粘蛋白MUC15对肝癌恶性生物学行为的调控作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分
     粘蛋白MUC15对肝癌恶性生物学行为的调控作用及机制研究
     研究背景和目的:
     原发性肝细胞癌是全世界最常见的致命性恶性肿瘤之一,发病率在恶性肿瘤中位居第六位,而死亡率则占肿瘤相关死亡的第三位,更是肝硬化病人死亡的首要原因。分期较早的肿瘤病人,可通过肝切除术、肝移植和射频消融,得到有效的治疗。但大部分病人诊断时既为晚期,因为血管癌栓、子灶、包膜不全和多中心发生等情况的存在,缺乏有效的治疗,术后仍有很高的复发转移率,预后依然很差。因此,迫切需要探索新的治疗方法,鉴定新的肝癌进展分子标记,以建立新的更好的分子分型分层系统,并深刻理解肝癌术后转移复发的分子机制,这对于选择恰当的治疗方式,阻止肿瘤术后复发转移,延长患者生存十分重要。
     粘蛋白是一类古老的高分子量糖蛋白家族,通常分为胞浆型及膜型,常被高度的O型糖基化包被。生理条件下,大部分上皮细胞中具有粘蛋白的表达。一般说来,粘蛋白的功能主要涉及水合、润滑和保护上皮表皮。肿瘤研究中,早期粘蛋白家族成员多以血清标记物的出现,为人们所熟知,如CA125(MUC16),CA153(MUC1)等,这些成员多为分泌型粘蛋白。近年来,很多文献报道膜型粘蛋白在炎症向肿瘤的进展过程中,起到了很重要的作用。膜型粘蛋白为一类具有单次跨膜结构的粘蛋白家族成员,其N端位于胞外,可感受各种胞外信号如各种细胞因子、生长因子等的刺激,而C端位于胞浆内,涉及多条信号通路的活化。膜型粘蛋白家族成员包括MUC1, MUC3A, MUC3B,MUC4,MUC12, MUC13, MUC15, MUC16, MUC17和MUC20。
     粘蛋白MUC15最初是从牛奶脂肪小泡的膜上被分离鉴定。在人类胎盘的发育过程中,MUC15的表达在胚胎晚期比胚胎早期要高,而且体外实验表明其表达水平与绒毛膜的侵袭能力呈负相关,过表达外源的MUC15,能够抑制滋养层样细胞JAR和JEG-3的侵袭能力。但是有趣的是,有文献报道在结肠腺癌的研究中,MUC15的表达异常升高的,并促进人类结肠癌细胞的恶性表型。那么,在肝癌发生发展及转移复发中,粘蛋白MUC15的表达情况如何,将发挥如何的作用,尚未见报道。
     研究方法:
     1.搜集临床肝癌标本,通过real-time RT-PCR、western blot、免疫组化技术检测MUC15在肝癌组织中转录水平、蛋白水平的表达情况;
     2.完善肝癌样本的临床病理资料及随访预后信息,进行统计分析及预后分析,研究MUC15与临床病理特征的相关性及对肝癌总体生存及术后复发的预测价值;
     3.利用慢病毒系统,建立MUC15过表达及干扰细胞系,采用CCK8、划痕实验、transwell迁移小室、Matrigel侵袭小室实验观察高低表达MUC15对肝癌细胞体外对增殖、迁移与侵袭能力的影响;
     4.利用裸鼠皮下荷瘤及尾静脉注射肺转移膜型,研究高低表达MUC15对肝癌细胞体内对增殖、转移能力的影响;
     5.利用real-time RT-PCR、Western blot技术,结合细胞因子刺激、抑制剂实验等方法,研究MUC15对MAPK及PI3K/Akt等信号通路的影响;
     6.利用real-time RT-PCR、Western blot、免疫荧光、免疫共沉淀、流式细胞分析等技术,研究MUC15与EGFR的关系及对其功能的影响;
     7.利用免疫组化方法,研究MUC15与p-Akt在肝癌样本中的相关性,并研究两者结合后,对肝癌预后判断的价值。
     研究结果:
     1.肝癌临床样本中MUC15在转录水平及蛋白水平均较癌旁组织降低;
     2. MUC15低表达能够预测更具侵袭性的临床病理特征及肝癌病人更差的预后;
     3.过表达MUC15能有效抑制肝细胞的迁移与侵袭能力;干扰MUC15则能促进肝癌细胞的迁移与侵袭能力;
     4. MUC15通过阻断PI3K/Akt信号通路调节了MMP2、MMP7及TIMP2的表达;
     5. MUC15与EGFR的相互作用促进了EGFR的入胞、泛素化降解,阻碍了其本身同源二聚体的形成,从而调节了PI3K/Akt信号通路的失活;
     6. MUC15与p-Akt在临床样本中同样存在负相关关系,结合两者是强有力的肝癌预后预测因子;
     7. DNA甲基化部分解释了HCC中MUC15mRNA水平的降低。
     结论:
     本研究工作发现,在肝细胞癌中粘蛋白MUC15在癌中较癌旁明显低表达,我们运用大样本HCC验证,发现这种低表达与肝癌的恶性临床病理指标存在明显的相关性,进一步的单因素及多因素分析显示MUC15是独立的术后预后风险因素。体内及体外的实验进一步证明过表达MUC15可以显著的抑制肝癌细胞的迁移及侵袭能力,并且这种抑制能力主要是通过抑制PI3K/Akt信号通路实现的。我们首次报道了MUC15和EGFR的相互作用,这种相互作用明显的减弱了EGF介导的EGFR的同源二聚化,并促进了EGFR在早期胞吞小泡中的重定位,及EGFR的泛素化降解,然后抑制了Akt介导的肝癌的进展和转移。
     第二部分
     CHKA在肝癌恶性进展中的作用与机制研究研究背景和目的:
     肝癌为世界第六大常见恶性肿瘤,这些年,随着流行病学、影像学、分子生物学等学科的进步,对肝癌的认识从流行病、诊断、治疗、发病机理上来说,均有了长足的进步,但近年来肝癌相关的死亡率在全世界范围内仍呈现上升趋势。大部分肝癌患者诊断时已经是晚期,其总体生存率相比其他一些肿瘤仍然很低。因为晚期肿瘤术后的高复发转移率,绝大多数肝癌患者并非死于原发灶,而主要是死于肿瘤的复发与转移。因此深入研究导致肝癌发生发展与转移的分子机制对于完善目前的临床治疗方案有积极的意义。
     胆碱激酶是脂类代谢中发挥重要作用的关键酶类。它是生物体细胞内催化胆碱为磷酸胆碱,最终合成生物膜磷脂双分子层的主要成分磷脂酰胆碱过程中的第一步关键酶。该酶由胆碱激酶α(CHKA)和胆碱激酶β(CHKB)两个基因编码,二者通过同二聚体或异二聚体方式形成有活性的胆碱激酶。近年来,很多研究显示胆碱激酶及其催化产物磷酸胆碱在多种肿瘤中呈高表达,包括乳腺癌、肺癌、结肠癌、膀胱癌、前列腺癌及卵巢癌,并且发现CHKA的表达水平与乳腺癌、肺癌和膀胱癌患者的临床预后存在相关性。一些研究小组还通过各种体内外实验证实CHKA具有癌基因的功能,这些结果均提示CHKA可能在恶性肿瘤的发生发展过程中发挥重要作用。然而,CHKA在肝癌中的表达情况如何,是否与临床预后相关以及是否参与肝癌的恶性进展过程,目前国内外尚未见有系统报道。
     本研究旨在为深入理解CHKA在肝癌恶性进展过程中的作用提供实验依据,并为肝癌的治疗提供新的潜在靶点。研究方法:
     1.通过real-time qPCR技术检测CHKA在肝癌组织的基因组水平和转录水平的拷贝数和表达丰度;
     2.通过Western blot手段和免疫组化方法检测CHKA在肝癌组织中蛋白水平的表达情况;
     3.通过运用质粒过表达技术以及siRNA介导的基因沉默技术调节CHKA的表达水平观察其对肝细胞增殖的影响;
     4.通过划痕实验、transwell迁移小室、Matrigel侵袭小室实验观察高低表达CHKA对肝癌细胞迁移与侵袭能力的影响;
     5.结合抑制剂实验和siRNA基因干扰实验,研究CHKA调控肝癌细胞恶性生物学行为的通路机制;
     6.应用免疫组化方法结合临床病例资料和随访数据,分析判断CHKA的预后意义。
     研究结果:
     1.肝癌组织中CHKA基因拷贝数明显高于癌旁组织,并且在肝癌组织中CHKA蛋白呈普遍高表达;
     2. CHKA并不明显影响肝癌细胞的增殖过程;
     3.过表达CHKA可使肝细胞发生EMT转变;
     4.过表达CHKA能促进肝细胞的迁移与侵袭能力;干扰CHKA则能有效抑制肝癌细胞的迁移与侵袭能力;
     5.过表达CHKA激活PI3K/Akt信号通路;干扰CHKA则明显抑制PI3K/Akt通路;
     6.抑制PI3K/Akt通路可明显减轻CHKA介导的促迁移与侵袭能力;
     7.临床肝癌组织中CHKA的高表达与肿瘤微血管侵犯和肿瘤分期有关,并预示着患者更短的总体生存时间和更早的肿瘤复发。
     结论:
     本研究首先从临床肝癌患者癌组织样本入手,分析CHKA在肝癌中的表达情况。我们发现在肝癌基因组中CHKA拷贝数显著增加,其蛋白产物在肝癌中呈普遍高表达;随后通过过表达及干扰技术,研究CHKA对肝癌细胞生物学功能的影响;并进而阐明CHKA调控肝癌细胞生物学功能的具体通路机制。我们的数据显示CHKA主要是通过PI3K/Akt信号通路促进肝癌细胞发生侵袭与转移,提示PI3K/Akt通路在CHKA促进肝癌恶性进展过程中可能具有重要作用。本研究旨在为深入理解CHKA在肝癌恶性进展过程中的作用提供实验依据,并为肝癌的治疗提供新的潜在靶点。
PartⅠ:Studies on the roles and mechanisms ofMUC15in Hepatocarcinogenesis
     Background&Aims: Mucins have been implicated in human carcinogenesis. Theaberrant expression of MUC15has been correlated with colorectal adenocarcinomasand may play a critical role in the negative regulation of trophoblast invasion inhuman placentas. However, the potential role of MUC15in HCC remains unknown.The authors therefore determined the expression profile, functions and underlyingmechanisms of MUC15in the pathogenesis of hepatocellular carcinoma.
     Methods: MUC15expression levels were evaluated by immunohistochemistry,real-time RT-PCR and Western blotting assays. Clinical impact of MUC15wasassessed in a cohort of313HCC patients. Functional effect of MUC15was examinedby in vitro and in vivo assays.
     Results: We demonstrated that expression of MUC15frequently decreases in HCC,which is significantly associated with tumor aggressive characteristics and poorprognosis. Functional studies showed that exogenous expression of MUC15ameliorates metastasis and local growth of HCC cells in vitro and in vivo, viadecreasing the transcription of MMP2, MMP7but upregulating TIMP2expressionwith a PI3K/Akt-depended manner. Importantly, the physical interaction of MUC15and EGFR resulting in EGFR relocation within early endosome is indispensible forMUC15-mediated PI3K/AKT signaling inactivation. Consistently, a significantinverse correlation between MUC15expression and p-Akt levels in clinical samplesindicated that combination of these two parameters shows incremental prognosticvalue.
     Conclusions: MUC15is an independent prognostic biomarker and novel dimerizationpartner of EGFR, which involves in the negative regulation ofEGFR/PI3K/AKT-induced cell migration and invasion during the metastasis andprogression of HCC.
     PartⅡ:CHKA Enhances Hepatocellular Carcinoma Progression andMetastasis via Phosphoinositol3-Kinase/AKT Pathway
     Background&Aims: Choline kinase α (CHKA), the enzyme that converts choline tophosphocholine, has been implicated in human carcinogenesis. However, its potentialrole in HCC progression remains largely unexplored.
     Methods: Overexpression and gene silencing experiments were performed to evaluatethe potential oncogenic role of CHKAin HCC.
     Results: Here, we demonstrated that gene copy number of CHKA was elevated inhuman HCC genome and CHKAprotein was frequently overexpressed in HCC tissuesand cancer cell lines. Functional studies showed that ectopic expression of CHKAenhanced cell migration and invasion, whereas silencing CHKA expressioneffectively inhibited the migratory and invasive abilities of tumor cells. Further studyrevealed that Phosphoinositol3-Kinase (PI3K)/AKT pathway was mainly responsiblefor the oncogenic role of CHKA. Moreover, investigation of clinical HCC specimensshowed that increased expression of CHKA was closely correlated with advancedtumor stage and poor overall and disease-free survivals.
     Conclusions: Our results suggest that CHKA promotes HCC progression andmetastasis mainly through PI3K/Akt pathway, which may provide new insights intothe pathogenesis of HCC. These findings indicate that CHKA might be a new targetfor treatment of liver cancer.
引文
[1] Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin2011;61:69–90.
    [2] Venook AP, Papandreou C, Furuse J, et al. The incidenceand epidemiology of hepatocellularcarcinoma: a global and regional perspective. Oncologist2010;15:5–13.
    [3] Alazawi W, Cunningham M, Dearden J, et al. Systematic review: outcome of compensatedcirrhosis due to chronic hepatitis C infection. Aliment Pharmacol Ther2010;32:344–55.
    [4] Ferlay J, Shin HR, Bray F, et al. Estimates of worldwide burden of cancer in2008:GLOBOCAN2008. Int J Cancer2010;127:2893–917.
    [5] Bruix J, Sherman M. Management of hepatocellular carcinoma:an update. Hepatology2011;53:1020–2.
    [6] Portolani N, Coniglio A, Ghidoni S, et al. Early and late recurrence after liver resection forhepatocellular carcinoma: prognostic and therapeutic implications. Ann Surg2006;243:229-35.
    [7] Pallesen LT, Berglund L, Rasmussen LK, et al. Isolation and characterization of MUC15, anovel cell membrane-associated mucin. Eur. J. Biochem2002;269:2755–63.
    [8] Huang J, Che MI, Huang YT, et al. Overexpression of MUC15activates extracellularsignal-regulated kinase1/2and promotes the oncogenic potential of human colon cancer cells.Carcinogenesis2009;30:1452-8.
    [9] Shyu MK, Lin MC, Shih JC, et al. Mucin15is expressed in human placenta and suppressesinvasion of trophoblast-like cells in vitro. Human Reproduction2007;22:2723–32.
    [10] Lee TK, Castilho A, Cheung VC, Tang KH, Ma S, Ng IO. CD24(+) liver tumor-initiatingcells drive self-renewal and tumor initiation through STAT3-mediated NANOG regulation. CellStem Cell2011;9:50-63.
    [11] Sun HC, Zhang W, Qin LX, et al. Positive serum hepatitis Be antigen is associated withhigher risk of early recurrence and poorer survival in patients after curative resection of hepatitisB-related hepatocellular carcinoma. J Hepatol2007;47:684–90.
    [12] Sorokin A, Lemmon MA, Ullrich A, et al. Stabilization of an active dimeric form of theepidermal growth factor receptor by introduction of an inter-receptor disulfide bond. J Biol Chem1994;269:9752–59.
    [13] Yamada N, Nishida Y, Tsutsumida H, et al. Promoter CpG methylation in cancer cellscontributes to the regulation of MUC4. Br J Cancer2009;100(2):344-51.
    [14] Kufe DW. Mucins in cancer: function, prognosis and therapy. Nat Rev Cancer2009;9:874–85.
    [15] Mukhopadhyay P, Chakraborty S, Ponnusamy MP, et al. Mucins in the pathogenesis ofbreast cancer: Implications in diagnosis, prognosis and therapy. Biochim Biophys Acta2011;1815:224–40.
    [16] Bafna S, Kaur S, Batra SK. Membrane-bound mucins: the mechanistic basis foralterationsin the growth and survival of cancer cells. Oncogene2010;29:2893–904.
    [17] Wei X, Xu H, Kufe D. Human MUC1oncoprotein regulates p53-responsive genetranscription in the genotoxic stress response. Cancer Cell2005;7:167–78.
    [18] Skrypek N, Duchene B, Hebbar M, et al. The MUC4mucin mediates gemcitabine resistanceof human pancreatic cancer cells via the Concentrative Nucleoside Transporter family. Oncogene2012; http://dx.doi.org/10.1038/onc.2012.179.
    [19] Schroeder JA, Thompson MC, Gardner MM, et al. Transgenic MUC1interacts withepidermal growth factor receptor and correlates with mitogen activated protein kinase activation inthe mouse mammary gland. J Biol Chem2001;276:13057–64.
    [20] Li Y, Yu WH, Ren J, et al. Heregulin targets gamma-catenin to the nucleolus by amechanism dependent on the DF3/MUC1oncoprotein. Mol Cancer Res2003;1:765–75.
    [21] Carraway KL3rd, Funes M, Workman HC, et al. Contribution of Membrane Mucins toTumor Progression Through Modulation of Cellular Growth Signaling Pathways. Current Topicsin Developmental Biology2007;78:1–22.
    [22] Higuchi T, Orita T, Katsuya K, et al. MUC20suppresses the hepatocyte growthfactor-induced Grb2-Ras pathway by binding to a multifunctional docking site of met. Mol CellBiol2004;24:7456–68.
    [23] Herbst RS, Langer CJ. Epidermal growth factor receptors as a target for cancer treatment:The emerging role of IMC-C225in the treatment of lung and head and neck cancer. Semin Oncol2002;29:27–36.
    [24] Fujino S, Enokibori T, Tezuka N, et al. A comparison of epidermal growth factor receptorlevels and other prognostic parameters in non-small cell lung cancer. Eur J Cancer1996;32:2070–4.
    [25] Ennis BW, Lippman ME, Dickson RB. The EGF receptor system as a target for antitumortherapy. Cancer Invest1991;9:553–62.
    [26] Kondapaka SB, Fridman R, Reddy KB. Epidermal growth factor and amphiregulinup-regulate matrix metallo proteinase-9(MMP-9) in human breast cancer cells. Int J Cancer1997;70:722–6.
    [27] Ethier SP. Signal transduction pathways: The molecular basis for targeted therapies. SeminRadiat Oncol2002;12:3–10.
    [28] Baselga J, Arteaga CL. Critical update and emerging trends in epidermal growth factorreceptor targeting in cancer. J Clin Oncol2005;23:2445–59.
    [29] Marshall J. Clinical implications of the mechanism of epidermal growth factor receptorinhibitors. Cancer2006;107:1207–18.
    [30] Giaccone G. Targeting HER/EGFR in cancer therapy: experience with erlotinib. FutureOncol2005;1:449–60.
    [31] Schiffer E, Housset C, Cacheux W, et al. Gefitinib, an EGFR inhibitor, preventshepatocellular carcinoma development in the rat liver with cirrhosis. Hepatology2005;41:307–14.
    [32] Berasain C, Castillo J, Prieto J, et al. New molecular targets for hepatocellular carcinoma:the ErbB1signaling system. Liver Int2007;27:174–85.
    [33] Hopfner M, Sutter AP, Huether A, et al. Targeting the epidermal growth factor receptor bygefitinib for treatment of hepatocellular carcinoma. J Hepatol2004;41:1008–16.
    [34] Huether A, Hopfner M, Sutter AP, et al. Erlotinib induces cell cycle arrest and apoptosis inhepatocellular cancer cells and enhances chemosensitivity towards cytostatics. J Hepatol2005;43:661–9.
    [35] Ueda S, Basaki Y, Yoshie M, et al. PTEN/Akt signalling through epidermal growth factorreceptor is prerequisite for angiogenesis by hepatocellular carcinoma cells that is susceptible toinhibition by gefitinib. Cancer Res2006;66:5346–53.
    [36] Su MC, Lien HC, Jeng YM. Absence of epidermal growth factor receptor exon18–21mutation in hepatocellular carcinoma. Cancer Lett2005;224:117–21.
    [37] Lee SC, Lim SG, Soo R, et al. Lack of somatic mutations in EGFR tyrosine kinase domainin hepatocellular and nasopharyngeal carcinoma. Pharmacogenet Genomics2006;16:73–4.
    [1] Caldwell S, Park SH. The epidemiology of hepatocellular cancer: from the perspectives ofpublic health problem to tumor biology. J Gastroenterol.2009;44(Suppl19):96-101.
    [2] Hernando E, Sarmentero-Estrada J, Koppie T, Belda-Iniesta C, Ramírez de Molina V, Cejas P,Ozu C, Le C, Sánchez JJ, González-Barón M, Koutcher J, Cordón-Cardó C, Bochner BH, LacalJC, Ramírez de Molina A. A critical role for choline kinase-alpha in the aggressiveness of bladdercarcinomas. Oncogene2009Jul2;28(26):2425-35.
    [3] Iorio E, Mezzanzanica D, Alberti P, Spadaro F, Ramoni C, D’Ascenzo S, et al. Alterations ofcholine phospholipid metabolism in ovarian tumor progression. Cancer Res2005;65:9369-76.
    [4] Nakagami K, Uchida T, Ohwada S, Koibuchi Y, Suda Y, Sekine T, et al. Increased cholinekinase activity and elevated phosphocholine levels in human colon cancer. Jpn J Cancer Res1999b;90:419-24.
    [5] Ramírez de Molina A, Gutiérrez R, Ramos MA, Silva JM, Silva J, Bonilla F, Sánchez JJ,Lacal JC. Increased choline kinase activity in human breast carcinomas: clinical evidence for apotential novel antitumor strategy. Oncogene2002Jun20;21(27):4317-22.
    [6] Ramírez de Molina A, Bá ez-Coronel M, Gutiérrez R, Rodríguez-González A, Olmeda D,Megías D, et al. Choline kinase activation is a critical requirement for the proliferation of primaryhuman mammary epithelial cells and breast tumor progression. Cancer Res2004;64:6732-9.
    [7] Wu G, Vance DE. Choline kinase and its function. Biochem Cell Biol2010Aug;88(4):559-64.
    [8] Ramírez de Molina A, Rodríguez-González A, Gutiérrez R, Martínez-Pi eiro L, Sánchez J,Bonilla F, et al. Overexpression of choline kinase is a frequent feature in human tumor-derivedcell lines and in lung, prostate, and colorectal human cancers. Biochem Biophys Res Commun2002c;296:580-3.
    [9] Ramírez de Molina A, Sarmentero-Estrada J, Belda-Iniesta C, Tarón M, Ramírez de Molina V,Cejas P, Skrzypski M, Gallego-Ortega D, de Castro J, Casado E, García-Cabezas MA, Sánchez JJ,Nistal M, Rosell R, González-Barón M, Lacal JC. Expression of choline kinase alpha to predictoutcome in patients with early-stage non-small-cell lung cancer: a retrospective study. LancetOncol2007Oct;8(10):889-97.
    [10] Gallego-Ortega D, Gómez del Pulgar T, Valdés-Mora F, Cebrián A, Lacal JC. Involvementof human choline kinase alpha and beta in carcinogenesis: a different role in lipid metabolism andbiological functions. Adv Enzyme Regul2011;51(1):183-94.
    [11] Shah T, Wildes F, Penet MF, Winnard PT Jr, Glunde K, Artemov D, Ackerstaff E, Gimi B,Kakkad S, Raman V, Bhujwalla ZM. Choline kinase overexpression increases invasiveness anddrug resistance of human breast cancer cells. NMR Biomed2010Jul;23(6):633-42.
    [12] Ramírez de Molina A, Gallego-Ortega D, Sarmentero J, Ba ez-Coronel M,Martín-Cantalejo Y, Lacal JC. Choline kinase is a novel oncogene that potentiates RhoA-inducedcarcinogenesis. Cancer Res2005Jul1;65(13):5647-53.
    [13] Grunert S, Jechlinger M, Beug H. Diverse cellular and molecular mechanisms contribute toepithelial plasticity and metastasis. Nat Rev Mol Cell Biol2003;4:657-665.
    [14] Thiery JP. Epithelial-mesenchymal transitions in development and pathologies. Curr OpinCell Biol2003;15:740-746.
    [15] Kang Y, Massague J. Epithelial-mesenchymal transitions: twist in development andmetastasis. Cell2004;118:277-279.
    [16] Chua BT, Gallego-Ortega D, Ramirez de Molina A, Ullrich A, Lacal JC, Downward J.Regulation of Akt(ser473) phosphorylation by choline kinase in breast carcinoma cells. MolCancer2009;31:131.
    [17] YalcinA, ClemB, Makoni S, ClemA, NelsonK, Thornburg J, Siow D, Lane AN, BrockSE,Goswami U, Eaton JW, Telang S, Chesney J. Selective inhibition of choline kinase simultaneouslyattenuates MAPK and PI3K/AKT signaling. Oncogene2010Jan7;29(1):139-49.
    [1] Desseyn, J. L. et al. Evolutionary history of the11p15human mucin gene family. J. Mol. Evol1998;46:102–106.
    [2] Desseyn, J. L., Aubert, J. P., Porchet, N.&Laine, A. Evolution of the large secretedgel-forming mucins. Mol. Biol. Evol2000;17:1175–1184.
    [3] Bork, P.&Patthy, L. The SEA module: a newextracellular domain associated withO-glycosylation. Protein Sci1995;4:1421–1425.
    [4] Asker, N., Axelsson, M. A., Olofsson, S. O.&Hansson, G. C. Dimerization of the humanMUC2mucin in the endoplasmic reticulum is followed by aN-glycosylation-dependent transfer ofthe mono-anddimers to the Golgi apparatus. J. Biol. Chem1998;273:18857–18863.
    [5] Herrmann, A. et al. Studies on the “insoluble”glycoprotein complex from human colon.Identificationof reduction-insensitive MUC2oligomers andC-terminal cleavage. J. Biol. Chem1999;274:15828–15836.
    [6] Godl, K. et al. The N terminus of the MUC2mucinforms trimers that are held together withina trypsin-resistant core fragment. J. Biol. Chem2002;277:47248–47256.
    [7] Lidell, M. E. et al.The recombinant C-terminus of thehuman MUC2mucin forms dimers inChinese-hamsterovary cells and heterodimers with full-length MUC2inLS174T cells. Biochem. J2003;372:335–345.
    [8] Velcich, A. et al. Colorectal cancer in mice genetically deficient in the mucin Muc2. Science2002;295:1726–1729.
    [9] van der Sluis, M. et al. MUC2-deficient mice spontaneously develop colitis, indicating thatMUC2is critical for colonic protection. Gastroenterology2006;1:117–129.
    [10] Duraisamy, S., Kufe, T., Ramasamy, S.&Kufe, D. Evolution of the human MUC1oncoprotein. Int. J. Oncology2007;31:671–677.
    [11] Kufe, D. et al. Differential reactivity of a novel monoclonal antibody (DF3) with humanmalignant versus benign breast tumors. Hybridoma1984;3:223–232.
    [12] Ligtenberg, M. J. et al. Cell-associated episialin is a complex containing two proteins derivedfrom a common precursor. J. Biol. Chem1992;267:6171–6177.
    [13] Levitin, F. et al. The MUC1SEA module is a self-cleaving domain. J. Biol. Chem2005;280:33374–33386.
    [14] Macao, B., Johansson, D. G., Hansson, G. C.&Hard, T. Autoproteolysis coupled to proteinfolding in the SEA domain of the membrane-bound MUC1mucin. Nature Struct. Mol. Biol2006;13:71–76.
    [15] Siddiqui, J. et al. Isolation and sequencing of a cDNA coding for the human DF3breastcarcinoma-associated antigen. Proc. Natl.Acad. Sci. USA1988;85:2320–2323.
    [16] Gendler, S., Taylor-Papadimitriou, J., Duhig, T., Rothbard, J.&Burchell, J. A. A highlyimmunogenic region of a human polymorphic epithelial mucin expressed by carcinomas is madeup of tandem repeats. J. Biol. Chem1988;263:12820–12823.
    [17] Ichige, K., Perey, L., Vogel, C. A., Buchegger, F.&Kufe, D. Expression of the DF3-Pepitopein human ovarian carcinomas. Clin. Cancer Res1995;1:565–571.
    [18] Finn, O. J. Immunological weapons acquired early in life win battles with cancer late in life. J.Immunol2008;181:1589–1592.
    [19] Ligtenberg, M. J. L., Buijs, F., Vos, H. L.&Hilkens, J. Suppression of cellular aggregation byhigh levels of episialin. Cancer Res1992;52:223–232.
    [20] Kufe, D. Targeting the MUC1oncoprotein: a tale of two proteins. Cancer Biol. Ther2008;7:81–84.
    [21] Duraisamy, S., Ramasamy, S., Kharbanda, S.&Kufe, D. Distinct evolution of the humancarcinoma-associated transmembrane mucins, MUC1, MUC4and MUC16. Gene2006;373:28–34.
    [22] Vermeer, P. D. et al. Segregation of receptor and ligand regulates activation of epithelialgrowth factor receptor. Nature2003;422:322–326.
    [23] Thiery, J. P. Epithelial-mesenchymal transitions in tumour progression. Nature Rev. Cancer2002;2:442–454.
    [24] Polyak, K.&Weinberg, R. A. Transitions between epithelial and mesenchymal states:acquisition of malignant and stem cell traits. Nature Rev. Cancer2009;9:265–273.
    [25] Shin, K., Fogg, V. C.&Margolis, B. Tight junctions and cell polarity. Annu. Rev. Cell Dev.Biol2006;22:207–235.
    [26] Aranda, V. et al.Par6-aPKC uncouples ErbB2induced disruption of polarized epithelialorganization from proliferation control. Nature Cell Biol.2006;8:1220–1222.
    [27] Li, Y. et al. Heregulin targets γ-catenin to the nucleolus by a mechanism dependent on theDF3/MUC1protein. Mol. Cancer Res2003;1:765–775.
    [28] Ren, J. et al. Human MUC1carcinoma-associated protein confers resistance to genotoxicanti-cancer agents. Cancer Cell2004;5:163–175.
    [29] Ren, J. et al. MUC1oncoprotein is targeted to mitochondria by heregulin-induced activationof c-Src and the molecular chaperone HSP90. Oncogene2006;25:20–31.
    [30] Carraway, K. L. et al. An intramembrane modulator of the ErbB2receptor tyrosine kinasethat potentiates neuregulin signaling. J. Biol. Chem1999;274:5263–5266.
    [31] Carraway, K. L., Ramsauer, V. P.&Carraway, C. A. Glycoprotein contributions to mammarygland and mammary tumor structure and function: roles of adherens junctions, ErbBs andmembrane MUCs. J. Cell Biochem2005;96:914–926.
    [32] Carraway, C. A.&Carraway, K. L. Sequestration and segregation of receptor kinases inepithelial cells: implications for ErbB2oncogenesis. Sci. STKE2007;2007: re3.
    [33] Funes M., Miller J. K., Lai C., Carraway K. L.&Sweeney, C. The mucin Muc4potentiatesneuregulin signaling by increasing the cell-surface populations of ErbB2and ErbB3. J. Biol.Chem2006;281:19310–19319.
    [34] Chaturvedi, P. et al. MUC4mucin interacts with and stabilizes the HER2oncoprotein inhuman pancreatic cancer cells.Cancer Res2008;68:2065–2070.
    [35] Gumbiner, B. M. Regulation of cadherin-mediated adhesion in morphogenesis. Nature Rev.Mol. Cell Biol2005;6:622–634.
    [36] Pokutta, S.&Weis, W. I. Structure and mechanism of cadherins and catenins in cell-cellcontacts. Annu. Rev. Cell Dev. Biol.2007;23:237–261.
    [37] Nelson, W. J. Regulation of cell-cell adhesion by the cadherin-catenin complex. Biochem.Soc. Trans.2008;36:149–155.
    [38] Yamamoto, M., Bharti, A., Li, Y.&Kufe, D. Interaction of the DF3/MUC1breastcarcinoma-associated antigen and β-catenin in cell adhesion. J. Biol. Chem.1997;272:12492–12494.
    [39] Huang, L. et al. MUC1cytoplasmic domain coactivates Wnt target gene transcription andconfers transformation. Cancer Biol. Ther.2003;2:702–706.
    [40] Huang, L. et al. MUC1oncoprotein blocks GSK3β-mediated phosphorylation anddegradation of beta-catenin. Cancer Res2005;65:10413–10422.
    [41] Klaus, A.&Birchmeier, W. Wnt signalling and its impact on development and cancer. NatureRev. Cancer2008;8:387–398.
    [42] Thiery, J. P.&Sleeman, J. P. Complex networks orchestrate epithelial-mesenchymaltransitions. Nature Rev. Mol. Cell Biol2006;7:131–142.
    [43] Lang, T., Hansson, G. C.&Samuelsson, T. Gel-forming mucins appeared early in metazoanevolution. Proc. NatlAcad. Sci. USA.2007;104:16209–16214.
    [44] Gum Jr, J. R., Hicks, J. W., Toribara, N. W., Siddiki, B.&Kim, Y. S. Molecular cloning ofhuman intestinal mucin (MUC2) cDNA. Identification of the amino terminus and overall sequencesimilarity to prepro-von Willebrand factor. J. Biol. Chem1994;269:2440–2446.
    [45] Johansson, M. E. et al.The inner of the two Muc2mucin-dependent mucus layers in colon isdevoid ofbacteria. Proc. NatlAcad. Sci. USA2008;105:15064–15069.
    [46] Xavier, R. J.&Podolsky, D. K. Unravelling the pathogenesis of inflammatory bowel disease.Nature2007;448:427–434.
    [47] Strober, W., Fuss, I.&Mannon, P. The fundamental basis of inflammatory bowel disease. J.Clin. Investigation2007;117:514–521.
    [48] Feagins, L. A., Souza, R. F.&Spechler, S. J. Carcinogenesis in IBD: potential targets for theprevention of colorectal cancer. Nature Rev. Gastroenterol. Hepatol2009;6:297–305.
    [49] Van Klinken, B. J., Van der Wal, J. W., Einerhand, A. W., Büller, H. A.&Dekker, J.Sulphation and secretion of the predominant secretory human colonic mucin MUC2in ulcerativecolitis. Gut1999;44:387–393.
    [50] Heazlewood, C. K. et al. Aberrant mucin assembly in mice causes endoplasmic reticulumstress and spontaneous inflammation resembling ulcerative colitis. PLoS Med.2008;5: e54.
    [51] Schwerbrock, N. M. et al.Interleukin10-deficient mice exhibit defective colonic Muc2synthesis before and after induction of colitis by commensal bacteria. Inflamm. Bowel Dis2004;10:811–823.
    [52] van der Sluis, M. et al. Combined defects in epithelial and immunoregulatory factorsexacerbate the pathogenesis of inflammation: mucin2-interleukin10-deficient mice. Lab. Invest.2008;88:634–642.
    [53] Clevers, H. Wnt/β-catenin signaling in development and disease. Cell2006;127:469–480.
    [54] Yang, K. et al. Interaction of Muc2and Apc on Wnt signaling and in intestinal tumorigenesis:potential role of chronic inflammation. Cancer Res2008;68:7313–7322.
    [55] Fijneman R. J. et al. Expression of Pla2g2a prevents carcinogenesis in Muc2-deficient mice.Cancer Sci2008;99:2113–2119.
    [56] Leteurtre, E. et al. Relationships between mucinous gastric carcinoma, MUC2expression andsurvival. World J. Gastroenterol2006;12:3324–3331.
    [57] Takikita, M. et al. Associations between selected biomarkers and prognosis in apopulation-based pancreatic cancer tissue microarray. Cancer Res2009;69:2950–2955.
    [58] Hirabayashi, K. et al. Alterations in mucin expression in ovarian mucinous tumors:immunohistochemical analysis of MUC2, MUC5AC, MUC6, and CD10expression. ActaHistochem. Cytochem2008;41:15–21.
    [59] Yonezawa, S., Goto, M., Yamada, N., Higashi, M.&Nomoto, M. Expression profiles ofMUC1, MUC2, and MUC4mucins in human neoplasms and their relationship with biologicalbehavior. Proteomics2008;16:3329–3341.
    [60] Song, S. et al. Galectin-3modulates MUC2mucin expression in human colon cancer cells atthe level of transcription via AP-1activation. Gastroenterology2005;129:1581–1591.
    [61] van der Sluis, M. et al. Forkhead box transcription factors Foxa1and Foxa2are importantregulators of MUC2mucin expression in intestinal epithelial cells. Biochem. Biophys. Res.Commun.2008;369:1108–1113.
    [62] Vincent, A. et al. Epigenetic regulation (DNA methylation, histone modifications) of the11p15mucin genes (MUC2, MUC5AC, MUC5B, MUC6) in epithelial cancer cells. Oncogene2007;26:6566–6576.
    [63] Perrais, M. et al. Aberrant expression of human mucin gene MUC5Bin gastric carcinoma andcancer cells. Identification and regulation of a distal promoter. J. Biol. Chem2001;276:15386–15396.
    [64] Sonora, C. et al. Immunohistochemical analysis of MUC5B apomucin expression in breastcancer and non-malignant breast tissues. J. Histochem. Cytochem2006;54:289–299.
    [65] Guilmeau, S. et al. Intestinal deletion of Pofut1in the mouse inactivates notch signaling andcauses enterocolitis. Gastroenterology2008;135:849–860.
    [66] Norkina, O., Burnett, T. G.&De Lisle, R. C. Bacterial overgrowth in the cystic fibrosistransmembrane conductance regulator null mouse small intestine. Infect. Immun2004;72:6040–6049.
    [67] McAuley, J. L. et al. MUC1cell surface mucin is a critical element of the mucosal barrier toinfection. J. Clin. Invest2007;117:2313–2324.
    [68] Lindén, S. K., Florin, T. H.&McGuckin, M. A. Mucin dynamics in intestinal bacterialinfection. PLoS One2008;3: e3952.
    [69] Ueno, K. et al. MUC1mucin is a negative regulator of toll-like receptor signaling. Am. J.Respir. Cell. Mol. Biol2008;38:263–268.
    [70] Beatty, P. L., Plevy, S. E., Sepulveda, A. R.&Finn, O. J. Cutting edge: transgenic expressionof human MUC1in IL-10-/-mice accelerates inflammatory bowel disease and progression to coloncancer. J. Immunol.2007;179:735–739.
    [71] Karin, M.&Greten, F. R. NF-κB: linking inflammation and immunity to cancer developmentand progression. Nature Rev. Immunol2005;10:749–759.
    [72] Ahmad, R. et al. MUC1oncoprotein activates the IκB kinase βcomplex and constitutiveNF κB signaling. Nature Cell Biol2007;9:1419–1427.
    [73] Ahmad, R. et al. MUC1-C oncoprotein functions as a direct activator of the NF-κB p65transcription factor. Cancer Res2009;69:7013–7021.
    [74] Vinall, L. E. et al. Altered expression and allelic association of the hypervariable membranemucin MUC1in Helicobacter pylorigastritis. Gastroenterology2002;123:41–49.
    [75] Kondo, S. et al. MUC1induced by Epstein-Barr virus latent membrane protein1causesdissociation of the cell-matrix interaction and cellular invasiveness via STAT signaling. J. Virol2007;81:1554–1562.
    [76] Merlo, G. et al. DF3tumor-associated antigen gene is located in a region on chromosome1qfrequently altered in primary human breast cancer. Cancer Res.1989;49:6966–6971.
    [77] Kufe, D. Functional targeting of the MUC1oncogen in human cancers. Cancer Biol. Ther.2009;8:1199–1205.
    [78] Agata, N. et al. MUC1oncoprotein blocks death receptor-mediated apoptosis by inhibitingrecruitment of caspase-8. Cancer Res2008;68:6136–6144.
    [79] Schroeder, J. A. et al. MUC1overexpression results in mammary gland tumorigenesis andprolonged alveolar differentiation. Oncogene2004;23:5739–5747.
    [80] Pochampalli, M. R., Bitler, B. G.&Schroeder, J. A. Transforming growth factorα-dependentcancer progression is modulated by MUC1. Cancer Res2007;67:6591–6598.
    [81] Raina, D. et al. Direct targeting of the MUC1oncoprotein blocks survival and tumorigenicityof human breast carcinoma cells. Cancer Res2009;69:5133–5141.
    [82] Joshi, M. D. et al. MUC1oncoprotein is a druggable target in human prostate cancer cells.Mol. Cancer Ther2009;8:3056–3065.
    [83] Li, Y., Liu, D., Chen, D., Kharbanda, S.&Kufe, D. Human DF3/MUC1carcinoma-associated protein functions as an oncogene. Oncogene2003;22:6107–6110.
    [84] Ramasamy, S. et al. The MUC1and galectin-3oncoproteins function in amicroRNA-dependent regulatory loop. Mol. Cell2007;27:992–1004.
    [85] Pochampalli, M. R., el Bejjani, R. M.&Schroeder, J. A. MUC1is a novel regulator of ErbB1receptor trafficking. Oncogene2007;26:1693–1701.
    [86] Kinlough, C. L. et al. Recycling of MUC1is dependent on its palmitoylation. J. Biol. Chem2006;28:1,12112–12122.
    [87] Leng, Y. et al. Nuclear import of the MUC1-C oncoprotein is mediated by nucleoporin Nup62.J. Biol. Chem2007;282:19321–19330.
    [88] Zrihan-Licht, S., Baruch, A., Keydar, I.&Wreschner, D. H. Phosphorylation of the MUC1breast cancer membrane proteins: cytokine receptor-like molecules. FEBS Lett1994;356:130–137.
    [89] Ren, J. et al. MUC1oncoprotein functions in activation of fibroblast growth factor receptorsignaling. Mol. Cancer Res2006;4:873–883.
    [90] Carson, D. The cytoplasmic tail of MUC1: a very busy place. Sci. Signal2008;1: pe35.
    [91] Li, Y., Bharti, A., Chen, D., Gong, J.&Kufe, D. Interaction of glycogen synthase kinase3βwith the DF3/MUC1carcinoma-associated antigen and β-catenin. Mol. Cell. Biol1998;18:7216–7224.
    [92] Li, Y., Kuwahara, H., Ren, J., Wen, G.&Kufe, D. The c-Src tyrosine kinase regulatessignaling of the human DF3/MUC1carcinoma-associated antigen with GSK3β and β-catenin. J.Biol. Chem.2001;276:6061–6064.
    [93] Wei, X., Xu, H.&Kufe, D. Human MUC1oncoprotein regulates p53-responsive genetranscription in the genotoxic stress response. Cancer Cell2005;7:167–178.
    [94] Komatsu, M., Carraway, C., Fregien, N. L.&Carraway, K. L. Reversible disruption ofcell-matrix and cell-cell interactions by overexpression of sialomucin complex. J. Biol. Chem1997;272:33245–3354.
    [95] Komatsu, M., Tatum L, Altman, N. H., Carothers Carraway, C. A.&Carraway, K. L.Potentiation of metastasis by cell surface sialomucin complex (rat MUC4), a multifunctionalanti-adhesive glycoprotein. Int. J. Cancer2000;87:480–486.
    [96] Price-Schiavi, S. A. et al. Rat MUC4(sialomucin complex) reduces binding of anti-ErbB2antibodies to tumor cell surfaces, a potential mechanism for herceptin resistance. Int. J. Cancer2002;99:783–791.
    [97] Komatsu, M., Yee, L.&Carraway, K. L. Overexpression of sialomucin complex, a rathomologue of MUC4, inhibits tumor killing by lymphokine-activated killer cells. Cancer Res1999;59:2229–2236.
    [98] Komatsu, M., Jepson S., Arango, M. E., Carothers Carraway, C. A.&Carraway, K.MUC4/sialomucin complex, an intramembrane modulator of ErbB2/HER2/Neu, potentiatesprimary tumor growth and suppresses apoptosis in a xenotransplanted tumor. Oncogene2001;20:461–470.
    [99] Chaturvedi, P. et al. MUC4mucin potentiates pancreatic tumor cell proliferation, survival,and invasive properties and interferes with its interaction to extracellular matrix proteins. Mol.Cancer Res2007;4:309–320.
    [100] Workman, H. C., Sweeney, C.&Carraway, K. L. The membrane mucin Muc4inhibitsapoptosis induced by multiple insults via ErbB2-dependent and ErbB2-independent mechanisms.Cancer Res2009;69:2845–2852.
    [101] Singh, A. P., Moniaux, N., Chauhan, S. C., Meza, J. L.&Batra, S. K. Inhibition of MUC4expression suppresses pancreatic tumor cell growth and metastasis. Cancer Res2004;64:622–630.
    [102] Moniaux, N. et al. Human MUC4mucin induces ultra-structural changes and tumorigenicityin pancreatic cancer cells. Br. J. Cancer2007;97:345–357.
    [103] Bafna, S. et al. MUC4, a multifunctional transmembrane glycoprotein, induces oncogenictransformation of NIH3T3mouse fibroblast cells. Cancer Res2008;68:9231–9238.
    [104] Williams, S. J. et al. Muc13, a novel human cell surface mucin expressed by epithelial andhemopoietic cells. J. Biol. Chem2001;276:18327–18336.
    [105] Walsh, M. D. et al. The MUC13cell surface mucin is highly expressed by human colorectalcarcinomas. Hum. Pathol2007;38:883–892.
    [106] Shimamura, T. et al. Overexpression of MUC13is associated with intestinal-type gastriccancer. Cancer Sci2005;96:265–273.
    [107] Packer, L. M., Williams, S. J., Callaghan, S., Gotley, D. C.&McGuckin, M. A. Expressionof the cell surface mucin gene family in adenocarcinomas. Int. J. Oncol2004;25:1119–1126.
    [108] Chauhan, S. C. et al. Aberrant expression of MUC4in ovarian carcinoma: diagnosticsignificance alone and in combination with MUC1and MUC16(CA125). Mod. Pathol2006;19:1386–1394.
    [109] Chauhan, S. C. et al. Expression and functions of transmembrane mucin MUC13in ovariancancer. Cancer Res2009;69:765–774.
    [110] Bast, R. C. Jr et al. Reactivity of a monoclonal antibody with human ovarian carcinoma. J.Clin. Invest1981;68:1331–1337.
    [111] Yin, B. W.&Lloyd, K. O. Molecular cloning of the CA125ovarian cancer antigen:identification as a new mucin, MUC16. J. Biol. Chem2001;276:27371–27375.
    [112] O’Brien, T. J. et al. The CA125gene: an extracellular superstructure dominated by repeatsequences. Tumour Biol2001;22:348–66.
    [113] Bast, R. C. Jr et al. A radioimmunoassay using a monoclonal antibody to monitor the courseof epithelial ovarian cancer. N. Engl. J. Med1983;309:883–887.
    [114] Rump, A. et al. Binding of ovarian cancer antigen CA125/MUC16to mesothelin mediatescell adhesion. J. Biol. Chem2004;279:9190–9198.
    [115] Kaneko, O. et al. A binding domain on mesothelin for CA125/MUC16. J. Biol. Chem2009;284:3739–3749.
    [116] Takahashi, T. et al. Expression of MUC-1on myeloma cells and induction ofHLA-unrestricted CTL against MUC1from a multiple myeloma patient. J. Immunol1994;153:2102–2109.
    [117] Dyomin, V. G. et al. MUC1is activated in a B-cell lymphoma by the t(1;14)(q21;q32)translocation and is rearranged and amplified in B-cell lymphoma subsets. Blood2000;95:2666–2671.
    [118] Brossart, P. et al. The epithelial tumor antigen MUC1is expressed in hematologicalmalignancies and is recognized by MUC1-specific cytotoxic T-lymphocytes. Cancer Res2001;29:6846–6850.
    [119] Fatrai, S. et al. Mucin1expression is enriched in the human stem cell fraction of cord bloodand is upregulated in majority of theAMLcases. Exp. Hematol2008;36:1254–1265.
    [120] Kawano T, Ahmad R, Nogi H, Agata N, Anderson K, Kufe D. MUC1oncoprotein promotesgrowth and survival of human multiple myeloma cells. Int. J. Oncology2008;33:153–159.
    [121] Kawano, T. et al. MUC1oncoprotein regulates Bcr-Abl stability and pathogenesis in chronicmyelogenous leukemia cells. Cancer Res2007;67:11576–11584.
    [122] Hayes, D. F. et al. Use of a murine monoclonal antibody for detection of circulating DF3antigen levels in breast cancer patients. J. Clin. Invest1985;75:1671–1678.
    [123] Rahn, J. J., Dabbagh, L., Pasdar, M.&Hugh, J. C. The importance of MUC1cellularlocalization in patients with breast carcinoma: an immunohistologic study of71patients andreview of the literature. Cancer2001;91:1973–1982.
    [124] Khodarev, N. et al. MUC1-induced transcriptional programs associated with tumorigenesispredict outcome in breast and lung cancer. Cancer Res2009;69:2833–2837.
    [125] Wei, X., Xu, H.&Kufe, D. MUC1oncoprotein stabilizes and activates estrogen receptor α.Mol. Cell2006;21:295–305.
    [126] Pitroda, S., Khodarev, N., Beckett, M., Kufe, D.&Weichselbaum, R. MUC1-inducedalterations in a lipid metabolic gene network predict response of human breast cancers totamoxifen treatment Proc. Natl.Acad. Sci. USA2009;106:5837–5841.
    [127] Lapointe, J. et al. Gene expression profiling identifies clinically relevant subtypes ofprostate cancer. Proc. Natl.Acad. Sci. USA2004;101:811–816.
    [128] Wreesmann, V. B. et al. Genome-wide profiling of papillary thyroid cancer identifies MUC1as an independent prognostic marker. Cancer Res2004;64:3780–3789.
    [129] Saitou, M. et al. MUC4expression is a novel prognostic factor in patients with invasiveductal carcinoma of the pancreas. J. Clin. Pathol2005;58:845–852.
    [130] Nagata, K. et al. Mucin expression profile in pancreatic cancer and the precursor lesions. J.Hepatobiliary Pancreat. Surg.2007;14:243–254.
    [131] Miyahara, N. et al. MUC4interacts with ErbB2in human gallbladder carcinoma: potentialpathobiological implications. Eur. J. Cancer2008;44:1048–1056.
    [132] Giuntoli, R. L., Rodriguez, G. C., Whitaker, R. S., Dodge, R.&Voynow, J. A. Mucin geneexpression in ovarian cancers. Cancer Res1998;585546–5550.
    [133] Davidson, B., Baekelandt, M.&Shih, I. MUC4is upregulated in ovarian carcinomaeffusions and differentiates carcinoma cells from mesothelial cells. Diagn Cytopathol2007;35:756–760.
    [134] Rakha, E. A. et al. Expression of mucins (MUC1, MUC2, MUC3, MUC4, MUC5AC andMUC6) and their prognostic significance in human breast cancer. Mod. Pathol2005;18:1295–1304.
    [135] Kwon, K. Y. et al. MUC4expression in non-small cell lung carcinomas: relationship totumor histology and patient survival. Arch. Pathol. Lab. Med2007;131:593–598.
    [136] Karg, A., Din, Z. A., Bas ok, O.&U vet, A. MUC4expression and its relation to ErbB2expression, apoptosis, proliferation, differentiation, and tumor stage in non-small cell lung cancer(NSCLC). Pathol. Res. Pract2006;202:577–583.
    [137] Andrianifahanana, M. et al. Mucin (MUC) gene expression in human pancreaticadenocarcinoma and chronic pancreatitis: a potential role of MUC4as a tumor marker ofdiagnostic significance. Clin. Cancer Res2001;7:4033–4040.
    [138] Swartz, M. J. et al. MUC4expression increases progressively in pancreatic intraepithelialneoplasia. Am. J. Clin. Pathol2002;117:791–796.
    [139] Jhala, N. et al. Biomarkers in diagnosis of pancreatic carcinoma in fine-needle aspirates. Am.J. Clin. Pathol2006;126:572–579.
    [140] Shibahara, H. et al. MUC4is a novel prognostic factor of intrahepaticcholangiocarcinoma-mass forming type. Hepatology2004;39:220–229.
    [141] Tamada, S. et al. MUC4is a novel prognostic factor of extrahepatic bile duct carcinoma.Clin. Cancer Res2006;12:4257–4264.
    [142] Llinares, K. et al. Diagnostic value of MUC4immunostaining in distinguishing epithelialmesothelioma and lung adenocarcinoma. Mod. Pathol2004;2:150–157.
    [143] Rustin, G. J. et al. Use of CA-125in clinical trial evaluation of new therapeutic drugs forovarian cancer. Clin. Cancer Res2004;10:3919–3926.
    [144] Zhang, Z. et al. Combining multiple serum tumor markers improves detection of stage Iepithelial ovarian cancer. Gynecol. Oncol2007;107:526–531.
    [145] Bast, R. C. Jr, Hennessy, B.&Mills, G. B. The biology of ovarian cancer: new opportunitiesfor translation. Nature Rev. Cancer2009;9:415–428.
    [146] Rubinstein, D. B. et al. The MUC1oncoprotein as a functional target: immunotoxin bindingto alpha/beta junction mediates cell killing. Int. J. Cancer2009;124:46–54.
    [147] Chen, Y. et al. Armed antibodies targeting the mucin repeats of the ovarian cancer antigen,MUC16, are highly efficacious in animal tumor models. Cancer Res2007;67:4924–4932.
    [148] Arlen, P. M., Gulley, J. L., Madan, R. A., Hodge, J. W.&Schlom, J. Preclinical and clinicalstudies of recombinant poxvirus vaccines for carcinoma therapy. Crit. Rev. Immunol2007;27:451–462.
    [149] Bitler, B. et al. Intracellular MUC1peptides inhibit cancer progression. Clin. Cancer Res2009;15:100–109.
    [150] Yin, L.&Kufe, D. Human MUC1carcinoma antigen regulates intracellular oxidant levelsand the apoptotic response to oxidative stress. J. Biol. Chem2003;278:35458–35464.
    [151] Yin, L., Huang, L.&Kufe, D. MUC1oncoprotein activates the FOXO3a transcription factorin a survival response to oxidative stress. J. Biol. Chem2004;279:45721–45727.
    [152] Yin, L., Kharbanda, S.&Kufe, D. Mucin1oncoprotein blocks hypoxia-inducible factor1αactivation in a survival response to hypoxia. J. Biol. Chem2007;282:257–266.
    [153] Yin, L., Kharbanda, S.&Kufe, D. MUC1oncoprotein promotes autophagy in a survivalresponse to glucose deprivation. Int. J. Oncol2009;34:1691–1699.
    [1] R. Zoncu, A. Efeyan, D.M. Sabatini. MTOR: from growth signal integration to cancer, diabetesand ageing. Nat. Rev. Mol. Cell Biol2011;12:21–35.
    [2] M. Laplante, D.M. Sabatini. MTOR signaling at a glance. J. Cell Sci.122(2009)3589–3594.
    [3] S. Menon, B.D. Manning. Common corruption of the mTOR signaling network in humantumors. Oncogene2008;27(Suppl.2): S43–S51.
    [4] D.H. Kim, D.M. Sabatini. Raptor and mTOR: subunits of a nutrient-sensitive complex. Curr.Top Microbiol. Immunol2004;279:259–270.
    [5] B.D. Manning, L.C. Cantley. United at last: the tuberous sclerosis complex gene productsconnect the phosphoinositide3-kinase/Akt pathway to mammalian target of rapamycin (mTOR)signaling. Biochem. Soc. Trans2003;31:573–578.
    [6] J.J. Gibbons, R.T. Abraham, K. Yu. Mammalian target of rapamycin: discovery of rapamycinreveals a signaling pathway important for normal and cancer cell growth. Semin. Oncol2009;36(Suppl.3): S3–S17.
    [7] K. Hara, K. Yonezawa, M.T. Kozlowski, T. Sugimoto, K. Andrabi, Q.P. Weng, M.Kasuga, I.Nishimoto, J. Avruch. Regulation of eIF-4E BP1phosphorylation by mTOR. J. Biol. Chem1997;272:26457–26463.
    [8] A.Y. Choo, S.O. Yoon, S.G. Kim, P.P. Roux, J. Blenis. Rapamycin differentially inhibits S6Ksand4E-BP1to mediate cell-type-specific repression of mRNA translation. Proc. Natl. Acad. Sci2008;105:17414–17419.
    [9] D.M. Sabatini. MTOR and cancer: insights into a complex relationship. Nat. Rev.Cancer2006;6:729–734.
    [10] A. Efeyan, D.M. Sabatini. MTOR and cancer: many loops in one pathway. Curr.Opin. CellBiol2010;22:169–176.
    [11] A. Carracedo, L. Ma, J. Teruya-Feldstein, F. Rojo, L. Salmena, A. Alimonti, A. Egia,A.T.Sasaki, G. Thomas, S.C. Kozma, A. Papa, C. Nardella, L.C. Cantley, J. Baselga,P.P. Pandolfi.Inhibition of mTORC1leads to MAPK pathway activation through a PI3K-dependent feedbackloop in human cancer. J. Clin. Invest2008;118:3065–3074.
    [12] Y. Yu, S.O. Yoon, G. Poulogiannis, Q. Yang, X.M. Ma, J. Villen, N. Kubica, G.R.Hoffman,L.C. Cantley, S.P. Gygi, J. Blenis. Phosphoproteomic analysis identifiesGrb10as an mTORC1substrate that negatively regulates insulin signaling. Science2011;332:1322–1326.
    [13] P.P. Hsu, S.A. Kang, J. Rameseder, Y. Zhang, K.A. Ottina, D. Lim, T.R. Peterson, Y.Choi, N.S.Gray, M.B. Yaffe, J.A. Marto, D.M. Sabatini. The mTOR-regulated phosphoproteome reveals amechanism of mTORC1-mediated inhibition of growth factor signaling. Science2011;332:1317–1322.
    [14] J.L. Yecies, B.D. Manning. Transcriptional control of cellular metabolism by mTORsignaling. Cancer Res2011;71:2815–2820.
    [15] T. Porstmann, C.R. Santos, B. Griffiths, M. Cully, M. Wu, S. Leevers, J.R. Griffiths,Y.L.Chung, A. Schulze. SREBP activity is regulated by mTORC1and contributes to Akt-dependentcell growth. Cell Metab2008;8:224–236.
    [16] M. Laplante, D.M. Sabatini. An emerging role of mTOR in lipid biosynthesis. Curr. Biol2009;19: R1046–R1052.
    [17] A.L. Edinger, C.B. Thompson. Akt maintains cell size and survival by increasingmTOR-dependent nutrient uptake. Mol. Biol Cell2002;13:2276–2288.
    [18] K.G. Foster, D.C. Fingar. Mammalian target of rapamycin (mTOR): conducting the cellularsignaling symphony. J. Biol. Chem2010;285:14071–14077.
    [19] V. Zinzalla, D. Stracka, W. Oppliger, M.N. Hall. Activation of mTORC2by association withthe ribosome. Cell2011;144:757–768.
    [20] D.D. Sarbassov, D.A. Guertin, S.M. Ali, D.M. Sabatini. Phosphorylation and regulation ofAkt/PKB by the rictor-mTOR complex. Science2005;307:1098–1101.
    [21] D.A. Guertin, D.M. Stevens, C.C. Thoreen, A.A. Burds, N.Y. Kalaany, J. Moffat, M. Brown,K.J. Fitzgerald, D.M. Sabatini. Ablation in mice of the mTORC components raptor, rictor, ormLST8reveals that mTORC2is required for signaling to Akt-FOXO and PKCalpha but not S6K1.Dev. Cell2006;11:859–871.
    [22] J.M. Garcia-Martinez, D.R. Alessi. mTOR complex2(mTORC2) controls hydrophobic motifphosphorylation and activation of serum-and glucocorticoid-induced protein kinase1(SGK1).Biochem. J2008;416:375–385.
    [23] Y. Alvarado, M.M. Mita, S. Vemulapalli, D. Mahalingam, A.C. Mita. Clinical activity ofmammalian target of rapamycin inhibitors in solid tumors. Target Oncol2011;6:69–94.
    [24] S.A. Wander, B.T. Hennessy, J.M. Slingerland. Next-generation mTOR inhibitors in clinicaloncology: how pathway complexity informs therapeutic strategy. J.Clin.Invest2011;121:1231–1241.
    [25] M. Hardt, N. Chantaravisoot, F. Tamanoi. Activating mutations of TOR (target of rapamycin).Genes Cells2011;16:141–151.
    [26] P. Gulhati, Q. Cai, J. Li, J. Liu, P.G. Rychahou, S. Qiu, E.Y. Lee, S.R. Silva, K.A. Bowen, T.Gao, B.M. Evers. Targeted inhibition of mammalian target of rapamycin signaling inhibitstumorigenesis of colorectal cancer. Clin. Cancer Res2009;15:7207–7216.
    [27] G.G. Chiang, R.T. Abraham. Targeting the mTOR signaling network in cancer. Trends Mol.Med2007;13:433–442.
    [28] M. Murakami, T. Ichisaka, M. Maeda, N. Oshiro, K. Hara, F. Edenhofer, H. Kiyama, K.Yonezawa, S. Yamanaka. mTOR is essential for growth and proliferation in early mouse embryosand embryonic stem cells. Mol. Cell Biol2004;24:6710–6718.
    [29] Y.G. Gangloff, M. Mueller, S.G. Dann, P. Svoboda, M. Sticker, J.F. Spetz, S.H. Um, E.J.Brown, S. Cereghini, G. Thomas, S.C. Kozma. Disruption of the mouse mTOR gene leads to earlypostimplantation lethality and prohibits embryonic stem cell development. Mol. Cell Biol2004;24:9508–9516.
    [30] D. Roulin, Y. Cerantola, A. Dormond-Meuwly, N. Demartines, O. Dormond. TargetingmTORC2inhibits colon cancer cell proliferation in vitro and tumor formation in vivo. Mol.Cancer2010;9:57.
    [31] W.K. Wu, C.W. Lee, C.H. Cho, F.K. Chan, J. Yu, J.J. Sung. RNA interference targeting raptorinhibits proliferation of gastric cancer cells. Exp. Cell Res2011;317:1353–1358.
    [32] D.A. Guertin, D.M. Stevens, M. Saitoh, S. Kinkel, K. Crosby, J.H. Sheen, D.J. Mullholland,M.A. Magnuson, H. Wu, D.M. Sabatini. mTOR complex2is required for the development ofprostate cancer induced by Pten loss in mice. Cancer Cell2009;15:148–159.
    [33] J. Masri, A. Bernath, J. Martin, O.D. Jo, R. Vartanian, A. Funk, J. Gera. mTORC2activity iselevated in gliomas and promotes growth and cell motility via overexpression of rictor. CancerRes2007;67:11712–11720.
    [34] P. Gulhati, K.A. Bowen, J. Liu, P.D. Stevens, P.G. Rychahou, M. Chen, E.Y. Lee, H.L. Weiss,K.L. O’Connor, T. Gao, B.M. Evers. mTORC1and mTORC2regulate EMT, motility, andmetastasis of colorectal cancer via RhoA and Rac1signaling pathways and metastasis ofcolorectal cancer via RhoAand Rac1signaling pathways. Cancer Res2011;71:3246–3256.
    [35] F. Zhang, X. Zhang, M. Li, P. Chen, B. Zhang, H. Guo, W. Cao, X. Wei, X. Cao, X. Hao, N.Zhang. mTOR complex component Rictor interacts with PKCzeta and regulates cancer cellmetastasis. Cancer Res2010;70:9360–9370.
    [36] L. Liu, Y. Luo, L. Chen, T. Shen, B. Xu, W. Chen, H. Zhou, X. Han, S. Huang. Rapamycininhibits cytoskeleton reorganization and cell motility by suppressing RhoA expression and activity.J. Biol. Chem2010;285:38362–38373.
    [37] H. Zhou, S. Huang. mTOR signaling in cancer cell motility and tumor metastasis. Crit. Rev.Eukaryot. Gene Expr2010;20:1–16.
    [38] V. Patel, C.A. Marsh, R.T. Dorsam, C.M. Mikelis, A. Masedunskas, P. Amornphimoltham,C.A. Nathan, B. Singh, R. Weigert, A. Molinolo, J.S. Gutkind. Decreased lymphangiogenesis andlymph node metastasis by mTOR inhibition in head and neck cancer. Cancer Res2011;71:7103-12.
    [39] J. Capdevila, R. Salazar, I. Halperin, A. Abad, J.C. Yao. Innovations therapy: mammaliantarget of rapamycin (mTOR) inhibitors for the treatment of neuroendocrine tumors. CancerMetastasis Rev2011;30(Suppl1):27–34.
    [40] J. Li, J. Liu, J. Song, X. Wang, H.L. Weiss, C.M. Townsend Jr., T. Gao, B.M. Evers.mTORC1inhibition increases neurotensin secretion and gene expression through activation of theMEK/ERK/c-Jun pathway in the human endocrine cell line BON. Am. J. Physiol. Cell Physiol2011;301:213-26.
    [41] Q. Liu, C. Thoreen, J. Wang, D. Sabatini, N.S. Gray. mTOR mediated anti-cancer drugdiscovery. Drug Discov. Today Ther. Strateg2009;6:47–55.
    [42] Z. Zeng, D. Sarbassov dos, I.J. Samudio, K.W. Yee, M.F. Munsell, C. Ellen Jackson, F.J.Giles, D.M. Sabatini, M. Andreeff, M. Konopleva. Rapamycin derivatives reduce mTORC2signaling and inhibitAKT activation inAML. Blood2007;109:3509–3512.
    [43] D.A. Guertin, D.M. Sabatini. The pharmacology of mTOR inhibition. Sci. Signal2009;2:pe24.
    [44] D.A. Guertin, K.V. Guntur, G.W. Bell, C.C. Thoreen, D.M. Sabatini. Functional genomicsidentifies TOR-regulated genes that control growth and division. Curr. Biol2006;16:958–970.
    [45] C. Garcia-Echeverria. Blocking the mTOR pathway: a drug discovery perspective. Biochem.Soc. Trans2011;39:451–455.
    [46] H. Zhang, N. Bajraszewski, E. Wu, H. Wang, A.P. Moseman, S.L. Dabora, J.D. Griffin, D.J.Kwiatkowski. PDGFRs are critical for PI3K/Akt activation and negatively regulated by mTOR. J.Clin. Invest2007;117:730–738.
    [47] G.R. Hudes. mTOR as a target for therapy of renal cancer. Clin. Adv. Hematol. Oncol2007;5:772–774.
    [48] J.D. Morrisett, G. Abdel-Fattah, R. Hoogeveen, E. Mitchell, C.M. Ballantyne, H.J. Pownall,A.R. Opekun, J.S. Jaffe, S. Oppermann, B.D. Kahan. Effects of sirolimus on plasma lipids,lipoprotein levels, and fatty acid metabolism in renal transplant patients. J. Lipid Res2002;43:1170–1180.
    [49] K. Yu, L. Toral-Barza, C. Shi, W.G. Zhang, J. Lucas, B. Shor, J. Kim, J. Verheijen, K. Curran,D.J. Malwitz, D.C. Cole, J. Ellingboe, S. Ayral-Kaloustian, T.S. Mansour, J.J. Gibbons, R.T.Abraham, P. Nowak, A. Zask. Biochemical, cellular, and in vivo activity of novel ATP-competitiveand selective inhibitors of the mammalian target of rapamycin. Cancer Res2009;69:6232–6240.
    [50] J. Roper, M.P. Richardson, W.V. Wang, L.G. Richard, W. Chen, E.M. Coffee, M.J. Sinnamon,L. Lee, P.C. Chen, R.T. Bronson, E.S. Martin, K.E. Hung. The dual PI3K/mTOR inhibitorNVP-BEZ235induces tumor regression in a genetically engineered mouse model of PIK3CAwild-type colorectal cancer. PLoS One2011;6:e25132.
    [51] B. Shor, J.J. Gibbons, R.T. Abraham, K. Yu. Targeting mTOR globally in cancer: thinkingbeyond rapamycin. Cell Cycle2009;8:3831–3837.
    [52] A. Zask, J.C. Verheijen, K. Curran, J. Kaplan, D.J. Richard, P. Nowak, D.J. Malwitz, N.Brooijmans, J. Bard, K. Svenson, J. Lucas, L. Toral-Barza, W.G. Zhang, I. Hollander, J.J. Gibbons,R.T. Abraham, S. Ayral-Kaloustian, T.S. Mansour, K. Yu. ATP-competitive inhibitors of themammalian target of rapamyc: design and synthesis of highly potent and selectivepyrazolopyrimidines. J. Med. Chem2009;52:5013–5016.
    [53] J.A. Engelman, L. Chen, X. Tan, K. Crosby, A.R. Guimaraes, R. Upadhyay, M. Maira, K.McNamara, S.A. Perera, Y. Song, L.R. Chirieac, R. Kaur, A. Lightbown, J. Simendinger, T. Li, R.F.Padera, C. Garcia-Echeverria, R. Weissleder, U. Mahmood, L.C. Cantley, K.K. Wong. Effectiveuse of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lungcancers. Nat. Med2008;14:1351–1356.
    [54] M.R. Janes, J.J. Limon, L. So, J. Chen, R.J. Lim, M.A. Chavez, C. Vu, M.B. Lilly, S. Mallya,S.T. Ong, M. Konopleva, M.B. Martin, P. Ren, Y. Liu, C. Rommel, D.A. Fruman. Effective andselective targeting of leukemia cells using a TORC1/2kinase inhibitor. Nat. Med2010;16:205–213.
    [55] V. Serra, B. Markman, M. Scaltriti, P.J. Eichhorn, V. Valero, M. Guzman, M.L. Botero, E.Llonch, F. Atzori, S. Di Cosimo, M. Maira, C. Garcia-Echeverria, J.L. Parra, J. Arribas, J. Baselga.NVP-BEZ235, a dual PI3K/mTOR inhibitor, preventsPI3K signaling and inhibits the growth ofcancer cells with activating PI3K mutations. Cancer Res2008;68:8022–8030.
    [56] X. Xie, M.P. Ghadimi, E.D. Young, R. Belousov, Q.S. Zhu, J. Liu, G. Lopez, C. Colombo, T.Peng, D. Reynoso, J.L. Hornick, A.J. Lazar, D. Lev. Combining EGFR and mTOR blockade forthe treatment of epithelioid sarcoma. Clin. Cancer Res2011;17:5901–5912.
    [57] H. Zhao, K. Cui, F. Nie, L. Wang, M.B. Brandl, G. Jin, F. Li, Y. Mao, Z. Xue, A. Rodriguez, J.Chang, S.T. Wong. The effect of mTOR inhibition alone or combined with MEK inhibitors onbrain metastasis: an in vivo analysis in triple-negative breast cancer models. Breast Cancer Res.Treat2012;131:425-36.
    [58] R. Salazar, D. Reidy-Lagunes, J. Yao. Potential synergies for combined targeted therapy inthe treatment of neuroendocrine cancer. Drugs2011;71:841–852.
    [59] D. Roulin, L. Waselle, A. Dormond-Meuwly, M. Dufour, N. Demartines, O. Dormond.Targeting renal cell carcinoma with NVP-BEZ235, a dual PI3K/mTOR inhibitor, in combinationwith sorafenib. Mol. Cancer2011;10:90.
    [60] R. Gedaly, P. Angulo, J. Hundley, M.F. Daily, C. Chen, A. Koch, B.M. Evers. PI-103andsorafenib inhibit hepatocellular carcinoma cell proliferation by blocking Ras/Raf/MAPK andPI3K/AKT/mTOR pathways. Anticancer Res2010;30:4951–4958.
    [61] T.R. Peterson, M. Laplante, C.C. Thoreen, Y. Sancak, S.A. Kang, W.M. Kuehl, N.S. Gray,D.M. Sabatini. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myelomacells and required for their survival. Cell2009;137:873–886.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700