, G. W. (2003) Proteomic approaches to analyze the dynamic relationships between nucleocytoplasmic protein glycosylation and phosphorylation, Circulation Research 93, 1047-1058.
    [7] Paradela, A., and Albar, J. P. (2008) Advances in the analysis of protein phosphorylation, Journal of Proteome Research 7, 1809-1818.
    [8] Collins, M. O., Yu, L., and Choudhary, J. S. (2007) Analysis of protein phosphorylation on a proteome-scale, Proteomics 7, 2751-2768.
    [9] Xu, C. F., Wang, H. B., Li, D. M., Kong, X. P., and Neubert, T. A. (2007) Selective enrichment and fractionation of phosphopeptides from peptide mixtures by isoelectric focusing after methyl esterification, Analytical Chemistry 79,2007-2014.
    [10] Lim, K. B., and Kassel, D. B. (2006) Phosphopeptides enrichment using on-line two-dimensional strong cation exchange followed by reversed-phase liquid chromatography/mass spectrometry, Analytical Biochemistry 354, 213-219.
    [11] Blacken, G. R., Volny, M., Vaisar, T., Sadilek, M., and Turecek, F. (2007) In situ enrichment of phosphopeptides on MALDI plates functionalized by reactive landing of zirconium(Ⅳ)-n-propoxide ions, Analytical Chemistry 79, 5449-5456.
    [12] Simon, E. S., Young, M., Chan, A., Bao, Z. Q., and Andrews, P. C. (2008) Improved enrichment strategies for phosphorylated peptides on titanium dioxide using methyl esterification and pH gradient elution, Analytical Biochemistry 377, 234-242.
    [13] Kange, R., Selditz, U., Granberg, M, Lindberg, U., Ekstrand, G, Ek, B., and Gustafsson, M. (2005) Comparison of different IMAC techniques used for enrichment of phosphorylated peptides, JBiomol Tech 16, 91-103.
    [14] Li, Y., Xu, X. Q., Qi, D. W., Deng, C. H., Yang, P. Y, and Zhang, X. M. (2008) Novel Fe3O4@TiO2 core-shell microspheres for selective enrichment of phosphopeptides in phosphoproteome analysis, Journal of Proteome Research 7, 2526-2538.
    [15] Li, Y, Leng, T. H., Lin, H. Q., Deng, C. H., Xu, X. Q., Yao, N., Yang, P. Y., and Zhang, X. M. (2007) Preparation of Fe3O4@ZrO2 core-shell microspheres as affinity probes for selective enrichment and direct determination of phosphopeptides using matrix-assisted laser desorption ionization mass spectrometry, Journal of Proteome Research 6,4498-4510.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700