特质焦虑影响抑制控制的认知神经机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
特质焦虑作为焦虑症与抑郁症的人格易感性因子,较高水平的焦虑易感性人格倾向预示着高风险的焦虑症以及其它精神疾病。高特质焦虑被定义为个体面对各种应激情境时体验到频繁的、高强度的焦虑与担忧的人格倾向性。过去的研究重点关注高特质焦虑个体的负性注意偏向,表明特质焦虑与威胁相关分心物的抑制控制不足相关。最近的理论与实证研究提出,即使在没有威胁相关信息的条件下,高特质焦虑个体也会表现出注意控制的普遍不足。然而,对于高特质焦虑个体表现出普遍的注意控制不足时的证据以及潜在机制目前存在很大的争议。一方面,特质焦虑的注意控制理论认为高特质焦虑个体可能运用更多自上而下控制资源的卷入来补偿其降低的加工效率,以便达到与低焦虑个体相同水平的行为表现。另一方面,Bishop (2009)认为特质焦虑与注意控制机制卷入的减少相关。因此,借助于高时间分辨率的事件相关电位,运用较为成熟的实验范式探究特质焦虑作用于抑制控制的认知神经机制对于检验这两种观点的合理性是非常必要的。本研究重点关注特质焦虑是如何影响注意控制的子成分-抑制,来确认高特质焦虑个体抑制控制能力不足的条件及其机制。考虑到抑制控制至少包括两个成分:抑制优势反应(反应抑制)与阻止分心物干扰(认知抑制),研究的前两个实验重点关注特质焦虑对于反应抑制的影响,后两个实验重点关注特质焦虑对于认知抑制的影响。
     实验1研究在不同工作记忆负荷条件下,高、低特质焦虑个体的Flanker干扰效应。特质焦虑的注意控制理论提出高特质焦虑个体普遍存在抑制无关信息能力的不足;注意的负载理论认为高工作记忆负荷作用于认知控制过程会增加分心物的干扰效应。然而,在不同工作记忆负荷下特质焦虑作用于分心物加工的研究很少。本研究结合双任务范式与脑电技术探讨这一问题。需要被试在完成Flanker干扰任务的同时记忆一个(低工作记忆负荷)或者六个字母(高工作记忆负荷)。结果表明,高工作记忆负荷削弱了所有被试在不一致试次中抑制能力,并且这-效应在高特质焦虑组上表现得更加明显。这种增强的削弱效应反映在高工作记忆负荷下的不一致试次上,高特质焦虑个体比低特质焦虑个体表现出延长的反应时与更负的N2波幅。然而,在低工作记忆负荷下,不论在行为还是神经指标上,高、低特质焦虑组抑制无关分心物的能力都没有表现出显著差异。并且,在高工作记忆负荷条件下,高特质焦虑组个体的特质焦虑水平分别与反映干扰效应的反应时以及N2波幅相关。因此,我们的结果表明,当高工作记忆负荷消耗了有限的工作记忆资源时,高特质焦虑个体表现出抑制分心物相关的自上而下注意控制机制卷入的减少。并且,我们的研究提示了今后考察特质焦虑与注意控制不足的研究中应该充分考虑工作记忆负荷这个因素。
     实验2利用认知冲突适应范式探究高特质焦虑个体的动态的冲突适应模式。冲突适应是由冲突驱动的动态的认知控制调整。在被试完成经典色词Stroop任务的同时记录其ERPs数据。行为结果表明,高、低特质焦虑组在错误率上都表现出冲突适应效应。但是,在反应时上,只有低特质焦虑组表现出冲突适应效应。ERP数据表明,只有高特质焦虑组在N450波幅上表现出对冲突适应的敏感。然而,低特质焦虑组的冲突SP波幅敏感对冲突适应敏感,而高特质焦虑组没有表现出这一模式。本研究结果表明,在高水平冲突之后,高特质焦虑个体表现出增强的冲突监控以及减少的注意控制的卷入。因此,我们的结果支持Bishop的观点,高特质焦虑个体在认知控制中会表现出自上而下注意资源卷入的减少,而不支持注意控制理论的预期,高特质焦虑个体会通过增加的自上而下资源的卷入来补偿他们降低的加工效率。此外,我们的研究扩张了先前认知冲突适应的研究结果,表明个体特质焦虑差异调节冲突驱动的认知控制。
     实验3证实了在视觉工作记忆的保持阶段,高特质焦虑个体表现出低效过滤中性突显分心物。先前研究表明高特质焦虑个体表现出对视觉空间工作记忆中特定的威胁相关分心物过滤的不足。并且,先前关于高特质焦虑个体抑制控制不足的实验证据主要集中在需要克服自动化优势反应趋势的实验任务中。因此,对于特质焦虑是否影响工作记忆中非情绪分心物的抑制还没有答案。当前的研究主要探究在视觉空间工作记忆的编码与保持阶段,高特质焦虑个体是否会表现出低效过滤任务无关信息,即使任务无关信息不具有威胁情绪色彩。在被试完成单侧化变化觉察任务的同时记录其事件相关电位。任务要求被试只记忆中央注视点一侧的红色矩形条的朝向而忽视其它突显的绿色矩形条。实验主要包含三种条件,两个红色矩形条、四个红色矩形条以及两个红色矩形条加两个绿色矩形条(分心物条件)。在早期的N2pc成分上,没有显著的组别主效应与组别与条件的交互效应,表明高、低特质焦虑组在最初的客体个体化加工上没有表现出显著差异。然而,在随后的记忆保持阶段,高特质焦虑组表现出低效过滤工作记忆中无关项目的特征,这不仅反映在450-900毫秒之间,高特质焦虑组在分心物条件诱发的晚期CDA波幅与四个红色条所诱发的CDA波幅没有显著差异,而且这也反映在高特质焦虑组比低特质焦虑组更低的过滤分数上。因此,我们的研究结果扩张了先前研究,证实在工作记忆的保持阶段,高特质焦虑个体表现出普遍性的对任务无关突显分心物过滤能力的削弱。
     实验4研究高特质焦虑个体是否能够与低特质焦虑个体一样,在视觉工作记忆中表征相同数量的项目。我们在被试完成单侧化变化觉察任务的同时记录其事件相关电位。对侧化延迟活动(CDA)是工作记忆表征容量的神经指标,因此是本研究重点关注的ERP成分。不同水平的记忆负荷(1-5色块)在每个block内随机变化。虽然高特质焦虑个体没有表现出行为上的削弱,但在记忆过程中的神经加工指标上表现出异常。在记忆项目诱发的ERP模式上,高特质焦虑被试的CDA波幅在记忆三个项目时达到渐近线水平,而低特质焦虑被试的CDA波幅在记忆四个项目时达到渐近线水平。这一结果表明,高特质焦虑被试表现出视觉工作记忆容量减少。此外,要求记忆3-5个项目时,高特质焦虑组比特质焦虑组表现出更小的对侧波幅,而要求记忆1-2个项目时,两组被试在对侧波幅上没有显著差异。因此,高特质焦虑组的减小的CDA波幅是因为其对侧波幅的降低所致,这一结果表明高特质焦虑组表现出对任务相关项目表征数量的减少。
     综上,不论是在反应抑制还是认知抑制,高特质焦虑个体在当前的抑制相关任务中都表现出自上而下注意资源卷入的减少。并且,高特质焦虑个体的抑制削弱主要表现在任务对认知资源的高需求条件下。此外,高特质焦虑个体的抑制不足表现在不同的认知加工阶段上。
Trait anxiety, a vulnerable personality factor for anxiety disorders and depression, is defined as an individual's disposition to experience frequent and intense anxiety and worry in response to various stress situations. High levels of trait anxiety confer elevated risk for the development of anxiety and other psychiatric disorders. Although a large number of studies suggest that trait anxiety is associated with impaired inhibition of threat distractors, recent studies have been demonstrating that this impairment of inhibition can even be observed in the absence of threat. On the basis of the common assumption that the general cognitive control is impaired in individuals with HTA, two major predictions have been put forward concerning the underlying mechanisms of this impairment. On the one hand, the attentional control theory of trait anxiety expected that HTA individuals may show greater recruitment of top-down resources to compensate their reduced processing efficiency and to maintain the same levels of task performance as low anxious individuals. On the other hand, Bishop (2009) argued that trait anxiety is linked to impoverished recruitment of top-down resources to inhibit neutral distractors. The present study thus evaluated the two competing predictions in several experimental paradigms to elaborate the neuro-cognition of inhibition in trait anxiety, by means of event-related potentials with high high time-resolution. We foused on how trait anxiey influences inhibition which is sub-components of attention control. According to Friedman and Miyake (2004) the inhibition function of the central executive involves at least two components:prepotent response inhibition and resistance to interference from distracters (cognitive inhibition). The first two experiments investigated the neural correlates of response inhibition in trait anxiety, and two extra experiments investigated the neural correlates of cognitive inhibition in trait anxiety.
     The first study is the first to utilize a dual-task design with event-related potentials (ERPs) to investigate how WM load modulates distractor processing in trait anxiety. Attentional control theory posits that trait anxiety is associated with a general deficit in inhibition of task-irrelevant information, whereas Load theory of attention proposes that a high working memory (WM) load increases the potential for distractors to interfere with cognitive control processes. However, the influence of WM load on distractor processing in trait anxiety has not been explored thoroughly. Here, this question was investigated using a dual-task design in combination with event-related potentials. Female participants were required to remember either one (low WM load) or six letters (high WM load) while performing a flanker task. Our results showed that a high WM load disrupted participants' performance in incongruent trials and this effect was exacerbated for the high trait-anxious (HTA) group. This exacerbation was reflected by delayed reaction times (RTs) and more negative N2amplitudes in incongruent trials for the HTA group relative to the low trait-anxious group under high WM load. Both groups, however, did not differ in their ability to inhibit task-irrelevant distractors under low WM load in either behavioral or neural terms. Furthermore, when WM load was high, trait anxiety levels of HTA individuals correlated with interference effects on RTs and N2amplitudes, respectively. Our results document that trait anxiety is associated with less efficient recruitment of top-down mechanisms required for the inhibition of distractors when limited WM resources are depleted by high WM load. We suggest that WM load should be taken into consideration in studies investigating attentional control deficits in trait anxiety.
     The second study investigated the neural dynamics of conflict adaptation in trait anxiety in a color-naming Stroop task using ERPs. Conflict monitoring and resolution can be measured by examining conflict adaptation, the dynamical adjustment of cognitive control based on previous-trial conflict. For ERPs, individuals with low trait-anxious (LTA) showed larger conflict slow potential (SP) amplitudes for incongruent (high-conflict) trials following congruent (low-conflict) trials relative to incongruent trials following incongruent trials. Importantly, individuals with HTA showed no such differences in conflict SP amplitudes after previous-trial conflict; however, they showed larger N450amplitudes for incongruent trials following congruent trials relative to incongruent trials following incongruent trials. These results suggest that individuals with HTA are associated with hyperactive conflict-detection mechanism and impairments in recruitment of cognitive resources after previous conflict to solve current conflict. Thus, our finding support impoverished recruitment of top-down resources in trait anxiety rather than ACT expected compensatory and greater recruitment of top-down resources in trait anxiety. Our finding extends recent observations implying an important role of individual difference in personality in regulating conflict-driven cognitive control.
     In the third study, we present a research on the manifestation of general inefficient filtering of neutral distractors during visual—spatial WM maintenance stages in HTA individuals. Research has indicated that highly trait-anxious (HTA) individuals exhibit a specific deficit in filtering threat-related distractors from visual-spatial working memory (WM). Prior demonstrations of impaired inhibition control in HTA individuals have mainly focused on tasks that required the inhibition of prepotent response tendencies. Studies on the suppression of emotionally neutral distractors from WM in trait anxiety have also been minimal. Female participants performed a visual—spatial WM task while ERPs were recorded. They were made to remember the orientations of red rectangles within half of the screen and to ignore all salient green rectangles. As predicted, no significant main effect of group and no interaction between group and condition were found in the N2pc component, suggesting that group differences did not manifest in the initial process of object individuation. During the subsequent WM maintenance phase, HTA individuals were highly inefficient at filtering the irrelevant items from WM, as reflected not only by parallel late contralateral delay activity (CDA;450to900ms) amplitudes for the distractor condition and the four red items, but also by a smaller filtering efficiency score in the HTA group than in the low-trait-anxiety group. Extending previous studies, our findings verify a general filtering impairment in HTA individuals for task-irrelevant salient distractors during a WM maintenance phase.
     The fouth study examined anxiety-related group differences in neural activity associated with the amount of representations in visual-spatial working memory (WM), using the ERPs in a lateralized change detection task. CDA was proposed as a neural marker of the amount of representations in visual WM. Different levels of memory load were varied within each block. Despite unimpaired behavioral performance in individuals with high trait-anxious (HTA), they displayed several changes in the neuronal markers of the memory processes. The CDA amplitude reached asymptote at loads of three and four objects for HTA and low trait-anxious (LTA) individuals, respectively. This result indicates that HTA individuals reach the upper limit of representation capacity with a smaller memory load than LTA individuals. For individuals with HTA, the smaller CD A for higher loads could be attributed to less contralateral cortical activity, which further supports their reduced representations of items in WM.
引文
李文利,&钱铭怡.(1995).状态特质焦虑量表中国大学生常模修订.北京大学学报.自然科学版31(1),108-114.
    姚树霞,杨东,齐森青,雷燕,& Ding, C. (2012)视觉空间注意研究中的N2pc成分述评.心理科学进展20(003),365-375.
    高在峰,郁雯珺,徐晓甜,尹军,水仁德,&沈模卫.(2012).对侧延迟活动:视觉工作记忆信息存储的ERP指标.科学通报57(30),2806-2814.
    刘静怡,黄希庭,&杨帅.(2013).社交焦虑障碍中的注意偏差三成分研究述评.心理科学进展21(004),664-670.
    Ahmed, L., & de Fockert, J. W. (2012). Focusing on attention:the effects of working memory capacity and load on selective attention. Plos One, 7(8), e43101.
    Anderson, A. K., & Phelps, E. A. (2001). Lesions of the human amygdala impair enhanced perception of emotionally salient events. Nature,411(6835),305-309.
    Ansari, T. L., Derakshan, N., & Richards, A. (2008). Effects of anxiety on task switching:evidence from the mixed antisaccade task. Cogn Affect Behav Neurosci, 8(3),229-238.
    Ansari, T. L., & Derakshan, N. (2010). Anxiety impairs inhibitory control but not volitional action control. Cognition and emotion,24(2),241-254.
    Ansari, T. L., & Derakshan, N. (2011a). The neural correlates of cognitive effort in anxiety: effects on processing efficiency. Biol Psychol,86(3),337-348.
    Ansari, T. L., & Derakshan, N. (2011b). The neural correlates of impaired inhibitory control in anxiety. Neuropsychologia, 49(5),1146-1153.
    Appelbaum, L. G, Meyerhoff, K. L., & Woldorff, M. G (2009). Priming and backward influences in the human brain:processing interactions during the stroop interference effect. Cereb Cortex,19(11),2508-2521.
    Arend, A. M., & Zimmer, H. D. (2011). What Does Ipsilateral Delay Activity Reflect? Inferences from Slow Potentials in a Lateralized Visual Working Memory Task. Journal of cognitive neuroscience,23(12),4048-4056.
    Aron, A. R (2007). The neural basis of inhibition in cognitive control. The Neuroscientist, 13(3),214-228.
    Baddeley, A. (2012). Working memory:theories, models, and controversies. Annu Rev Psychol,63,1-29.
    Bar-Haim, Y, Lamy, D., Pergamin, L., Bakermans-Kranenburg, M. J., & van, I. M. H. (2007). Threat-re la ted attentional bias in anxious and nonanxious individuals:a meta-analytic study. Psychol Bull,755(1),1-24.
    Barch, D. M., Braver, T. S., Carter, C. S., Poldrack, R. A., & Robbins, T. W. (2009). CNTRICS final task selection:executive control. Schizophr Bull, 35(1), 115-135.
    Basten, U., Stelzel, C., & Fiebach, C. J. (2011). Trait anxiety modulates the neural efficiency of inhibitory control. J Cogn Neurosci, 23(10),3132-3145.
    Basten, U., Stelzel, C., & Fiebach, C. J. (2012). Trait anxiety and the neural efficiency of manipulation in working memory. Cogn Affect Behav Neurosci,12(3), 571-588.
    Berggren, N., & Derakshan, N. (2013). Attentional control deficits in trait anxiety: Why you see them and why you don't. Biol Psychol, 92(3),440-446.
    Berggren, N., Richards, A., Taylor, J., & Derakshan, N. (2013). Affective attention under cognitive load:reduced emotional biases but emergent anxiety-related costs to inhibitory control. Front Hum Neurosci, 7, 188.
    Bishop, S., Duncan, J., Brett, M., & Lawrence, A. D. (2004). Prefrontal cortical function and anxiety:controlling attention to threat-related stimuli. Nat Neurosci, 7(2),184-188.
    Bishop, S. J. (2007). Neurocognitive mechanisms of anxiety:an integrative account. Trends Cogn Sci,11(1),307-316.
    Bishop, S. J. (2009). Trait anxiety and impoverished prefrontal control of attention. Nat Neurosci,12(1),92-98.
    Bishop, S. J., Jenkins, R., & Lawrence, A. D. (2007). Neural processing of fearful faces:effects of anxiety are gated by perceptual capacity limitations. Cereb. Cortex,17,1595-1603.
    Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychol. Rev.,108,624-652.
    Browning, M., Holmes, E. A., Murphy, S. E, Goodwin, G M., & Harmer, C. J. (2010). Lateral prefrontal cortex mediates the cognitive modification of attentional bias. Biol Psychiatry, 67(10),919-925.
    Buhle, J. T., Silvers, J. A., Wager, T. D., Lopez, R., Onyemekwu, C., Kober, H., Ochsner, K. N. (2013). Cognitive Reappraisal of Emotion:A Meta-Analysis of Human Neuroimaging Studies. Cereb Cortex. doi: 10.1093/cercor/bhtl54
    Caparos, S.,& Linnell, K. J. (2012). Trait anxiety focuses spatial attention. Emotion, 12(1),8-12.
    Carlson, J. M., Reinke, K. S., & Habib, R. (2009). A left amygdala mediated network for rapid orienting to masked fearful faces. Neuropsychologia, 47(5), 1386-1389.
    Cisler, J. M., & Koster, E. H. (2010). Mechanisms of attentional biases towards threat in anxiety disorders:An integrative review. Clin Psychol Rev, 30(2), 203-216.
    Clayson, P. E., Clawson, A., & Larson, M. J. (2011). Sex differences in electrophysiological indices of conflict monitoring. Biol Psychol,87(2), 282-289.
    Clayson, P. E., & Larson, M. J. (2011). Effects of repetition priming on electrophysio logical and behavioral indices of conflict adaptation and cognitive control. Psychophysiology,48(12),1621-1630.
    Coderre, E., Conklin, K., & van Heuven, W. J. (2011). Electrophysiological measures of conflict detection and resolution in the Stroop task. Brain Res,1413,51-59.
    Cowan, N. (2001). The magical number 4 in short-term memory:a reconsideration of mental storage capacity. Behavioral and Brain Sciences,24(1),87-114; discussion 114-185.
    Danielmeier, C, Wessel, J. R., Steinhauser, M., & Ullsperger, M. (2009). Modulation of the error-related negativity by response conflict. Psychophysiology,46(6), 1288-1298.
    Davis, M., & Whalen, P. J. (2001). The amygdala:Vigilance and emotion. Molecular Psychology,6,13-34.
    de Fockert, J. W., Rees, G, Frith, C. D., & Lavie, N. (2001). The role of working memory in visual selective attention. Science,291(5509),1803-1806.
    Dennis, T. A., & Chen, C. C. (2009). Trait anxiety and conflict monitoring following threat:an ERP study. Psychophysiology,46(1),122-131.
    Derakshan, N., Ansari, T. L., Hansard, M., Shoker, L., & Eysenck, M. W. (2009). Anxiety, inhibition, efficiency, and effectiveness:An investigation using the antisaccade task. Experimental Psychology, 56(1),48.
    Derakshan, N., & Eysenck, M. W. (2009). Anxiety, processing efficiency, and cognitive performance. European Psychologist,14(2),168-176.
    Derryberry, D., & Reed, M. A. (2002). Anxiety-related attentional biases and their regulation by attentional control. Journal of Abnormal Psychology,111(2),225.
    Donohue, S. E., Liotti, M., Perez, R., & Woldorff, M. G. (2012). Is conflict monitoring supramodal? Spatiotemporal dynamics of cognitive control processes in an auditory Stroop task. Cognitive Affective & Behavioral Neuroscience,12(1), 1-15.
    Dunning, J. P., & Hajcak, G. (2009). See no evil:Directing visual attention within unpleasant images modulates the electrocortical response. Psychophysiology, 46(1),28-33.
    Edin, F., Klingberg, T., Johansson, P., McNab, F., Tegner, J., & Compte, A. (2009). Mechanism for top-down control of working memory capacity. Proc Natl Acad Sci USA,106(16),6802-6807.
    Egner, T., Etkin, A., Gale, S., & Hirsch, J. (2008). Dissociable neural systems resolve conflict from emotional versus nonemotional distracters. Cereb Cortex, 18(6), 1475-1484.
    Eimer, M. (1996). The N2pc component as an indicator of attentional selectivity. Electroencephalography and Clinical Neurophysiology,99(3),225-234.
    Eldar, S., & Bar-Haim, Y. (2010). Neural plasticity in response to attention training in anxiety. Psychol Med,40(4),667-677.
    Ester, E. F., Drew, T., Klee, D., Vogel, E. K., & Awh, E. (2012). Neural measures reveal a fixed item limit in subitizing. J Neurosci, 32(21),7169-7177.
    Etkin, A., Klemenhagen, K. C., Dudman, J. T., Rogan, M. T., Hen, R., Kandel, E. R., & Hirsch, J. (2004). Individual differences in trait anxiety predict the response of the basolateral amygdala to unconsciously processed fearful faces. Neuron, 44(6),1043-1055.
    Eysenck, M., Payne, S., & Derakshan, N. (2005). Trait anxiety, visuospatial processing, and working memory. Cognition & Emotion,19(8),1214-1228.
    Eysenck, M. W., & Derakshan, N. (2011). New perspectives in attentional control theory. Personality and Individual Differences, 50(1),955-960.
    Eysenck, M. W., Derakshan, N., Santos, R., & Calvo, M. G. (2007). Anxiety and cognitive performance:attentional control theory. Emotion, 7(2),336-353.
    Forster, S. E., Carter, C. S., Cohen, J. D., & Cho, R. Y. (2011). Parametric manipulation of the conflict signal and control-state adaptation. J Cogn Neurosci,23(4),923-935. doi: 10.1162/jocn.2010.21458
    Friedman, N. P., & Miyake, A. (2004). The relations among inhibition and interference control functions: a latent-variable analysis. Journal of experimental psychology: General, 133(1),101.
    Gao, Z., Yin, J., Xu, H., Shui, R., & Shen, M. (2011). Tracking object number or information load in visual working memory:revisiting the cognitive implication of contralateral delay activity. Biol Psychol,87(2),296-302.
    Gross, J. J. (2014). Emotion regulation: Conceptual and empirical foundations. Handbook of emotion regulation (2nd ed.) (pp.3-20). New York, NY: Guilford.
    Hommel, B., Proctor, R. W., & Vu, K. P. (2004). A feature-integration account of sequential effects in the Simon task. Psychol Res,68(1),1-17.
    Indovina, I., Robbins, T. W., Nunez-Elizalde, A. O., Dunn, B. D., & Bishop, S. J. (2011). Fear-conditioning mechanisms associated with trait vulnerability to anxiety in humans. Neuron,69(3),563-571.
    Kerns, J. G, Cohen, J. D., MacDonald, A. W.,3rd, Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science,303(5660),1023-1026.
    Kessler, R C., Berglund, P., Demler, O., Jin, R., Merikangas, K. R., & Walters, E. E. (2005). Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry,62(6),593-602.
    Krebs, R. M., Boehler, C. N., Appelbaum, L. G, & Woldorff, M. G (2013). Reward associations reduce behavioral interference by changing the temporal dynamics of conflict processing. Plos One, 8(1), e53894.
    Kuo, B. C, Stokes, M. G, & Nobre, A. C. (2012). Attention modulates maintenance of representations in visual short-term memory. J Cogn Neurosci, 24(1),51-60.
    Larson, M. J., Kaufman, D. A., & Perlstein, W. M. (2009). Neural time course of conflict adaptation effects on the Stroop task. Neuropsychologia, 47(3), 663-670.
    Lavie, N., Hirst, A., de Fockert, J. W., & Viding, E. (2004). Load theory of selective attention and cognitive control. JExp Psychol Gen, 133(3),339-354.
    Lee, E. Y, Cowan, N., Vogel, E. K., Rolan, T., Valle-Inclan, F., & Hackley, S. A. (2010). Visual working memory deficits in patients with Parkinson's disease are due to both reduced storage capacity and impaired ability to filter out irrelevant information. Brain,133(9),2677-2689.
    Leonard, C. J., Kaiser, S. T., Robinson, B. M., Kappenman, E. S., Hahn, B., Gold, J. M., & Luck, S. J. (2013). Toward the neural mechanisms of reduced working memory capacity in schizophrenia. Cereb Cortex,23(7),1582-1592.
    Liotti, M., Woldorff, M. G, Perez, R., & Mayberg, H. S. (2000). An ERP study of the temporal course of the Stroop color-word interference effect. Neuropsychologia, 38(5),701-711.
    Lonigan, C. J., & Vasey, M. W. (2009). Negative affectivity, effortful control, and attention to threat-relevant stimuli. Journal of abnormal child psychology, 37(3),387-399.
    Luck, S. J., & Hillyard, S. A. (1994). Spatial-Filtering during Visual-Search - Evidence from Human Electrophysiology. Journal of Experimental Psycho logy-Human Perception and Performance, 20(5),1000-1014.
    Machizawa, M. G, Goh, C. C., & Driver, J. (2012). Human visual short-term memory precision can be varied at will when the number of retained items is low. Psychol Sci, 23(6),554-559. doi: 10.1177/0956797611431988
    MacLeod, C., & Mathews, A. (2012). Cognitive bias modification approaches to anxiety. Annu Rev Clin Psychol, 8, 189-217.
    MacLeod, C., Rutherford, E., Campbell, L., Ebsworthy, G., & Holker, L. (2002). Selective attention and emotional vulnerability:assessing the causal basis of their association through the experimental manipulation of attentional bias. Journal of Abnormal Psychology, 111(1),107-123.
    Mansouri, F. A., Tanaka, K., & Buckley, M. J. (2009). Conflict-induced behavioural adjustment:a clue to the executive functions of the prefrontal cortex. Nat Rev Neurosci,10(2),141-152.
    Mayr, U., Awh, E., & Laurey, P. (2003). Conflict adaptation effects in the absence of executive control. Nat Neurosci, 6(5),450-452.
    Mazza, V., & Caramazza, A. (2011). Temporal brain dynamics of multiple object processing:the flexibility of individuation. Plos One,6(2), e17453.
    Mazza, V, Turatto, M., & Caramazza, A. (2009). Attention selection, distractor suppression and N2pc. Cortex, 45(1),879-890.
    McCollough, A. W., Machizawa, M. G, & Vogel, E. K. (2007). Electrophysiological measures of maintaining representations in visual working memory. Cortex, 43(1),77-94.
    McNab, F., & Klingberg, T. (2008). Prefrontal cortex and basal ganglia control access to working memory. Nat Neurosci, 11(1),103-107.
    Miller, E. K., & Cohen, J. D. (2001a). An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci., 24,167-202.
    Miller, E. K., & Cohen, J. D. (2001b). An integrative theory of prefrontal cortex function. Annu Rev Neurosci, 24,167-202.
    Miyake, A. (2001). Individual differences in working memory:Introduction to the special section. Journal of experimental psychology: General,130(1),163.
    Monk, C. S., Telzer, E. H., Mogg, K., Bradley, B. P., Mai X., Louro, H. M.,... Pine, D. S. (2008). Amygdala and ventrolateral prefrontal cortex activation to masked angry faces in children and adolescents with generalized anxiety disorder. Arch Gen Psychiatry, 65(5),568-576.
    Moriya, J., & Sugiura, Y. (2012). High visual working memory capacity in trait social anxiety. Plos One,7(4), e34244.
    Moser, J. S., Becker, M. W., & Moran, T. P. (2012). Enhanced attentional capture in trait anxiety. Emotion,12(2),213-216.
    Moser, J. S., Moran, T. P., Schroder, H. S., Donnellan, M. B., & Yeung, N. (2013). On the relationship between anxiety and error monitoring:a meta-analysis and conceptual framework. Frontiers in human neuroscience, 7.
    Myers, K. M., & Davis, M. (2007). Mechanisms of fear extinction. Mol Psychiatry, 12(2),120-150.
    Nieuwenhuis, S., & de Kleijn, R. (2013). The impact of alertness on cognitive control J Exp Psychol Hum Percept Perform,39(6),1797-1801.
    Ochsner, K. N., Ray, R. D., Cooper, J. C., Robertson, E. R., Chopra, S., Gabrieli, J. D., & Gross, J. J. (2004). For better or for worse:neural systems supporting the cognitive down-and up-regulation of negative emotion. Neurolmage, 23(2), 483-499.
    Osinsky, R., Alexander, N., Gebhardt, H., & Hennig, J. (2010). Trait anxiety and dynamic adjustments in conflict processing. Cogn Affect Behav Neurosci, 10(3), 372-381.
    Osinsky, R., Gebhardt, H., Alexander, N., & Hennig, J. (2012). Trait anxiety and the dynamics of attentional control Biol Psychol, 89(1),252-259.
    Owens, M., Koster, E. H., & Derakshan, N. (2012). Impaired filtering of irrelevant information in dysphoria: an ERP study. Soc Cogn Affect Neurosci, 7(7), 752-763.
    Pacheco-Unguetti, A. P., Acosta, A., Callejas, A., & Lupianez, J. (2010). Attention and anxiety:different attentional functioning under state and trait anxiety. Psychol Sci,21(2),298-304.
    Pagano, S., & Mazza, V. (2012). Individuation of multiple targets during visual enumeration:new insights from electrophysiology. Neuropsychologia,50(5), 754-761.
    Pagano, S., & Mazza, V. (2013). Multiple object individuation during numerical Stroop. Psychophysiology,50(3),292-296.
    Pashler, H. (1988). Familiarity and visual change detection. Percept Psychophys,44(4), 369-378.
    Peers, P. V., & Lawrence, A. D. (2009). Attentional control of emotional distraction in rapid serial visual presentation. Emotion,9(1),140.
    Perlstein, W. M., Larson, M. J., Dotson, V. M., & Kelly, K. G (2006). Temporal dissociation of components of cognitive control dysfunction in severe TBI: ERPs and the cued-Stroop task. Neuropsychologia,44(2),260-274.
    Pessoa, L. (2005). To what extent are emotional visual stimuli processed without attention and awareness? Current opinion in neurobiology,15(2),188-196.
    Pratt, N., Willoughby, A., & Swick, D. (2011). Effects of working memory load on visual selective attention:behavioral and electrophysiological evidence. Front Hum Neurosci,5,57.
    Quirk, G J., Garcia, R., & Gonzalez-Lima, F. (2006). Prefrontal mechanisms in extinction of conditioned fear. Biol Psychiatry, 60(4),337-343.
    Reinhart, R. M., Heitz, R. P., Purcell, B. A., Weigand, P. K., Schall, J. D., & Woodman, G. F. (2012). Homologous mechanisms of visuospatial working memory maintenance in macaque and human:properties and sources. J Neurosci, 32(22), 7711-7722.
    Righi, S., Mecacci, L., & Viggiano, M. P. (2009). Anxiety, cognitive self-evaluation and performance:ERP correlates. Journal of Anxiety Disorders, 23(8), 1132-1138.
    Robinson, O. J., Krimsky, M., & Grillon, C. (2013). The impact of induced anxiety on response inhibition. Front Hum Neurosci,7,69.
    Robitaille, N., Grimault, S., & Jolicaeur, P. (2009). Bilateral parietal and contralateral responses during maintenance of unilaterally encoded objects in visual short-term memory:Evidence from magnetoencephalography. Psychophysiology, 46(5),1090-1099.
    Sadeh, N., & Bredemeier, K. (2011). Individual differences at high perceptual load: The relation between trait anxiety and selective attention. Cognition & Emotion, 25(4),747-755.
    Sander, M. C., Werkle-Bergner, M., & Lindenberger, U. (2011). Contralateral delay activity reveals life-span age differences in top-down modulation of working memory contents. Cereb Cortex,21(12),2809-2819.
    Sandi, C., & Richter-Levin, G (2009). From high anxiety trait to depression:a neurocognitive hypothesis. Trends Neurosci,52(6),312-320.
    Savostyanov, A. N., Tsai, A. C., Liou, M., Levin, E. A., Lee, J. D., Yurganov, A. V, & Knyazev, G. G. (2009). EEG-correlates of trait anxiety in the stop-signal paradigm. Neurosci Lett, 449(2),112-116.
    Spielberger, C. D. (1983). Manual for the State-Trait Anxiety Inventory STAI (Form Y)(" Self-Evaluation Questionnaire").
    Spielberger, C. D. (1989). State-trait anxiety inventory: a comprehensive bibliography: Consulting Psychologists Press Palo Alto, CA.
    Spielberger, C. D., Gorsuch, R. L., & Lushene, R. E. (1970). Manual for the state-trait anxiety inventory. Palo Alto, CA:Consulting Psychologists Press.
    Stormer, V. S., Li, S. C., Heekeren, H. R., & Lindenberger, U. (2013). Normative shifts of cortical mechanisms of encoding contribute to adult age differences in visual-spatial working memory. Neurolmage, 73C, 167-175.
    Stout, D. M., Shackman, A. J., & Larson, C. L. (2013). Failure to filter:anxious individuals show inefficient gating of threat from working memory. Front Hum Neurosci, 7,58.
    Szucs, D., & Soltesz, F. (2012). Functional definition of the N450 event-related brain potential marker of conflict processing:a numerical stroop study. BMC Neurosci,13,35.
    Taylor, C. T., Aupperle, R. L., Flagan, T., Simmons, A. N., Amir, N., Stein, M. B., & Paulus, M. P. (2013). Neural correlates of a computerized attention modification program in anxious subjects. Soc Cogn Affect Neurosci. doi: 10.1093/scan/nst128
    Thiruchselvam, R., Hajcak, G., & Gross, J. J. (2012). Looking inwards:Shifting attention within working memory representations alters emotional responses. Psychological Science,23(12),1461-1466.
    Todd, J. J., & Marois, R. (2004). Capacity limit of visual short-term memory in human posterior parietal cortex. Nature, 428(6984),751-754.
    Todd, J. J., & Marois, R. (2005). Posterior parietal cortex activity predicts individual differences in visual short-term memory capacity. Cogn Affect Behav Neurosci, 5(2),144-155.
    van den Heuvel, O. A., Veltman, D. J., Groenewegen, H. J., Witter, M. P., Merkelbach, J., Cath, D. C,... van Dyck, R. (2005). Disorder-specific neuroanatomical correlates of attentional bias in obsessive-compulsive disorder, panic disorder, and hypochondrias is. Arch Gen Psychiatry,62(8),922-933.
    Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428(6984),748-751.
    Vogel, E. K., McCollough, A. W., & Machizawa, M. G (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438(7067),500-503.
    Voytek, B., & Knight, R T. (2010). Prefrontal cortex and basal ganglia contributions to visual working memory. Proc Natl Acad Sci USA,107(42),18167-18172. doi: 10.1073/pnas.1007277107
    West, R (2003). Neural correlates of cognitive control and conflict detection in the Stroop and digit-location tasks. Neuropsychologia,41(8),1122-1135.
    West, R., & Alain, C. (2000). Effects of task context and fluctuations of attention on neural activity supporting performance of the stroop task. Brain Res, 873(1), 102-111.
    Williams, J., Watts, F., MacLeod, C., & Mathews, A. (1997). Cognitive psychology and emotional disorders,2nd ed.:Wiley, Chichester.
    Xu, Y., & Chun, M. M. (2006). Dissociable neural mechanisms supporting visual short-term memory for objects. Nature,440(7080),91-95.
    Yeung, N., & Cohen, J. D. (2006). The impact of cognitive deficits on conflict monitoring. Predictable dissociations between the error-related negativity and . Psychol Sci, 17(2),164-171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700