金属热防护系统隔热材料的隔热机理及隔热效率研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属热防护系统(MTPS)是可重复使用运载器(RLV)的关键技术之一,而隔热材料是金属热防护系统的主要隔热部件。目前应用于金属热防护系统的隔热材料主要有陶瓷纤维隔热毡(CFTI) (光学厚度大于10)和多层隔热材料(MTI)。本文采用理论和实验相结合的方法对这两种隔热材料在再入期间的瞬态传热机理进行了详尽分析并建立了陶瓷纤维隔热毡的一维和三维传热模型以及多层隔热材料的一维传热模型,并对有应用前景的硅酸铝陶瓷纤维隔热毡进行了传热实验。本文提出了隔热效率的概念,以表明在取得相同隔热效果的前提下,隔热材料的隔热效率越高,其重量越轻。本文采用实验和理论分析相结合的方法研究比较均质和复合陶瓷纤维隔热毡的隔热效率,发现经过优化设计的复合陶瓷纤维隔热毡的隔热效率高于均质单一密度的陶瓷纤维隔热毡的隔热效率,并利用多层隔热材料的一维传热模型研究了多层隔热材料的隔热效率。本文的研究内容主要包括五个部分,下面进行分别介绍:
     建立了陶瓷纤维隔热毡一维热传导的传热模型,并利用Rosseland近似法建立了陶瓷纤维隔热毡热辐射的传热模型。利用能量平衡方程和上述两种传热模型建立了的陶瓷纤维隔热毡的一维稳态传热模型。本文通过实验测量了三种密度硅酸铝陶瓷纤维隔热毡在100℃~800℃之间的表观导热系数。利用遗传算法和三种密度的硅酸铝陶瓷纤维隔热毡表观导热系数的实验测量值得到硅酸铝陶瓷纤维隔热毡的密度辐射衰减系数和热传导调节系数。
     通过实验发现,在温度确定的条件下,均质陶瓷纤维隔热毡表观导热系数并不总是随着密度的增加逐渐变小,而是有一个最小值。达到最小值后,均质陶瓷纤维隔热毡的表观导热系数反而随着密度的增加而增加,并且随着温度的增加,均质陶瓷纤维隔热毡表观导热系数的最小值对应的密度逐渐增加。与均质陶瓷纤维隔热毡相比,复合陶瓷纤维隔热毡可以提供更高的隔热效率,且温度越高,这种优势越明显。通过计算得到了上表面温度为1000℃,下表面温度为30℃情况下表观导热系数最小的复合硅酸铝陶瓷纤维隔热毡的构成。与同密度的均质硅酸铝陶瓷纤维隔热毡相比,其表观导热系数降低了5.9%,而隔热效率提高了5.9%。
     在陶瓷纤维隔热毡一维稳态传热模型的基础上建立了陶瓷纤维隔热毡的一维瞬态传热模型。通过计算发现,随着密度的增加,应用在金属热防护系统上的均质陶瓷纤维隔热毡所应采取的厚度是降低的,其隔热效率也
Metallic thermal protection system (MTPS) is one of the key technologies for developing reusable launch vehicle (RLV).Insulating materials are main insulating element of MTPS. At the present time there are two kinds of insulating materials which can be applied to MTPS and they are respectively ceramic fibrous thermal insulations (CFTI)(optical thickness more than 10) and multi-layer thermal insulations (MTI). The dissertation adopted a kind of method which combined theory with experiment to analyze heat transfer mechanism during reentry of RLV and according to these mechanism one-dimension steady and transient heat transfer model, three-dimension transient heat transfer model of alumina silicate ceramic fibrous insulating materials and one-dimension heat transfer model of MTI are established. Experiments which are made for alumina silicate CFTI is hpopheful to be applied to the next generation RLV validated these models. Thermal insulating efficiency is one key guideline to choose insulating materials of TPS. According to the thermal insulating efficiency, methods which combined theory with experiment are adopted to investigate and compare thermal insulating efficiency of CFTI with the same density and composite CFTI and it is found that thermal insulating efficiency of composite CFTI is better than that of CFTI with the same density. One-dimension heat transfer modle of MTI is established and thermal insulating efficiency of MTI is investigated.The content of this dissertation include five parts which are respectively presented as follows:
     One-dimension heat conductive transfer model of CFTI is established and One-dimension thermal radiation transfer model is also established by means of Rosseland approximate method. By means of above two model and energy balanced equation, One-dimension heat transfer model of CFTI is established. Experiments for measuring effective thermal conductivity of alumina silicate CFTI with three kind densities are made at the temperature from 100℃to 800℃. By means of genetic algorithm and experiment data, density radiative attenuation coefficient and heat conductive adjusting coefficient of alumina silicate CFTI are obtained.
引文
1 K. Cowart, J. Olds.TCAT-A Tool For Automated Thermal Protection SystemDesign. AIAA Space 2000 Conference and Exposition, California, America,Sept. 2000
    2 Aiichiro Tsukahara, Hiroyuki Yamao, Kazuyuki Miho. Advanced ThermalProtection systems For Reusable Launch Vehicle. AIAA 10th InternationalSpace Planes and Hypersonic Systems and Technologies Conference.Kyoto,Japan,April, 2001
    3 C.C. Poteel,S. Y. Hsu. Preliminary Thermal-Mechanical sizing of metallicTPS: Process Development and Sensitivity Studies. AIAA 40th AerospaceSciences Meeting & Exhibit Reno,America, Jan.2002
    4 R.W.Powell, M.K.Lockwood, S.A. Cook. The Road from the NASA Access-to-Space Study to a Reusable Launch Vehicle. AIAA 49th InternationalAstronautical Congress, Melbourne, Australia, Sept. 1998
    5 M. L.Blosser. Development of Metallic Thermal Protection Systems for theReusable Launch Vehicle. NASA Technical Memorandum 110296
    6 M.L.Blosser,R.R.Chen,I.H.Schmidt,J.T.Dorsey, C.C.Poteet, R.K.Bird.Advanced Metallic Thermal Protection System Development. AIAA 40thAerospace Sciences Meeting & Exhibit Reno,America, Jan.2002
    7 T. J. Dorsey, Roger Chen, C.C. Poteel. Metallic Thermal Protection SystemTechnology Development: Concepts, Requirements and AssessmentOverview. AIAA 40th Aerospace Sciences Meeting & Exhibit Reno,America,Jan.2002
    8 戚发轫.《载人航天器技术》第 2 版,国防工业出版社,北京,2003:229~239
    9 M. L. Blosser. Advanced Metallic Thermal Protection Systems for ReusableLaunch Vehicles. doctoral dissertation, University of Virginia , 2000,5:45~57
    10 闵桂荣,郭舜. 《航天器热控制》第二版,科学出版社,北京,1998:5~6
    11 S. J. Scotti, C. Clay, M. Rezin. Structure and Materials for ExtremeEnvironments Applied to Reusable Launch Vehicle. AIAA/ICASInternational Symposium and Exposition,Dayton,USA,July,2003
    12 D. E. Myers, C. J.Martin, M. L.Blosser Parametric Weight Comparison ofAdvanced Metallic, Ceramic Tile, and Ceramic Blanket Thermal ProtectionSystems. NASA/ TM-2000 -210289
    13 李大耀. 美国载人航天器的发展史实. 航天返回与遥感.2002,23:61~67
    14 吴国庭. 哥伦比亚号防热系统概貌.国际太空.2003,(6):26~29
    15 Burkhard Behrens,Mark Müller. Technologies for Thermal ProtectionSystems Applied on Re-usable Launcher. Acta Astronautica, 2004;55:529~534
    16 杨广耀. 航天飞机.科学出版社.1984:55~60
    17 王思青,张长瑞,周贵新等. 重复使用运载器陶瓷热防护系统. 导弹与航天运载技术.2004,32(3):37~41
    18 夏得顺.重复运载器金属热防护系统的述评,导弹与航天运载技术,2002,(2):21~27
    19 韩杰才,陈贵清,孟松鹤,李晓海.新型 ARMOR 热防护系统.宇航学报.2004,25:350~354
    20 E.D.Morris, N.H.White, C.E.Eberling. Analysis of Shuttle Orbiter Reliabilityand Maintainability Data for Conceptual Studies. AIAA paper 96-4245
    21 J. B. Davis, D. B. Marshall, K. S. Oka, R. M. Housley, P. E. D. Morgan.Ceramic Composites for Thermal Protection Systems. Composite:Part A1999,30:483~485
    22 吴国兴.对哥伦比亚号失事原因的思考.国际太空.2003,(3):14~19
    23 马玉娥,孙秦,蔺国民. 可重复使用运载器金属热防护系统的历史与发展动态分析. 机械设计与制造. 2005,(2):108~111
    24 W.E.Black.Summary Report of Evaluation of Coated Columbium Alloy HeatShields for Space Shuttle Thermal Protection System Application. NASACR-2824,1977
    25 H.L.Eidenoff, L.Rose.Thermal-structureal Evaluation of TD Ni-20CrThermal Protection System Panels. NASA CR-132487,1974
    26 L.R.Jackson, S.C.Dixon. A Design Assessment of Multiwall,Metallic Stand-Off, and RSI Reusable Thermal Protection Systems Including Space ShuttleApplication. NASA TM81780,1980
    27 褚桂柏《航天技术概论》,中国宇航出版社,北京,2002 :125~129
    28 P. V. Tartabini, R.A.Lepsch, J.J.Korte, K. E. Wurster. A MultidisciplinaryPerformance Analysis of a Lifting-Body Single-Stage-to-Orbit Vehicle. AIAA
    38th Aerospace Sciences Meeting & Exhibit,reno,America,Jan. 2000
    29 S.Cook.X-33 Reusable Launch Vehicle Structural Technologies. AIAA 7thInternational Space Planes and Hypersonic Systems and TechnologiesConference, Norfolk,America,Nov.1996
    30 杨勇,王小军,唐一华,李东. 重复使用航天器发展趋势及特点.导弹与航天运载技术. 2002 ,(5):15~19
    31 M. K. Lockwood. Overview of Conceptual Design of Early VentureStarConfigurations. AIAA 2000-2042
    32 张登成,唐硕. 美国重复使用运载器的发展历史、现状及启示. 导弹与航天运载技术. 2003 (5):20~27
    33 K. L. Karr, C. C. Poteel, M. L. Blosser. Hypervelocity Impact Test Resultsfor a Metallic Thermal Protection System. NASA/TM-2003-212440
    34 J. W. Sawyer, J. Hodge, B. Moore. Aerothermal Test of Metallic TPS for X-
    33 Reusable Launch Vehicle. 3rd European Workshop on Thermal ProtectionSystems,ESTEC,Netherlands,1998
    35 R. Chen, M.Blosser. Metallic Thermal Protection System Panel Flutter Study.AIAA 40th Aerospace Sciences Meeting & Exhibit Reno,America, Jan. 2002
    36 F.Jalilian, M.Jahazi, R.A.L.Drew. Microstructural Evolution during TransientLiquid Phase Bonding of Inconel 617 Using Ni-Si-B Filler metal. MaterialsScience and Engineering A,2006,423:269~281
    37 M.Kewther Ali, M.S.J.Hashmi,B.S.Yilbas. Fatigue Properities of theRefurbished INCO-617 Alloy. Journal of Materials Processing Technology.2001,118:45~49
    38 W. D. Brewer, K. Bird, T. Wallace,S.A. Sankaran. Alloys and CoatingDevelopment for Metallic TPS for Reusable Launch Vehicles. National Space& Missile Materials Symposium, San Diego,America, Feb. 2000
    39 M.L.Blosser, C.J.Martin, K.daryabeigi,C.C.Poteet. Reusable MetallicThermal Protection System Development. 3th European Workshop onThermal Protection Systems,ESTEC,Netherlands,1998
    40 Ramon L.Chase, Warren Greczyn,Leon McKinney. A Near Term ReusableLaunch Vehicle Strategy. AIAA 40th Aerospace Sciences Meeting & ExhibitReno,America, Jan. 2002
    41 J. Croft. Weapons Goes Hypersonic. Aerospace America. 2004, 5:38~42
    42 J. W. Hicks, G. Trippensee. NASA Hypersonic X-plane Flight Developmentof Technologies and Capabilities for the 21st Century Access to Space.AGARD Future Aerospace Technology in Service to the Alliance.1997:14~18
    43 Charles R.McClinton, Vincent L.Rausch, Luat T.Nguyen, Joel R.Sitz.Preliminary X-43 flight test results. Acta Astronautica. 2005, 57:266~276
    44 C. Suryanarayana. Mechanical Alloying and Milling. Progress in MaterialsScience. 2001, 46:1~184
    45 J. S. Benjamin. Dispersion Strengthened Superalloys by Mechanical Alloying.Metallurgical Transactions. 1970, 1(10):2943~2951
    46 M.C. Garcia-Alonso, J.L. Gonzalez-Carrasco, P. Perez, V.A.C. Haanappel,M.L. Escudero, J. Chao, M.F. Stroosnijder. A Surface Modified ODSSuperalloy by Thermal Oxidation for Potential Implant Applications. Journalof Materials Science: Materials in Medicine, 2001; 12: 589~596
    47 沙维. 机械合金化氧化物弥散强化镍基超合金. 有色金属. 1994,46(2):67~71
    48 A.Wasilkowska, M.Bartsch, U. Messerschmidt, R. Herzog, F. Czyrska. CreepMechanisms of Ferritic Oxide Dispersion Strengthened Alloys. Journal ofMaterials Processing Technology. 2003, 133(2):218~224
    49 D.Haussler, B. Reppich, M. Bartsch, U. Messerschmidt. Interaction Processesbetween Dislocations and Particles in the ODS Nickel-base SuperalloyINCONEL MA 754 Studied by Means of in Situ Straining in an HVEM.Materials Science and Engineering A, 2001; 309-310: 500~504
    50 A. O. F. Hayamaa, H. R. Z. Sandim, J. F. C. Lins, M. F. Hupalo, A. F. Padilha.Annealing Behavior of the ODS Nickel-Based Superalloy PM 1000.Materials Science and Engineering A. 2004, 371:198~209
    51 M.Heilmaier,H.J.Maier,A.Jung,M.Nganbe,F.E.H. Müller,H.J. Christ. CyclicStress–strain Response of the ODS nickel-base, Superalloy PM 1000 underVariable Amplitude Loading at High Temperatures.Materials Sciences andEngineering A,2000,281:37~44
    52 P. Perez. Influence of the Alloy Grain Size on the Oxidation Behaviour ofPM2000 Alloy. Corrosion Science, 2002, 44: 1793~1808
    53 C.Capdevila, U.Miller, H.Jelenak, H.K.D.H.Bhadeshia. Strain Heterogeneityand the Production of Coarse Grains in Mechanically Alloyed Iron-basedPM2000 alloy. Materials Science abd Engineering A,2001,313:161~165
    54 P.Perez. Influence of the Alloy Grain Size on the Oxidation Behaviour ofPM2000 Alloy. Corrosion Science. 2002,44:1798~1808
    55 A.M. Papadopoulos. State of the Art in Thermal Insulation Materials andAims for Future Developments. Energy and Building. 2005,37:77~86
    56 Markus Spinnler.Studies on High-temperature Multilayer Thermal Insulations.International journal of heat and mass transfer. 2004,47:1305~1312
    57 M.P.Gorton, J.L. Shideler, G.L.Webb. Static and Aerothermal Tests of aSuperaloy Honeycomb Prepackaged Thermal Protection System. NASATP3257,1993
    58 Kamran Daryabeigi. Effective Thermal Conductivity of High TemperatureInsulations for Reusable Launch Vehicles.NASA/TM-1999-208972
    59 Max L.Blosser. Advanced Metallic Thermal Protection Systems for ReusableLaunch Vehicles. doctoral Thesis:University of Virginia,2000,5
    60 Derek D. Hass, B. Durga Prasad, David E. Glass and Karl E.Wiedemann.Reflective Coating on Fibrous Insulation for Reduced HeatTransfer , NASA-97-CR-201733
    61 郭莉.保温材料的概况与选择.四川电力技术.2005,(1):52~55
    62 张娜,张玉军,田庭艳,刘超.高温低导热率隔热材料的研究现状及进展.中国陶瓷.2006,42(1):16~18
    63 吴清仁,曾可令,刘振群,奚同康.岩矿棉隔热材料导热系数与密度及温度的关系.陶瓷学报,1997,18:141~144
    64 张霞.隔热材料性能的影响因素.材料开发与应用.1994,9:7~10
    65 Kamran Daryabeigi. Design of High Temperature Multi-layer Insulation forReusable Launch Vehicles. Doctoral Thesis:University of Virginia,2000,5
    66 阚安康,韩厚德,章学来,王波,王友聪. 提高真空绝热板绝热效果的探索.能源研究与利用.2005,(6):13~16
    67 C.K.Krishnaprakas, K.Badari Narayana, Pradip Dutta. Heat TransferCorrelations for Multilayer Insulation Systems. Cryogenics,2000,40:431~435
    68 赵镇南.《传热学》.高等教育出版社.北京,2002:10~360
    69 Peng Li, Huier Cheng.Thermal Analysis and Performance Study forMultilayer Perforated Insulation Material Used in Space. Applied ThermalEngineering.2006,26:2020~2026
    70 J.Singh, D. E. Wolfe. Review Nano and Macro-structured ComponentFabrication by Electron Beam-Physical Vapor Deposition(EB-PVD). Journalof Materials Science. 2005, 40:1~26
    71 徐惠彬, 宫声凯, 刘福顺. 乌克兰巴顿焊接研究所的电子束物理气相沉积技术. 航空制造工程. 1997, (6):6~8
    72 H. B. Guo, H. B. Xu, X. F. Bi, S. K. Gong. Preparation of Al2O3-YSZComposite Coating by EB-PVD. Materials Science and Engineering A. 2002,325:389~397
    73 江 经 善 . 多 层 隔 热 材 料 及 其 载 航 天 器 上 的 应 用 . 宇 航 材 料 工艺.2000(4):17~25
    74 R.Mathes, J.Blumenberg, K.Keller, Radiative Heat Transfer in InsulationsWith Random Fibre orientation, International Journal of Heat and MassTransfer ,1990,33:767~774
    75 S.C.LeeDependent vs Independent Ccattering on Fibrous CompositesContaining Parallel Fibers, Journal of Thermophysics and Heat Transfer.1994,39:733~738
    76 姜义军,杨昕宇,梁晓娟,向卫东.溶胶-凝胶法制备二氧化钛薄膜的表征.温州大学学报.2004,17:43~47
    77 尹荔松,周歧发,唐新桂,林光明,张进修. 溶胶-凝胶法制备纳米TiO2的凝胶过程机理的研究.功能材料.1999,30(4)407~409
    78 杨帆,沈军,吴广明等. 溶胶-凝胶法制备SiO2/TiO2多层膜工艺研究.安阳师范学院学报.2003,(2):31~33
    79 Yu K Akimov. Fields of Application of Aerogels(Review). Instruments andExperimental Techniques.2003,46(3):287~293
    80 何飞,赫晓东,李垚.气凝胶热特性的研究现状.材料导报.2005,19(12):20~22
    81 倪文,刘凤梅.纳米孔超级绝热材料的原理及制备.保温材料与建筑节能.2002,(1):36~38
    82 邓忠生,魏建东,王珏,沈军等. SiO2气凝胶结构及其热学特性的研究.材料工程.1999,(12):23~25
    83 陈祥,李言祥.金属泡沫材料的研究进展.材料导报.2003,17(5):5~9
    84 A.G. Evans, J.W. Hutchinson , M.F. Ashby. Multifunctionality of CellularMetal Systems. Progress in Materials Science.Vol .1998,43: 171~221
    85 王录才,于利民,王芳,李秀山.多孔泡沫金属的研究及其前景展望.太原重型机械学院学报.2002,23(1):72~76
    86 D. Alan, D. Kamran: Effective Thermal Conductivity of High Porosity OpenCell Nickel foam:35th AIAA thermophysics conference. Anaheim,Canada.June 2001
    87 S.Venkataraman,B.V. Snakar. Analysis of Sandwich Beams with FunctionallyGraded Core: Proceedings of the 42nd AIAA Structures, Structural Dynamicsand Materials Conference, Seattle, America, 2001
    88 H.D. Zhu: Design of metallic foams as insulation in thermal protectionsystems. Doctoral Thesis:University of Florida,2004
    89 Robert Siegel. Transient Effects of Radiative Transfer in SemitransparentMaterials. International journal of engineering Science. 1998,36:1701~1739
    90 乐茵.绝热材料的绝热机理.保温材料与节能技术.2003,(3):8~14
    91 倪文,王寅生,王国清.对提高纤维质绝热材料绝热效果的探讨.保温材料与建筑节能.2002,(10):78~82
    92 邹宁宇,鹿成滨,张德信.绝热材料应用技术.中国石化出版社.北京,2005:61~265
    93 李 雪 , 张 双 喜 .绝 热 材 料 性 能 的 实 验 研 究 .青 岛 建 筑 工 程 学 院 学报.1998,19(4):31~36
    94 张双喜,杨丽萍,郭铁明等.超细玻璃棉导热系数的研究.保温材料与建筑节能.2005,(5):50~53
    95 G.R.Cunnington, C.A.Zierman, A.I.Funai, A. Lindahn. Performance ofMultilayer Insulation Systems for Temperature to 700K. NASA CR-907,1967
    96 N.E.Hager,R.C.Steere. Radiant Heat Transfer in Fibrous Thermal Insulation.Journal of Applied Physics. 1967,38(12):4663~4668
    97 Kamran Daryabeigi. Analysis and Testing of High Temperature FibrousInsulation for Reusable Launch Vehicles. 37th AIAA Aerospace SciencesMeeting and Exhibit.Reno,America,Jan.1999
    98 R.E.Pawel, D.L.McElroy, F.J.Weaver, R.S.Graves. High TemperatureThermal Conductivity of a Fibrous Alumina Ceramic.PlenumPress,1985:301~313
    99 C.Bankvall. Heat Transfer in Fibrous Materials. Journal of Testing andEvaluation.1973,1(5):235~243
    100 余其铮. 辐射换热原理.哈尔滨工业大学出版社,哈尔滨,2000,9:108~190
    101 E.M.斯帕罗,R.D.赛斯.辐射传热.高等教育出版社,北京,1982:229~234
    102 谈和平,夏新林,刘林华,阮立明.红外辐射特性与传输数值计算.哈尔滨工业大学出版社,哈尔滨,2005:148~152
    103 R. 西格尔,J.R. 豪厄尔.热辐射传热.科学出版社,北京,1990:261~269
    104 张辑洲,朱宝娟,余其铮.超细玻璃纤维的有效导热系数计算式.哈尔滨工业大学学报.1993,25(1):21~25
    105 Markus Spinnler. Theoretical Studies of High-temperature MultilayerThermal Insulations Using Radiation Scaling. Journal of quantitativespectroscopy and radiative transfer. 2004,84: 477~491
    106 Fatmir Asllanaj, Gerard Jeandel, Jean Rodolphe Roche, David Lacroix.Transient Combined Radiaton and Conduction Heat Transfer in FibrousMedia with Temperature and Flux Boundary Conditions.international journalof thermal Science. 2004,43:939~950
    107 白丹,范绪箕.航天器金属热防护结构非灰体隔热层传热计算.南京航空航天大学学报.2005,37(4):403~407
    108 范绪箕.气动加热与热防护系统.科学出版社,北京,2004:125~129
    109 Kamran Daryabeigi.Thermal Analysis and Design of Multi-layer Insulationfor Re-entry Aerodynamic Heating.35th AIAA Thermophysics ConferenceAnaheim,America.June,2001:1~10
    110 K.Keller, M.Hoffmann, W. Zorner, J.Blumenberg. Application of HighTemperature Multilayer Insulations.Acta Astronautica.1992,26(6):451~458
    111 Eroen Buursink.On the Development of a Cooled Metallic ThermalProtection System for Spacecraft.Faculteit.Luchtvaart-enRuimtevaarttechniek. TU Delft,2005:15~18
    112 Max Blosser. Investigation Fundamental Molding and Thermal PerformanceIssues for a Metallic Thermal Protection System Design.40th AIAAAerospace Sciences Meeting & Exhibit.Reno,America.Jan.2002
    113倪文,王寅生,王国清.基于辐射传热理论对提高纤维质绝热材料绝热效果的探讨.保温材料与节能技术.2003,(1):9~15
    114刘景林.隔热材料的热物性能.国外耐火材料.1999,(11):54~57
    115奚同康,王圣妹,章宗德等.高温隔热材料热物性的预测和优化研究.无机材料学报.1997.12(2):207~210
    116鲁 怀 敏 .用 控 制 容 积 法 求 解 连 珠 方 坯 温 度 场 .沙 洲 职 业 工 学 院 学报.2004,7(1):12~21
    117刘林华,谈和平,余其铮.半透明平板边界入射辐射热流密度的反问题.计算物理.1999,16(3):235~242
    118张昊春,谈和平.一维辐射系统吸收系数的 反问题.工程热物理学报.2004,25(2):293~295
    119李懋强,陈玉峰.微孔硅酸钙绝热材料的密度和导热系数的关系.硅酸盐学报.2005,33(11):1414~1417
    120衣乌.影响绝热材料导热系数的主要因素.保温材料与节能技术.2003,(3):14~18
    121余建坤,张文彬.遗传算法及其应用.云南民族学院学报, 2002,19(5):812~813
    122陈国良,王熙法.遗传算法及其应用.北京人民邮电出版社.北京,1996:10~25
    123W.L.Ko, R.D.Quinn, L.Gong.Finite-element Reentry Heat-transfer Analysisof Space Shuttle Orbiter.NASA TP2657,December 198
    124帕坦卡.传热与流体流动的数值计算.科学出版社.北京,1984:27~90
    125信彦稻井.关于多层绝热研究的现状.低温与超导.1979,(2):16~27
    126D.Lemonnier, V.Le.Dez. Discrete Ordinates Solution of Radiative Transferacross a Slab with Variable Refractive Index.Journal of QuantitativeSpectroscopy & Radiative Transfer 73.2002,73:195~204
    127K.D.Lathrop.Use of Discrete-Ordinate Methods for Solution of PhotonTransport Problems. Nucleate Science and Engineering 1966,24:381~388
    128T.J.Love,R.J.Grosh.Radiative Heat Transfer in Absorbing,Emitting andScattering Media.ASME Trans.,Journal of Heat Transfer,1965,87:161~166
    129李宏顺.用离散坐标法计算任意方向辐射强度(Ⅰ):原理.华中科技大学学报(自然科学版),2003,31(5):83~85
    130刘林华,谈和平,余其铮.半透明平板边界入射辐射热流密度的反问题.计算物理.1999,16(5):235~242
    131陶文铨.数值传热学(第 2 版).西安交通大学出版社.西安,2001:96~99
    132杨沫,王育清,傅燕弘,陶文铨.具有表面辐射的导热和对流耦合问题的数值计算方法.西安交通大学学报.1992,26(6):25~31

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700