用户名: 密码: 验证码:
面齿轮齿面创成方法及啮合特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:面齿轮传动是一种由圆柱齿轮与圆锥齿轮相啮合演变而来的新型齿轮传动,与锥齿轮传动相比,具有体积小、质量轻、承载能力高、噪声低、可靠性高、寿命长等诸多特点。尤其是其在武装直升机主减装置中的独特分流特性,引起了业界的高度关注。目前,面齿轮传动正逐步替代螺旋锥齿轮而成为武装直升机传动系统中最重要的核心零件。
     本文以高强度、低噪声的高质量面齿轮设计为目标,对其齿面创成方法及啮合特性进行相关研究,主要研究内容如下:
     1.基于范成加工的面齿轮齿面生成及接触迹特征研究
     根据面齿轮啮合原理,建立了齿面工作区及过渡区的曲面方程,对轮齿外圈出现齿顶变尖和内圈产生齿根根切的原因进行了分析,获得了满足齿根不产生根切及齿顶不变尖的面齿轮最小内半径和最大外半径系数的变化曲线,为面齿轮参数设计提供了方便;推导了齿面接触迹方程,并获得了齿面接触迹分布规律图;对不同模数、齿数差条件下的齿面接触迹进行了仿真,发现齿面接触迹与齿数差、模数及传动比有关,其中传动比对接触迹影响较大。同时发现,如果模数变大将引起齿高和齿长变大,而齿数增加将引起齿宽变大,但齿高则变小;建立了考虑安装偏差的面齿轮传动坐标系,对安装过程中出现的偏置距偏差、轴向偏差和轴向夹角偏差等三种偏差之间的联系进行讨论,发现通过控制安装偏差可以改变面齿轮传动在啮合过程中的接触区域位置,以便进行接触轨迹的调整。
     2.面齿轮齿面创成几何方法及磨齿物理场研究
     对面齿轮齿面采用蜗杆磨削所需的运动进行分析,建立了面齿轮齿面蜗杆磨削机床的几何模型。根据蜗杆砂轮包络过程坐标系,推导了由插齿刀齿面包络蜗杆砂轮齿面时的坐标变换矩阵,建立了用于磨削面齿轮的蜗杆砂轮模型;并对采用所设计的蜗杆砂轮模型仿真加工出的面齿轮的齿面与理论齿面进行对比,进行面齿轮磨削齿面接触及误差分析;对面齿轮磨削过程中的热力耦合及工艺参数对面齿轮磨削物理场影响的程度进行了分析,得到了齿面磨削时的温度、应力及应变的分布图。结果表明:磨削速度高和磨削深度小,对面齿轮齿面磨削是有益的,而进给速度对齿面磨削应力和应变等影响不明显,因此,可适当提高面齿轮的磨削进给速度。
     3.面齿轮啮合温度场与振动特性分析
     对齿面啮合点处的相对滑动速度、接触压力、齿面摩擦因数、摩擦热流量沿啮合面的分布规律及影响因素进行了分析,结果表明:大的压力角降低齿面摩擦热流量有利;对不同啮合位置的齿面温升进行了分析,发现齿面温度最高点位于齿顶边缘附近区域;分别就齿数差、压力角、模数、转数及负载等因素对面齿轮啮合性能的影响进行分析,结果表明:面齿轮传动系统中的主要振动来源于从动轮面齿轮。压力角为20°或者25°、齿数差为3时系统振动最小。增大模数对改善系统振动有益,但输入转速增加、负载增大,系统的振动则加剧。
     4.面齿轮传动啮合实验研究
     为了验证面齿轮传动啮合性能仿真结果的正确性,在面齿轮检查机上,对三种齿数差的面齿轮传动接触迹、传动误差及振动进行了测试,测试结果表面:齿数差对接触迹有一定的影响,但不明显。传动比对齿面接触迹的影响比较大,在一定范围内,传动比越大,接触迹越靠近轮齿的中部;振动测试实验研究发现:圆柱齿轮的齿数差为1时,面齿轮传动的误差最小。但齿数差为2时的面齿轮传动,其啮合性能较好;圆柱齿轮和面齿轮在x轴方向的振动受转速的影响都比较大,而z轴方向的振动则很小,但面齿轮较圆柱齿轮在z轴方向的振动受转速的影响要更敏感。图133幅,表19,参考文献181。
Abstract:Face-gear transmission is a new-type gear transmission.It evolves from the transmission with cylindrical gear and bevel gear wheel.Compared with bevel gear drive, it has many advantages, for example, small size, light weight, high bearing capacity, low noise, high reliability, long life.Especially, it used in the main decelerator of armed helicopter, because of its distinctive split-flow characteristic which has been paid close attention. At present, face-gear transmission are taking the place of spiral bevel gears and becoming top-drawer key components in the drive system of armed helicopters.
     The tooth surface generating and meshing characteristics of face gears were studied for the purpose of designing high-quality face-gear with high strength and low noise. The main contents are as follows:
     1. The tooth surface generating of face-gear based on generating cutting and the research on the contact trace
     According to the face-gear meshing theory, equations of the working tooth surface and transition curved surface were derived. And the reasons that the outside of tooth appears the tooth top sharpens and the inner side of tooth appears the tooth root undercuts were analyzed.Finally,the change curves of minimum inner radius and maximum external radius' coefficient which can keep unsharpened tooth top and disundercuted tooth root, which provides convenience for the parameter design of face gear. The equation of contact track on the tooth surface was derived, by which can obtain the distribution map of contact trace. Based on the simulations on tooth surface contact were proceeded under conditions of different modules and tooth number, found that the tooth contact trace is related to the difference of number of teeth, modulus and transmission ratio, and the influence of transmission ratio is larger. And,if the modulus is increased,the height and length of the tooth will increase. While if the number of tooth is increased,width of the tooth will increase,the height of the tooth will decrease.Face-gear transmission coordinate system considering installing deviation is established.The relation among offset deviation, axial deviation and axis shaft deviation that exist during installation is discussed.It was found that controlling the deviation can change the position of the contact area on surface in the meshing process of face-gear drive, and it can adjust the contact trace.
     2. The research on the geometric method of face-gear tooth surface generating and the physical field of face-gear teeth grinding
     The movement was analyzed in process of face-gear grinding by worm grinding wheel, and the geometric model of grinding machine for face-gear tooth surface grinding by worm grinding wheel was built. On the basis of the coordinate system of the worm grinding wheel enveloping process, the coordinate transformation matrix when the tooth surface of shaping cutters enveloped worm grinding wheel tooth surface was derived, and the model of worm grinding wheel was built for face-gear grinding. With the model of worm grinding wheel designed,the surface of face-gear is simulation processed.By comparison of it and theoretical tooth surface, contact and deviation were analyzed in the process of face-gear grinding.Thermo-mechanical coupling and the influence of process parameters on face-gear grinding physical field were analyzed.The distribution diagram of temperature, stress and strain in process of tooth surface grinding were obtained.The results showed that, higher grinding speed and lower grinding depth are beneficial for the tooth surface grinding of face-gear, but the feeding speed's influence on the tooth surface grinding stress is not obvious. So, it may be appropriate to properly increase the speed of face gear grinding feed.
     3. Analysis on the temperature field and vibration characteristics of face-gear meshing
     Absolute and relative slipping velocity, contact pressure, tooth surface friction coefficient of the meshing points,and the distribution law and the influencing factors of frictional heat flux along meshing surface have been analyzed.And we got conclusions that larger pressure angle is good for the decrease of the frictional heat flux. The analysis on the temperature rise of tooth surface with the variation of meshing position in the meshing process of face-gear drive was conducted. The study found that the highest temperature point is in the region near the top edge.The influences of factors such as tooth number difference, pressure angle, modulus, rotation speed and load on face-gear meshing performance was analyzed. The study found that the main source of surface vibration of face-gear drive is the slave wheel, i.e. face-gear. The vibration of system is the least when the pressure angle is20degree or25degree, the difference of number of teeth is3.Larger modulus is beneficial to the improvement of vibration of system,while larger input speed and load will increase the vibration of the system.
     4. The research on the experiments on the meshing performance of face-gear drive
     In order to verify the correctness of the simulation results of face-gear drive meshing performance, the contact trace and transmission errors of the face-gear drive that a face-gear meshing with three cylindrical gears of1-3tooth difference respectively, were tested on a face-gear tester. The test results showed that the influence of the difference of the number of tooth on contact trace is not obvious, but the transmission ratio's is large. Larger transmission ratio, within a certain range, can make the contact trace near the middle of tooth. Experimental study on the vibration testing found that the difference of number of teeth is1, least error of face gear drive, but when the difference of number of teeth is2, meshing performance of face-gear drive is better. The influence of rotation on vibration of cylindrical gear and face-gear in the X axis direction are larger than in the Z axis. But the influence of rotation on vibration of face-gear in the Z axis direction is larger than more sensitive than cylindrical gear.
引文
[1]陈铭,徐冠峰,张磊.直升机传动系统和旋翼系统关键技术[J].航空制造技术,2010,16:32-37.
    [2]刘志全,陈国定,沈允文.武装直升机传动系统的生存能力[J].机械科学与技术,1998,11(1):44-48.
    [3]潘光奇,朱勇.直升机传动系统形状和发展综述[J].船舶电子工程.2009,185(11):34-36.
    [4]胡洁,张以都.含有面齿轮的直升机主减速器的设计与运动学仿真分析[J].机械设计,2011,28(1):75-80.
    [5]戴振东,寥自灿,刘贵龄,杨生荣.直升机传动系统干运转能力研究[J].机械科学与技术,1999,18(2):253-258.
    [6]Litvin F L et al. Application of face-gear drives in helicopter transmissions [J]. ASME Journal of Mechanical Design, September 1994,116(3):672-676.
    [7]Gregory F. Heath, Robert R. Filler, Jie Tan. Development of Face Gear Technology for Industrial and Aerospace Power Transmission[R]. NASA CR-211320,2002.
    [8]Robert C. Bill. Advanced Rotorcraft Transmission Program[R]. NASA TM-103276,1990.
    [9]Heath G F, Gilbert R E, Tan J, et al. Face gear split torque transmission development[R]. American Helicopter Society 55thAnnual Forum, Montreal, Canada, May 1999.
    [10]Heath G F, Bossier R B. Advanced rotorcraft transmission(ART)program-Final report[J]. NASA, CR-191057, Army Research Laboratory(ARL)-CR-14, January 1993.
    [11]Lewicki D G, Handschuh, R F, Heath G F, et al. Evaluation of carburized and ground face gears[R]. American Helicopter Society 55th Annual Forum, Montreal, Canada, May 1999.
    [12]Heath, G. F, md Bossler. R. B. Advnced Rotorcraft Transmission(ART) Program Final Report[J]. NASA CR-191057. Army Research Laboratory ARL-CR-14 January 1993.
    [13]Robert R Filler, Gregory F Heath Stephen C Slaugh-ter, David G Lewicki. Torque Splitting by a Concentric Face Gear Transmission[J]. The American Helicopter Society 58th Annual Forum, Montreal, Canada. June 11-22, 2002.
    [14]David G. Lewicki, Gregory F. Heath, Robert R. Filler, et al. RDS-21 Face-Gear Surface Durability Tests[R]. NASA TM-214970,2007.
    [15]Bloomfield B. Face gear design[J]. Machine Design,1947,19:129-134.
    [16]Buckingham E. Analytical mechanics of gears[M]. Dover Publications Inc. New York, NY,1949.
    [17]Faydor L. Litvin, Alfonso Fuentes. Gear Geometry and Applied Theory(Second Edition)[M]. Cambridge University Press,2004.
    [18]Litvin F L, et al. Design and geometry of face-gear drives[J]. ASME Journal of Mechanical Design. December 1992,114(4):642-647.
    [19]F. L. Litvin. Gear Geometry and Applied Theory Prentice Hall [J]. Inc. Engle wood Cliffs NJ,1994.
    [20]Chung. Tsang Dong, Chang. Yun Yuan. An investigation of contact path and kinematic error of face-gear drives[J]. Journal of Marine Science and Technology,2005,13(2),95-104.
    [21]Shih Y P. A novel ease-off flank modification methodology for spiral bevel and hypoid gears[J]. Mechanism and Machine Theory,2010,45(8):108-1124.
    [22]Michael F P. Trouble shooting gear noise[J]. Gear Solutions,2011(1):39-44.
    [23]Faydor L. Litvin, Alfonso Fuentes, Matt Howkins. Design generation and TCA of new type of asymmetric face-gear drive with modified geometry Compute[J]. Methods Apply Mech. Engrg,190(2001):5835-5865.
    [24]Litvin F. L, Alfonso Fuentes, Matt Howkins. Design, Generation and TCA of New Type of Asymmetric Face Gear Drive with Modified Geometry[J]. Computer Method in Applied Mechanics and Engineering,2001, 190(44-44):5835-5865.
    [25]Faydor L. Litvin, Ignacio Gonzalez-Percz, et al. Design, generation and stress analysis of face-gear drive with helical pinion[J]. Compute. Methods Appl. Mech. Engrg,194(2005):3870-3901.
    [26]Faydor L. Litvin, Alfonso Fuentes, Claudio Zanzi et al. Design, generation and stress analysis of two versions of geometry of face-gear drives[J]. Mechanism and Machine Theory,37(2002)1179-1211.
    [27]Guingand M, Vanjany J P, Jacquin C Y. Quasi-static analysis of a face gear under torque[J]. Computer Methods in Applied Mechanics and Engineering.2005,194:4301-4318.
    [28]Ulrich Kissling, Stefan Beermann. Face Gears:Geometry and Strength[M]. USA:Gear Technology,2007(1):54-61.
    [29]Litvin F L, Nava A, Fan Q. New geometry of face worm gear drives with conical and cylindrical worms generation simulation of meshing and stress analysis[J]. computer Methods in Applied Mechanics and Engineering,20, 2002,191:3033-3054.
    [30]F. L. Litvin, Y. J. Chen, GF. Heath, V. J. Sheth, N. Chen. Apparatus and method for precision grinding face gears[P]. USA patent 6,146,253,2000.
    [31]Augustinus F. H. Basstein, Prinsenbeek, Gustaaf A. Uittenbogaart, Method for Crown Gear Grinding by Generation[P]. USA patent 5411431, May,1995.
    [32]Ken Beel, David Fisher. Face Gear Manufacturing method and apparatus[P]. USA patent 6,390,894, May,2002.
    [33]Handschuh R F. Lewicki D G, Heath G F, et al. Experimental evaluation of face gears for aerospace drive system applications[C].7th International Power Transmission and Gering Conference, San Diego, CA, October 1996:581-588.
    [34]H. Mizutani, Y. Ishikawa and D. P. Townsend. Effects of Lubrication on the Performance of High Speed Spur Gears[C]. Proceedings of International Transmission and Gearing Conference,1989.
    [35]Bjorklund S. The influence of surface roughness in elliptical contacts[J]. Tribology International,2001,34(12):841-845.
    [36]Ruan J, Bhushan B. Atomic-scale and Microscale Friction Studies of Graphite and Diamond Using Friction Force Microscopy[J]. Journal of Applied Physical.1994,76(9):5022-5035.
    [37]Ruan J, Bhushan B. Frictional Behavior of Highly Oriented Pyrolytic Graphite[J]. Journal of Applied Physical.1994,76(12):8115-8120.
    [38]Fleytman. Yakov. Manufacturing for face gears[P]. US patent:10725676,2003.
    [39]Nishino T. Computerized modeling and loaded tooth contact analysis of hypoid gears manufactured by face hobbing Process [J]. Journal of Advanced Mechanical Design Systemsand Manufacturing,2009,3(3):224-235.
    [40]Shih Y P, Fong Z H. Flank modification methodo-logy for face-hobbing hypoid gears based on ease-off topography[J]. Journal of Mechanical Design, Transactions of the ASME,2007,129(12):1294-1302.
    [41]Litvin F L, Chen Y D, Heath G F, et al. Apparatus for precision grinding face gears[P]. U. S. Patent Number 6146253, November 2000.
    [42]Litvin F. L, Alfonso Fuentes, Claudio Zanzi, et al. Face Gear Drive with Spur In volute Pinion:Geometry, Generation by a Worm, Stress Analysis[J]. Computer Method in Applied Mechanics and Engineering,2002, 191(23-26):2783-2813.
    [43]Fisher. David J, Russell. Adrian, Folprecht, et al. George. Apparatus for manufacturing a face gear[P]. US patent:11575293,2008.
    [44]E. W. Miller. Hob for Generating Crow Gears[P], USA patent 2304586,1942.
    [45]Zanzi. C, Pedrero. J. I. Application of modified geometry of face gear drive[J]. Computer Methods in Applied Mechanics and Engineering,2005, 194(25-29):3045-3066.
    [46]Handschuh R F, Lewicki D G, Bossler R. Experimental testing of prototype face gears for helicopter transmissions[J]. Journal of Aerospace Engineering, Proceedings of the Institute of Mechanical Engineering, October 1994, 208(G2):129-135.
    [47]XU Aijun, DENG Xiaozhong, ZHANG Jing, et al. A new numerical algorithm for transmission error measurement at gears meshing [R]. Germany:Trans Tech Publications,2012.
    [48]朱如鹏,潘生材,高德平.面齿轮传动的研究现状与发展[J].南京航空航天大学学报,1997,29(3):355-361.
    [49]王志,石照耀.面齿轮传动的特点及研究进展[J].工具技术,2009,43(10):10-14.
    [50]彭满华.偏置正交面齿轮的齿面生成及CAE分析[D].广州:华南理工大学,2011.
    [51]黄丽娟,朱如鹏.基于斜齿小齿轮的面齿轮的齿面生成研究[J].机械工程师,2007(1):29-31.
    [52]朱如鹏,高德平.在面齿轮设计中避免根切和齿顶变尖的设计方法的研究[J].中国机械工程,1999,10(11):1274-1276,.
    [53]朱如鹏,潘升材,高德平.正交面齿轮传动中齿宽设计的研究[J].机械科学与技术,1999,18(4):563-569.
    [54]李政民卿,朱如鹏.基于包络法的正交面齿轮齿廓尖化研究[J].中国机械工程,2008,19(9):1029-1033.
    [55]张会会.非正交面齿轮传动设计研究[D].威海:山东大学威海分校,2012.
    [56]袁群威.偏置面齿轮传动的几何设计与试验[D].洛阳:河南科技大学,2012.
    [57]汤黎明,曹青梅.弧线齿面齿轮的逆向造型[J].矿山机械,2010,38(4):37-39.
    [58]张俐,丁志耀,王延忠.面齿轮齿面的自适应采样方法[J].北京航空航天大学学报,2012,38(2):245-251.
    [59]余啸海.MATLAB接口技术与应用[M].北京:国防工业出版社,2004.
    [60]苏金明.MATLAB与外部程序接口[M].北京:电子工业出版社,2004.
    [61]周博,谢东来,张宪海.MATLAB科学计算[M].北京:机械工业出版社,2010.
    [62]谭雪松,张青,钟廷志.Pro/ENGINEER Wildfire中文版高级应用[M].北京:人民邮电出版社,2007.
    [63]曹德权.Pro/ENGINEER Wildfire 4.0中文版曲面分析与逆向工程[M].北京:清华大学出版社,2009.
    [64]Chang Shuo Hung, Chung Tsang Dong, Lu Shui Shong. Tooth contact analysis of face-gear drives[J]. International Journal of Mechanical Sciences,2000, 42(3),485-502.
    [65]王延忠,熊巍,张俐,等.面齿轮齿面方程及其轮齿接触分析[M].机床与液压,2007(12):5-9.
    [66]王延忠,王树,田志敏.面齿轮传动加载接触分析研究[J].机械传动,2012,36(10):4-7.
    [67]赵宁,曾晓春,郭辉,等.斜齿面齿轮齿面仿真及其轮齿接触分析[J].航空动力学报,2008,23(10).
    [68]李政民卿,朱如鹏.面齿轮传动的承载接触分析[J].南京航空航天大学学报,2010,42(2):219-223.
    [69]潘朝飞.正交面齿轮传动应力的有限元分析[D].南京:南京航空航天大学,2006.
    [70]何国旗,严宏志,胡威,舒陶量.面齿轮啮合过程中齿面接触分析[J].中南大学学报.Vol.44 No.1 Nov.2013:93-100.
    [71]任雅丽.某正交直齿面齿轮传动系接触分析[D].秦皇岛:燕山大学,2009.
    [72]李政民卿,朱如鹏.装配偏置误差对正交面齿轮传动接触特性的影响[J].航空学报,2009,30(7):1353-1360.
    [73]白云飞.斜齿圆柱齿轮和面齿轮啮合传动的几何和静力学仿真[D].西安:西北工业大学,2006.
    [74]王延忠,龚康,吴灿辉.航空面齿轮传动接触应力计算方法研究[J].机床与液压,2011,39(21):1-4.
    [75]舒陶亮,何国旗,孙晓,卢祥江.面齿轮啮合过程中齿面接触应力分布研究[J].湖南工业大学学报,Vol.26 No.3 Nov.2012:52-57.
    [76]任行丽,何国旗,舒陶量.面齿轮传动齿面几何特征与接触应力关系研究[J].湖南工业大学学报,Vol.26 No.2 Nov.2012:49-55.
    [77]胡威.面齿轮啮合接触分析及动力学特性研究[D].长沙:中南大学,2012.
    [78]沈云波,方宗德,赵宁,等.齿廓方向修形的斜齿面齿轮啮合特性研究[J].中国机械工程,2008,19(18):2219-2222.
    [79]赵宁,郭辉,方宗德,等.直齿面齿轮修形及承载接触分析[J].航空动力学报,2008,23(11):2142-2146.
    [80]胥国祥,张以都,等.基于LS-DYNA的正交面齿轮动态接触分析[J].装备制造技术,2010,24(2):53-59.
    [81]李永祥,毕晓勤,张军顺,等.基于ANSYS的直齿面齿轮的承载接触分析[J].机械科学与技术,2009(7):931-935.
    [82]鲁文龙,朱如鹏,曾英.正交面齿轮传动中齿面曲率研究[J].南京航空航天大学学报,2000,32(4):400-404.
    [83]马香峰,虞洪述,吕荣寰.确定共轭曲面的方法及其应用[M].北京:机械工业出版社,1989.
    [84]沈云波,方宗德,丁文强.面齿轮传动整个啮合过程相对法曲率干涉检验的方法[J].兰州理工大学学报,2012,39(1):23-28.
    [85]王延忠,王庆颖,吴灿辉,等.正交面齿轮齿面偏差的坐标测量[J].机械传动.2010,34(7):1-4.
    [86]石照耀,鹿晓宁,陈昌鹤,林家春.面齿轮单面啮合测量仪的研制[J].仪器仪表学报,2013,34(12):2715-2721.
    [87]王志,石照耀.CMM测量正交面齿轮的误差理论分析[J].北京工业大学学报,2012,(5):664-667.
    [88]陈兴明.含安装误差的修形直齿面齿轮传动齿面接触分析的研究[D].长沙:中南大学,2012.
    [89]王峰,方宗德,李声晋,等.考虑安装误差的摆线齿准双曲面齿轮轮齿接触分析[J].农业机械学报,2012,42(9):214-218.
    [90]唐进元,卢延峰,周超.调整参数误差对齿面接触质量的影响[J].航空动力学报,2008,23(9):1718-1723.
    [91]殷建杰.齿轮传动误差测量分析系统的研制[D].北京:北京工业大学,2010.
    [92]李春晓,张俐,王延忠,等.面齿轮齿面误差评定中差曲面的应用[J].机床与液压,2009,37(7):25-30.
    [93]任帅男.大型螺旋锥齿轮误差分析与修正技术研究[D].沈阳:沈阳工业大学,2012.
    [94]邓效忠,徐爱军,张静,等.齿距啮合偏差对准双曲面齿轮传动误差的影响[J].航空动力学报,2013,28(3):595-602.
    [95]聂少武,邓效忠,苏建新,等.摆线齿锥齿轮齿面修形仿真及高阶传动误差设计[J].机械设计,2013,30(5):32-37.
    [96]沈云波,方宗德,赵宁,等.斜齿面齿轮几何传动误差的设计[J].航空动力学报,2008,23(11):2145-2152.
    [97]赵宁,郭辉,方宗德,等.面齿轮加工技术发展现状与动态[C].中国航空学会第十四届机械动力传输学术讨论会论文集,无锡,2010:39-44.
    [98]姬存强,魏冰阳,邓效忠,等.正交面齿轮的设计与插齿加工试验[J].机械传动,2010,34(2):58-61.
    [99]李政民卿,朱如鹏.面齿轮插齿加工过程包络面和理论齿面的干涉[J].重庆大学学报,2007,30(7):53-58.
    [100]洪肇斌,杨兆军,张学成.基于齿面发生线的弧齿锥齿轮铣削加工仿真分析[J].吉林大学学报(工学版),2013,43(2):354-339.
    [101]李大庆.直齿面齿轮啮合性能预控及碟形砂轮磨齿关键技术研究[D].镇江:江苏大学,2013.
    [102]郭辉,赵宁,侯圣文.基于碟形砂轮的面齿轮磨齿加工误差分析及实验研究[J].西北工业大学学报,2013,31(6):915-920.
    [103]彭先龙,方宗德,苏进展,蒋进科.应用大碟形刀具加工面齿轮的理论分析[J].哈尔滨工业大学,2013,45(5):80-85.
    [104]彭先龙,李建华,方宗德,等.碟形砂轮磨削面齿轮的数控规律[J].哈尔滨工业大学学报,2012,44(11):101-105.
    [105]郭辉.面齿轮滚齿加工方法及其啮合性能研究[D].西安:西北工业大学,2009.
    [106]吴亚男.面齿轮滚齿加工方法的研究[D].哈尔滨:哈尔滨工业大学,2013.
    [107]赵宁,刘常青.关于面齿轮磨削加工机床的研究[J].机械设计与制造,2007(10):151-1522.
    [108]付自平.正交面齿轮的插齿加工仿真和磨齿原理研究[D].南京:南京航空航天大学,2006.
    [109]王志,石照耀,刘建炜,杨莉莉.正交面齿轮计算机仿真加工[J].西北工业大学学报,2012,38(7):1004-1007.
    [110]王峰.基于UG的正交面齿轮加工仿真系统开发[D].南京:南京航空航天大 学,2007.
    [111]郭玉.曲线齿端面齿轮的理论分析与加工仿真研究[D].天津:天津大学,2011.
    [112]曹娟,王铁,张瑞亮.基于VERICUT面齿轮虚拟仿真加工[J].机械传动,2013,37(9):140-143.
    [113]丁军鹏.齿轮成形磨削工艺参数优化及实验研究[D].焦作:河南科技大学,2011.
    [114]唐进元,杜晋,陈勇平.齿轮磨削中磨削力数学模型的研究[J].制造技术与机床,2008(01),73-76.
    [115]崔江红,穆云超.ANSYS在CBN砂轮磨削温度场计算机仿真中的应用[J].精密制造与自动化,2005(1),38-40.
    [116]明兴祖.螺旋锥齿轮磨削界面力热耦合与表面性能生成机理研究[D].长沙:中南大学,2010.
    [117]明兴祖,严宏志,陈书涵.螺旋锥齿轮啮合热特性分析[J].农业机械学报,2007,38(11),161-166.
    [118]任小中,朱鹏飞,任宏雷.不同磨削参数下成形法磨齿温度场的研究[J].河南科技大学学报,2013,34(2),26-33.
    [119]王霖,葛培琪,秦勇,刘镇昌,等.基于有限元法的湿式磨削温度场分析[J].机械工程学报,2002,38(9),155-158.
    [120]张小安.螺旋锥齿轮数控磨削界面力热耦合的数字化建模与分析[D].株洲:湖南工业大学,2010.
    [121]张汝波.齿条成形磨削淬硬耦合应力场研究[D].济南:山东大学,2011.
    [122]黄强.磨削过程中硬质合金材料热应力的有限元分析[D].武汉:武汉理工大学,2007.
    [123]苗圩巍.渗碳淬火齿轮齿根磨削形态对弯曲强度影响的研究[D].北京:机械科学研究总院,2011.
    [124]牛兴华,张孟湘.磨削过程与磨削表面残余应力关系的数学模型[J].制造技术与机床,1999(7),32-34.
    [125]Johnson K L.接触力学[M].徐秉业,罗学富,刘信声,等译.北京:高等教育出版社,1992.
    [126]唐进元,刘艳平.直齿面齿轮加载啮合有限元仿真分析[J].机械工程学报,2012,48(5):124-131.
    [127]侯寅.基于赫兹接触应力分布的面齿轮传动弯曲应力有限元分析[D].南京:南京航空航天大学,2009.
    [128]黄丽娟:面齿轮传动的齿面生成和弯曲应力分析[D].南京:南京航空航天大学,2007.
    [129]邹翔,王三民,袁茹.面齿轮弯曲应力有限元分析及神经网络预测[J].机械传动,2013,37(3):1-4.
    [130]靳广虎,朱如鹏,李政民卿,等.齿宽系数对面齿轮齿根弯曲应力的影响[J].中南大学学报,2011,42(5):1304-1309.
    [131]黄丽娟,朱如鹏.基于ANSYS的斜齿面齿轮传动的弯曲应力分析[J].机械传动,2009,33(3):91-93.
    [132]杨连顺,朱如鹏,曾英.正交面齿轮弯曲应力的分析[M].机械科学与技术,2001,20(5):708-714.
    [133]方宣琳.正交面齿轮传动弯曲应力分析研究[D].南京:南京航空航天大学,2008.
    [134]郭辉,赵宁,方宗德,等.基于接触有限元的面齿轮传动弯曲强度研究[J].航空动力学报,2008(8):1438-1442.
    [135]汤中连,亓秀梅,高创宽.齿面粗糙度对齿轮传动接触疲劳应力的影响[J].润滑与密封.2011,36(4):468-470.
    [136]严宏志,胡威,何国旗,考虑表面粗糙度的面齿轮齿面接触应力分析[J].机械设计与研究,Vol.28 No.4 Nov.2012:58-65.
    [137]沈云波,方宗德,赵宁,等.考虑边缘接触直齿面齿轮传动齿面承载接触分析[J].机械科学与技术,2009,28(8):1093-1110.
    [138]陈国安,刘洋,张苏瑛.工程机械摩擦学设计[J].工程机械,1998,29(12):10-13.
    [139]何国旗,严宏志,胡威,舒陶量.面齿轮啮合过程中压力角对齿面摩擦生热的影响分析[J].中南大学学报.Vol.43 No.9 Nov.2012:3413-3419.
    [140]邓小宝,何国旗,陈小文,杨帆,彭正林,面齿轮啮合过程中齿面温度的计算与仿真分析[J].湖南工业大学学报,Vol.25 No.6 Nov.2011:53-60.
    [141]MING Xingzu, YAN Hongzhi, HE Guoqi, ZHOU Jing. Experiment study on micro-hardness and structure of NC grinding surface layer of spiral bevel gears[J]. Applied Mechanics and Materials. Vol.127(2012):560-568.
    [142]肖望强,李威,韩建友.非对称齿廓渐开线齿轮传动的热分析[J].农业机械学报,2006,37(12):164-167.
    [143]邓小洈.添加剂作用下滑动摩擦副温度场及胶合性能的研究[D].重庆:重庆大学,2004.
    [144]龙慧.高速齿轮传动轮齿的温度模拟及过程参数的敏感性分析[D].重庆: 重庆大学,2001.
    [145]靳广虎,朱如鹏,陆俊华.正交面齿轮齿面温升的研究[J].机械传动,2002,26(3):1-3.
    [146]龙慧,张广辉,罗文军.旋转轮齿瞬时接触应力和温度的模拟分析[J].机械工程学报,2004,40(8):24-29.
    [147]邱良恒,辛一行,王统,等.齿轮稳态温度场和热变形修形计算[J].上海交通大学学报,1995,29(2):79-86.
    [148]陈磊.基于ANSYS的行星减速器温度场分析[D].南京:南京航空航天大学,2009.
    [149]靳广虎.正交面齿轮传动齿面温升的计算机辅助分析[D].南京:南京航空航天大学,2002.
    [150]沈光平.基于局部形状分布的三维模型检索算法[D].上海:复旦大学,2010.
    [151]蒋益民.过共晶铝硅合金半固态成形研究[D].镇江:江苏大学,2010.
    [152]桑宝光.自然冷却条件下压铸模具局部冷却能力的数值分析[D].重庆:重庆大学,2006.
    [153]刘智.基于分形理论的粗糙表面三维瞬态温度/压力/应力场数值模拟[D].福州:福州大学,2005.
    [154]高光辉.无纬带绑扎机制动器摩擦热效应研究[D].湘潭:湖南科技大学,2008.
    [155]蒋益民.过共晶铝硅合金半固态成形研究[D].镇江:江苏大学学,2002.
    [156]方宗德,陈国定,沈允文.斜齿轮传动的齿面闪温计算[J].西北工业大学学报,1992,10(2):220-226.
    [157]靳广虎,朱如鹏,朱自冰,等.面齿轮传动齿面瞬时接触温度的分析[J].机械科学与技术,2009,28(3):301-305.
    [158]孙首群,朱卫光,赵玉香.渐开线轮齿温度场影响因素分析[J].机械设计,2009,26(2):59-63.
    [159]武彩岗,秦俊奇,马吉胜,等.齿轮啮合温升模型建立及仿真研究[J].军械工程学院学报,2006,18(3):70-74.
    [160]Guoqi He, Hongzhi Yan, Wei Hu, Taoliang Shu. Analysis of Tooth Surface Temperature Field and the Influencing Factors of Face Gear Driven[J]. Advanced Materials Research Vols.430-432(2012):1403-1411.
    [161]He Guo Qi, Yan Hong Zhil, Hu Weil, Shu Tao Liang. AN INVESTIGATION OF MISALIGNMENT TO CONTACT PATH OF FACEGEAR DRIVES[C].2011 Second International Conference on Digital Manufacturing & Automation.189-192.
    [162]王红香.非正交面齿轮传动的动力学分析[D].北京:北京航空航天大学,2009.
    [163]魏洪方.偏置圆柱蜗杆面齿轮传动的动力学分析研[D].天津:天津大学,2010.
    [164]张峰.正交面齿轮传动的动力学分析研究[D].南京:南京航空航天大学,2008
    [165]靳广虎.正交面齿轮传动的强度与动力学特性分析研究[D].南京:南京航空航天大学,2012.
    [166]张波,盛和太.ANSYS有限元数值分析原理与工程应用[M].北京:清华大学出版社,2005.
    [167]张峰,朱如鹏,靳广虎.基于ANSYS的正交面齿轮传动系统的模态分析方法[C].中国航空学会第十三届机械动力传输学术会议论文集.南京,2007.
    [168]李晓贞,朱如鹏,李政民卿,靳广虎.非正交面齿轮传动系统的耦合振动分析[J].中南大学学报,2013,44(6):2274-2280.
    [169]靳广虎,朱如鹏,鲍和云.正交面齿轮传动系统的非线性振动特性[J].中南大学学报,2010,41(5):1805-1813.
    [170]林腾蛟,冉雄涛.正交面齿轮传动非线性振动特性分析[J].振动与冲击,2012,31(2):23-31.
    [171]杨振,王三民,刘海霞,范叶森.负载与支承刚度对面齿轮传动系统动态特性的影响分析[J].燕山大学学报,2010,34(4):293-301.
    [172]赵韩,方明刚,黄康,等.齿轮传动参数化建模及动态仿真系统的研究及开发[J].机械传动,2011,35(8):11-14.
    [173]陈广艳,陈国定,李永祥,等.含有面齿轮的传动系统动态响应特性研究[J].航空动力学报,2009,24(10):2391-2396.
    [174]张乐,朱如鹏,李政民卿.面齿轮传动分扭系统扭转振动的固有频率分析[J].机械制造与自动化,2012,41(5):21-24.
    [175]张乐.正交面齿轮传动及其分扭系统动力学分析[D].南京:南京航空航天大学,2012.
    [176]杨振,王三民,范叶森.正交面齿轮传动系统分岔特性[J].哈尔滨工业大学学报.2011,43(3):105-110.
    [177]尚晓江,苏建宇,王化锋.ANSYS/LS-DYNA动力分析方法与工程实例(第二版)[M].北京:中国水利水电出版社,2008.
    [178]尚晓江,苏建宇,王化锋.ANSYS/LS-DYNA动力分析方法与工程实例(第二版)[M].北京:中国水利水电出版社,2008.
    [179]徐颖强,赵宁,吕国志.航空硬化齿轮材料力学性能研究[J].机械科学与 技术.2002(4):602-603.
    [180]四川内江机床厂.YDX9550A滚动检查机使用说明书[Z].
    [181]朱联邦.螺旋锥齿轮啮合性能检测分析体统研究[D].长沙:中南大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700