机械打孔复合缓释支架联合干细胞移植对急性心肌梗死的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:骨髓间充质干细胞移植治疗急性心肌梗死的作用研究
     实验目的:
     本实验应用外科手术方法对中华小型猪建立急性心肌梗死模型,通过直接注射方式将体外培养的骨髓间充质干细胞分多点注射入梗死区域心肌,饲养动物3个月后观察心脏功能改善作用,及干细胞在梗死心肌内的存活转化情况。
     实验方法:
     中华小型猪髂前上棘抽取骨髓后,体外分离培养扩增得到骨髓间充质干细胞并进行标记。结扎冠状动脉建立猪急性心肌梗死模型,随机将实验动物分为3组,每组6只。第一组心肌梗死组:单纯进行冠状动脉结扎建立急性心肌梗死模型;第二组生理盐水对照组:用生理盐水代替骨髓间充质干细胞注射入心肌梗死部位;第三组干细胞移植组:采用直接注射法将标记好的骨髓间充质干细胞分多点移植入心肌梗死区域。饲养动物3个月后检测心脏功能改善情况,并通过免疫荧光观察移植干细胞的幸存与转化情况。
     实验结果:
     实验动物手术操作3个月后,骨髓间充质干细胞移植组与模型对照组相比心脏射血分数(EF%)明显改善(分别为50.2±5.3和58.9±1.5;P<0.01),心肌灌注缺损百分数(MDP%)显著减少(分别为1.95±0.22,和-1.75±0.19;P<0.05)。免疫荧光及免疫组织化学检验结果证实移植骨髓间充质干细胞仍然存在,并且部分实验显示干细胞具有分化为心肌细胞及血管内皮细胞的迹象。
     结论:
     通过直接注射法将同种异型来源的骨髓间充质干细胞移植入急性心肌梗死部位后,骨髓间充质干细胞在体内存活可达3个月,并能部分转化为心肌细胞和血管内皮细胞,能明显改善梗死模型的心脏功能。
     第二部分:心肌机械钻孔复合缓释支架联合骨髓间充质干细胞移植对小型猪急性心肌梗死模型的作用研究
     实验目的:
     近年来对缺血性心脏病的治疗取得了很大进展,其中干细胞移植是很有前途的一种治疗方法。但是由于缺乏充足的血液供应,移植干细胞的低存活率成为当今困扰临床医生的一个重要问题。本实验应用新发明的较大孔径心肌机械打孔血运重建术(Transmyocardial drilling revascularization, TMDR)复合碱性成纤维生长因子(basic fibroblast growth factor, bFGF)的肝素缓释抗凝支架置入联合骨髓间充质干细胞移植治疗心肌梗死,3个月后对心脏功能进行检测,探讨该方法作用原理。
     实验方法:
     (1)骨髓间充质干细胞培养:抽取中华小型猪乳猪髂骨处骨髓,采用密度梯度离心法分离骨髓,进行体外培养后进行表型检测,移植前应用荧光染料DiI染色。
     (2)建立急性心肌梗死模型,机械打孔复合缓释支架置入以及干细胞移植。实验分为4组每组6只动物,分别为对照组,干细胞移植组,机械打孔复合支架置入组,干细胞移植联合机械打孔复合支架置入组。
     (3)手术3个月后对各组心脏功能进行评价,采用免疫组织化学方法检测梗死区域心脏梗死面积,血管密度及凋亡细胞数量;RT-PCR方法检测梗死区域血管生成因子VEGF、vWF、TGF、IL的表达情况。
     实验结果:
     手术操作3个月后,干细胞移植联合支架置入组与其它组相比
     (1)心脏左心室射血分数和心肌灌注缺损明显改善(P<0.05)。
     (2)梗死区域心肌梗死面积减少,血管密度增加,细胞凋亡数量减少(P<0.05)。
     (3)促血管生成因子VEGF、vWF、TGF、IL表达增强(P<0.05)。
     结论:
     机械打孔复合支架置入术能提高干细胞移植在急性心肌梗死中的治疗作用,改善猪急性心肌梗死模型心脏功能,减少心肌梗死面积,增加心肌梗死区域血管密度,为临床外科治疗心肌梗死提供了新的治疗思路。
Objective:
     In this study, application of surgical methods on the chinese mini-swine model of acute myocardial infarction by direct injection of mesenchymal stem cells into myocardial infarct area, after feeding animals 3 months, observed the improve of heart function, the survival and transformation of stem cells in myocardial infarcted zone.
     Method:
     Miniswine were anesthetized with intramuscular administration of ketamine followed by an intravenous drip of sodium pentobarbital, and bone marrow aspirated from the anterior iliac crest was put into a syringe containing 6000u heparin, and then, was diluted with Dulbecco's PBS. MSCs were isolated from bone marrow with density gradient centrifugation and then resuspended in culture medium. The cells were incubated in a 95% humidified incubator at 37℃and 5%CO2. Medium was replaced every 3 days and adherent cells were retained until about 90% confluence. Before implantation, the cells were labeled with the cross-linkable membrane dye CM-Dil according to the protocol of the supplier. Briefly, 1-2×107 cells were incubated for 5 min at 37℃, and then for an additional 15 min at 4℃. After being washed with PBS, the cells were resuspended in 100μL saline and then kept on ice before transplantation.
     The ligation of the left anterior descending coronary artery (LAD) was performed on an AMI model. Miniswine was intubated under general anesthesia and positive pressure ventilation was maintained. The heart was fully exposed via a median sternotomy. Then, the LAD was ligated after three intermittent brief preconditioning occlusions. A bonus dose of lignocaine was given intravenously (1mg·kg-1) and then maintained at 1mg·min-1·kg-1 by intravenous dripping. After the successful establishment of the model, the miniswines were randomly divided into four groups (n=6 in each), Model group:The animals only established models of AMI; Saline group:AMI immediately followed by saline injection take the place of MSCs implantation; MSCs group:AMI immediately followed by MSCs implantation. Three months after operation, detection the cardiac function in each group and observation the surviving and transformation of bone marrow-derived mesenchymal stem cell by use Immunofluorescence microscopy.
     Result:
     Three months later, the ejection fraction (EF%) was significantly improvement in MSCs group (50.2±5.3 and 58.9±1.5; P<0.01) and the mass defect percentage(%) was decreased (1.95±0.22 and -1.75±0.19; P<0.05) in MSCs group compared with saline group importantly, Immunofluorescence and histochemical results confirm that transplanted MSCs still alive and part of the experiment appears to have differentiated into cardiomyocytes and vascular endothelial cells.
     Conclusion:
     Bone marrow-derived mesenchymal stem cell transplantation by injection method into myocardial infarction mothed, the cells could survive 3 months and differentiated into cardiomyocytes and vascular endothelial cells in sight, on the other hand, the same kinds of the opposite sex bone marrow mesenchymal stem cell transplantation can improve cardiac function infarction model.
     Objective:
     In recent years, the treatment of ischemic heart disease has made considerable progress; including stem cell transplantation is a promising treatment method. However, due to a lack of adequate blood supply, the low survival rate of transplanted stem cells becomes an important tissue to today's troubled clinician. In this study, application of the new invention of a larger diameter of transmyocardial drilling revascularization and basic fibroblast growth factor release anticoagulant heparin stent combined bone marrow mesenchymal stem cell transplantation for myocardial infarction, Three months after operation, cardiac function was detected functional and to explore the role of the principle of the method.
     Method:
     (1) Cultured bone marrow-derived mesenchymal stem cells:extraction mini-pig suckling pig iliac bone marrow, using density gradient centrifugation of bone marrow, cultured in vitro, and tested the phenotype. Before transplantation, the cells were stained by fluorescent dyes (DiI).
     (2) Established model of acute myocardial infarction, transmyocardial drilling revascularization and basic fibroblast growth factor release anticoagulant heparin stent combined bone marrow mesenchymal stem cell transplantation. Experiments were divided into four groups each of six animals, respectively, the control group, stem cell transplantation group, transmyocardial drilling revascularization and heparin stent implantation group, stem cell transplantation combined with transmyocardial drilling revascularization and heparin stent implantation group.
     (3) Three months after operation in each group to evaluate cardiac function, using immunohistochemistry to detect the heart infarcted zone infarct size, vascular density and the number of apoptotic cells; RT-PCR method to detect the vascular endothelial growth factor (VEGF, vWF, TGF and IL) expression in infracted region.
     Results:
     Three months later, stem cell transplantation combined with stent group compared with other groups:
     (1) Cardiac left ventricular ejection fraction and myocardial perfusion defects significantly improved (P<0.05).
     (2) The vessel density was augmented, infarct size and the number of cell apoptosis was reduced (P<0.05).
     (3) the expression levels of von Willebrand factor (vWF), transforming growth factor-β3 (TGF-β3), vascular endothelial growth factor (VEGF), and interleukin-1beta (IL-1β) were much higher (P<0.05).
     Conclusions:
     Transmyocardial drilling revascularization and basic fibroblast growth factor release anticoagulant heparin stent implantation can improve the therapeutic effect of stem cell transplantation in patients with acute myocardial infarction, improving pig model of acute myocardial infarction cardiac function and reduce myocardial infarct size, increasing the regional vascular density of myocardial infarction. This approach provides new ideas for clinical surgical treatment of myocardial infarction
引文
1. Massie BM, Shah NB. Evolving trends in the epidemiologic factors of heart failure:rational for preventive strategies and comprehensive disease management. Am Heart J 1997; 133:703-712
    2. Massie BM, Shah NB. The heart failure epidemic:magnitude of the problem and potential mitigating approaches. Curr Opin Cardiol 1996; 11:221-226.
    3. Blau HM, Brazelton TR, Weimann JM, et al. The evolving concept of a stem cell: entity or function? Cell 2001; 105:829-41
    4. Fuchs E, Sergre JA. Stem cells:a new lease on life. Cell 2000; 100:143-55.
    5. J.G. Shake, P.J. Gruber, W.A. Baumgartner, G. Senechal, J. Meyers, J.M. Redmond, M.F. Pittenger, B.J. Martin, Mesenchymal stem cell implantation in a swine myocardial infarct model:engraftment and functional effects, Ann. Thorac. Surg.73 (6) (2002) 1919-1925.
    6. C.E. Murry, M.H. Soonpaa, H. Reinecke, H. Nakajima, H.O. Nakajima, M. Rubart, K.B. Pasumarthi, J.I. Virag, S.H. Bartelmez, V. Poppa, G. Bradford, J.D. Dowell, D.A. Williams, L.J. Field, Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts, Nature 428 (2004) 664-668.
    7. J.M. Nygren, S. Jovinge, M. Breitbach, P. Sawen, W. Roll, J. Hescheler, J. Taneera, B.K. Fleischmann, S.E. Jacobsen, Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not differentiation, Nat. Med.10 (5) (2004) 494-501. 8. Gojo S, Gojo N, Takeda Y, et al. In vivo cardiovasculogenesis by direct injection of isolated adult mesenchymal stem cells [J]. Exp Cell Res,2003,288:51-59.9.韩雅玲,康建,李少华,等.成体鼠骨髓间充质细胞在体外培养中的分化为平滑肌细胞[J].中华医学杂志,2003,83:778-781.
    10. Takano H, Ohtsuka M, Akazawa H, et al. Pleiotropic effects of cytokines on acute myocardial infarction:G-CSF as a novel therapy for acute myocardial infarction [J]. Curr Pharm Des,2003,9(14):1121-1127.
    11. Murry CE, Soonpaa MH, Reinecke, et al. Haematopoietic stem cells do not transdifferentiate into cardie myocytes in myocardial infarcts [J]. Nature, 2004.428(6983):664-668
    12. Balsams LB. Wagers AJ. Christensen JL,et al. Haematopotietic stem cells adopt mature haematopoietic fates in ischemic myocardium [J]. Nature,2004, 428(6983):668-673.
    13. Weiss M, Orkin SH. In vitro differentiation of murine embryonic stem cells. New approaches to old problems [J]. J Clin Invest,1996,97:591-595.
    14. A. Mathur, J.F. Martin, Stem cells and repair of the heart, Lancet 364(2004) 183-192.
    15. D. Orlic, J. Kajstura, S. Chimenti, I. Jakoniuk, S.M. Anderson, B. Li, J. Pickel, Bone marrow cells regenerate infarcted myocardium, Nature 410 (6829) (2001) 701-705.
    16. K.A. Jackson, S.M. Majka, H. Wang, J. Pocius, C.J. Hartley, M.W. Majesky, M.L Entman, L.H. Michael, K.K. Hirschi, M.A. Goodell, Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells, J. Clin. Invest.107 (2002)1395-1402.
    17. Y.S. Yoon, A. Wecker, L. Heyd, J.S. Park, T. Tkebuchava, K. Kusano, A. Hanley, H. Scadova, G.Qin, D.H. Cha, K.L. Johnson, R. Aikawa, T. Asahara, D.W Losordo, Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction, J. Clin. Invest.115 (2) (2005) 326-338.
    18. N. Hattan, H. Kawaguchi, K. Ando, E. Kuwabara, J. Fujita, M. Murata, M. Suematsu, H. Mori, K. Fukuda, Purified cardiomyocytes from bone marrow mesenchymal stem cells produce stable intracardiac grafts in mice, Cardiovasc. Res.65 (2005) 334-344.
    19. Y. Jiang, B. Jahagirdar, L. Reinhard, R.E. Schwartz, C.D. Keene, X. Ortiz, M. Reyes, T. Lenvik, T. Lund, M. Blackstad, J. Du, S. Aldrich, A. Lisberg, D.A. Largaespada, C.M. Verfaillie, Pluripotent nature of adult marrow derived mesenchymal stem cells, Nature 418 (2002) 41-49.
    20. K. Fukuda, Molecular characterization of regenerated cardiomyocytes derived from adult mesenchymal stem cells, Congenit. Anom.42 (2002) 1-9.
    21.K.C Wollert, H. Drexler, Mesenchymal stem cells for myocardial infarction: Promises and pitfalls, Circulation 112 (2005) 151-153.
    22. M.C Galmiche, V.E. Koteliansky, J. Brie're. P. Herve. P. Charbord, Stromal cells from human long-term marrow cultures are mesenchymal cells that differentiate following a vascular smooth muscle differentiation pathway, Blood 82 (1) (1993) 66-76.
    23. N. Nagaya. T. Fujii, T. Iwase, H. Ohgushi, T. Itoh. M. Uematsu. M. Yamagishi. H. Mori, K. Kangawa, S. Kitamura, Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis, Am. J. Physiol. Heart Circ. Physiol.287 (6) (2004) 2670.
    24. N. Nagaya, K. Kangawai, T. Itoh, T. Iwase, S. Murakami, Y. Miyahara, T. Fujii, M. Uematsu, H. Ohgushi, M. Yamagishi, T. Tokudome, H. Mqri, K. Miyatakel, S. Kitamura, Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy, Circulation 112 (2005) 1128-1135.
    25.J.G. Shake, P.J. Gruber, W.A. Baumgartner, G. Senechal, J. Meyers, J.M. Redmond, M.F. Pittenger, B.J. Martin, Mesenchymal stem cell implantation in a swine myocardial infarct model:engraftment and functional effects, Ann. Thorac. Surg.73 (6) (2002) 1919-1925.
    26. C.E. Murry, M.H. Soonpaa, H. Reinecke, H. Nakajima, H.O. Nakajima, M. Rubart, K.B. Pasumarthi, J.I. Virag, S.H. Bartelmez, V. Poppa, G. Bradford, J.D. Dowell, D.A. Williams, L.J. Field, Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts, Nature 428 (2004) 664-668.
    27. J.M. Nygren, S. Jovinge, M. Breitbach, P. Sawen, W. Roll, J. Hescheler, J. Taneera, B.K. Fleischmann, S.E. Jacobsen, Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not differentiation, Nat. Med.10 (5) (2004) 494-501.
    28. Mangi AA, Noiseux N, Kong D, et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts [J]. Nat Med, 2003,9(9):1195-1201.
    29. Kawada H, Fujita J, Kinjo K, et al. Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood 2004:104:3581-3587.
    1. Mathur A, Martin JF. Stem cells and repair of the heart. Lancet 2004; 364(9429):183-192
    2. Sen PK, Udwadia Te, Kinare SG, et al. Transmyocardial acupuncture an approach to myocardial revascularization [J]. J Thorac Cardiaovasc Surg,1965,50:181-189.
    3. Hardy RJ, James FG, Millard RW, et al. Regional myocardial blood flow and cardiac mechanics in dog hearts with CO2 laser induced intramyocardial revascularization [J]. Basic Res Cardiol,1990,85:179-197.
    4. Kohmoto T, Fisher PE, GU A, et al. Physiology, histology and 2-weeks morphology of acute transmyocardial laser channels made with a CO2 laser [J]. Am Thorac Surg, 1997,63:1275-1283.
    5. Gassler N, Wintzer HO, Stubbe HM, et al. Transmyocardial laser revascularization histological features in human nonresponder myocardium [J]. Circulation,1997, 95:371-375.
    6. Malekan R. Angiogenesis in transmyocardial laser revascularization. A nonspecsific response to injure [J]. Circulation,1998,98:Ⅱ62-66.
    7. Chu VF, Giaid A, and Kuang JQ, et al. Angiogenesis in transmyocardial revascularization:comparisonof laser versus mechanical punctures [J]. Ann Thorac Surg,1999,68:301-307.
    8. Liu XC, Zhao J, Wang Y, Liu TJ, Lv F, He GW. Heparin-and basic fibroblast growth factor-incorporated stent:A new promising method for myocardial revascularization. Journal of Surgical Research (In press)
    9. Orlic D, Kajstura J, Chimenti S,et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001; 410:701-705.
    10. Toma C, Pittenger MF, Cahill KS, et al. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 2002;105:93-98.
    11. Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circulation Research 2004; 95:9-20.
    12. Kawada H, Fujita J, Kinjo K, et al. Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood 2004:104:3581-3587.
    13. Mangi AA. Noiseux N, Kong D. He H. Rezvani M, Ingwall JS et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med 2003; 9:1195-1201.
    14. Nanjundappa A, Raza JA, Dieter RS, Mandapaka S, Cascio WE. Cell transplantation for treatment of left-ventricular dysfunction due to ischemic heart failure:from bench to bedside. Expert Rev Cardiovasc Ther 2007; 5:125-131.
    15. Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 2001; 7:430-436.
    16. Britten MB, Abolmaali ND, Assmus B, Lehmann R, Honold J, Schmitt J et al. Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPC ARE-AMI):mechanistic insights from serial contrast-enhanced magnetic resonance imaging. Circulation 2003; 108:2212-2218.
    17. Shake.JG, Gruber PJ, Baumgartner WA, Senechal G, Meyers J, Redmond JM et al. Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann Thorac Surg 2002; 73:1919-1925.
    18. Nagaya N, Kangawa K, Itoh T, Iwase T, Murakami S, Miyahara Y et al. Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation 2005; 112:1128-1135.
    19. Miyahara Y, Nagaya N, Kataoka M, Yanagawa B, Tanaka K, Hao H et al. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med 2006; 12:459-465.
    20. Hou M, Yang KM, Zhang H, Zhu WQ, Duan FJ, Wang H et al. Transplantation of mesenchymal stem cells from human bone marrow improves damaged heart function in rats. Int J Cardiol 2007; 115:220-228.
    21. Hu X, Wang J, Chen J, Luo R, He A, Xie X et al. Optimal temporal delivery of bone marrow mesenchymal stem cells in rats with myocardial infarction. Eur J Cardiothorac Surg 2007; 31:438-443.
    22. Imanishi Y. Saito A, Komoda H, Kitagawa-Sakakida S, Miyagawa S. Kondoh H et al. Allogenic mesenchymal stem cell transplantation has a therapeutic effect in acute myocardial infarction in rats. J Mol Cell Cardiol 2008; 44:662-671.
    23. Tang J. Xie Q, Pan G, Wang J, and Wang M. Mesenchymal stem cells participate in angiogenesis and improve heart function in rat model of myocardial ischemia with reperfusion. Eur J Cardiothorac Surg 2006; 30:353-361.
    24. Jiang S. Kh Haider H. Ahmed RP. Idris NM. Salim A. Ashraf M. Ahmed. transcriptional profiling of young and old mesenchymal stem cells in response to oxygen deprivation and reparability of the infarcted myocardium. J Mol Cell Cardiol 2008; 44:582-596.
    25. Al-Khaldi A, Al-Sabti H, and Galipeau J, Lachapelle K. Therapeutic angiogenesis using autologous bone marrow stromal cells:improved blood flow in a chronic limb ischemia model. Ann Thorac Surg 2003; 75:204-209.
    26. Gojo S, Gojo N, Takeda Y, Mori T, Abe H, Kyo S et al. In vivo cardiovasculogenesis by direct injection of isolated adult mesenchymal stem cells. Exp Cell Res 2003; 288:51-59.
    27. Guo Y, He J, Wu J, Yang L, Dai S, Tan X et al. Locally overexpressing hepatocyte growth factor prevents post-ischemic heart failure by inhibition of apoptosis via calcineurin-mediated pathway and angiogenesis. Arch Med Res 2008; 39:179-188
    28. Wang XJ, Li QP. The roles of mesenchymal stem cells (MSCs) therapy in ischemic heart diseases. Biochem Biophys Res Commun 2007; 359:189-193.
    29. Zhang M, Methot D, Poppa V, Fujio Y, Walsh K, Murry CE. Cardiomyocyte grafting for cardiac repair:graft cell death and anti-death strategies. J Mol Cell Cardiol 2001; 33:907-921.
    30. Whalen GF, shing Y, Folkman J. The fate of intravenously administered bFGF and the effect of heparin. Growth Factors.1999; 1 (2):157-164.
    31. Sellke FW, Laham RJ, Edelman ER, et al. Therapeutic angiogenesis with basic fibroblast growth factor:technique and early results. Ann Thorac Surg.1998; 65 (6):1540-1544.
    32. Yamamoto M, Ikada Y, Tabata Y. Controlled release of growth factors based on biodegradation of gelatin hydrogel. J Biomater Sci Polym Ed.2001; 12(1):77-88.
    33. Nillesen ST, Geutjes PJ, Wismans R, et al. Increased angiogenisis and blood vessel maturation in acellular collagen-heparin scaffolds containing both FGF2 and VEGF. Biomaterials.2007,28 (6):1123-1131.
    34. Thompson JA, Anderson KD,Dipietro JM, et al. Site-directed neovessel formation in vivo. Science.1988,9; 241(4871):1349-52.
    35. Miyoshi M, Kawazoe T. Igawa HH, et al. Effects of bFGF incorporated into a gelatin sheet on wound healing. J biomater Sci Polym Ed.2005; 16 (7):893-907.
    36. Fujita M. Ishihara M. Morimoto Y,et al. Efficacy of photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 in a rabbit model of chronic myocardial infarction. J Surg Res.2005.1; 126(1):27-33.
    37. Sun H, Mei L, Song C, Cui X, et al. The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials.2006; 27(9):1735-1740.
    38. He W, Yong T, Teo WE, et al. Fabrication and endothelialization of collagen-blended biodegradable polymer nanofibers; potential vascular graft for blood vessel tissue engineering, Tissue Eng.2005; 11(9-10):1574-1588.
    39. Ma Z, He W, Yong T, et al.Grafting of gelatin on electrospun poly (caprolactone) nanofibers to improve endothelial cell spreading and proliferation and to control cell Orientation. Tissue Eng.2005; 11(7-8):1149-1158.
    40. Chung HJ, Kim HK, Yoon JJ, et al. Heparin immobilized porous PLGA microspheres for angiogenic growth factor delivery. Pharm Res.2006; 23(8):1835-1841.
    41. Jeon O, Kang SW, Lim HW, et al. Long-term and zero-order release of basic fibroblast growth factor from heparin-conjugated poly (L-lactide-co-glycolide) nanospheres and fibrin gel. Biomaterials.2006; 27(8):1598-1607.
    42. Schumacher B, Pecher P, von Specht BU, et al. Induction of neoangiogenesis in ischemic myocardium by human growth factors:first clinical results of a new treatment of coronary heart disease. Circulation.1998; 24; 97(7):645-650.
    43. Edelman ER, Nugent MA, Karnovsky MJ. Perivascular and intravenous administration of basic fibroblast growth factor:vascular and solid organ deposition. Proc Natl Acad Sci USA.1993:1513-1517.
    44. Rajanayagam MA, Shou M, Thirumurti V, et al. Intracoronary basic fibroblast growth factor enhances myocardial collateral perfusion in dogs. J Am Coll Cardiol. 2000; 35(2); 519-526.
    45. Fearon WF, Ikeno F, Bailey LR, et al. Evaluation of high-pressure retrograde coronary verous delivery of FGF-2 protein. Catheter Cardiovasc Interv.2004; 61(3); 422-428.
    46. Von D egenfeld G, Raake P, Kupatt C, et al. Selective pressure-regulated retroinfusion of fibroblast growth factor-2 into the coronary vein enhances regional myocardial blood flow and function in pigs with chronic myocardial ischemia. J Am Coll Cardiol.2003; 17; 42(6):1120-1128.
    47. Laham R, Rezaee M, Post M, et al. Intrapericardial administration of basic fibroblast growth factor:myocardial and tissure distribution and comparision with intracoronary and intravenous administration. Catheter Cardiovasc Interv.2003; 58: 375-378.
    48. Laham R. Rezaee M, Post M, et al. Intrapericardial delivery of fibroblast growth factor-2 induces neovascularization in a porcine model of chronic myocardial ischemia. J Pharmacol Exp Ther; 2000,282:795-802.
    49. Pecher P, Schumacher BA. Angiogenesis in ischemic human myocardium:clinical results after 3 years. Ann Thorac Surg.2000; 69:1414-1419.
    50. Sakakibara Y, Tambara K, Sakaguchi G, et al. Toward surgical angiogenesis using slow-released basic fibroblast growth factor. Eur J Cardio-thoracic Surgert.2003; 24: 105-112.
    51. Gospodarowicz D, Cheng J. Heparin protects basic and acidic FGF from inactivation. J Cell Physiol.1986; 128(3):475-484.
    52. Kardami E, Detillieux K, Ma X, et al. Fibroblast growth factor-2 and cardioprotection. Heart Fail Rev.2007; 12(3-4):267-277.
    53. Ruel M, Laham RJ, Parker JA, et al. Long-term effects of surgical angiogenic therapy with fibroblast growth fator 2 protein. J Thorac Cardiovasc Surg.2002; 124(1): 28-34.
    54. Elicin AE, Elicin YM. Localized angiogenesis induced by human vascular endothelial growth factor-activated PLGA sponge. Tissue Eng.2006; 12(4):959-968.
    55. Schindler A, Jeffcoat R, Kimmel G, et al. Biodegradable polymers for sustained drug delivery. Contemp Top Poly Sci.1977; 2:251-187.
    56. Wei G, Jin Q, Giannlbile WV, et al. Nano-fibrous scaffold for controlled delivery of recombinant human PDGF-BB. J Control Resease.2006; 112(1):103-110.
    57. Aguado M, Lambert P. Controlled-resease vaccine-biodegradable polylactide/polycolide (PL/PG) microspheres as antigen vehicles. Immunobilol.1992; 184:113-125.
    58. Ma G, Song C, Sun, et al. A biodegradable levonorgestrel-resing implant made of PCL/F68 compund as tested in rats and dogs. Contraception.2006; 74(2):141-7.
    59. Webber WL, Lago F, Thanos C, et al. Characterization of soluble, salt-loaded, degradable PLGA films and their release of tetracycline. J Biomed mater Res.1998; 41(1):18-29.
    60. Grayson AC, Voskerician G, Lynn A, et al. Differential degradation rates in vivo and in vitro of biocompatible poly (lactic acid) and poly (glycolic acid) homo-and co-polymers for a polymeric drug-delivery microchip. J Biomater Sci Polym Ed. 2004; 15(10):1281-1304.
    61.Fujita M. Heparin and andiogenic therapy. European Heart Journal.2000; 21. 270-274.
    62. Noichiki Y, Miyata T. A simple method to heparinize biological materials. J Biomed Mater Res.1986; 20(3):337-346.
    63. Tsai CC, Chang Y, Sung HW, et al. Effects of heparin immobilization on the surface characteristics of a biological tissue fixed with a naturally occurring crosslinking agent (genioin):an in vitro study. Biomateriaks.2001; 22(6):523-533.
    64. Bonan R, Bhat K, Lefevre T, et al. Coronary artery stenting after angioplasty with self-expanding parallel wire metallic stents. Am Heart J.1991; 121(5):1522-1530.
    65. Pieper JS, Hafmans T, van Wachem PB, et al. Loading of collagen-heparan sulfate matrices with bFGF promotes angiogenesis and tissue generation in rates. J Biomed Mater Res.2002; 62(2):185-194.
    66. Saksela O, Moscatelli D, Sommer A, et al. Endothelial cell-derived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation. J Cell Biol.1988; 107(2):743-751.
    67. Klagsbrun M. Mediators of angiogenesis:the biological significance of basic fibroblast growth factor (bFGF)-heparin and heparan sulfate interactions. Semin Cancer Biol.1992; 3 (2):81-87.
    68. Schofield PM, Sharples LD, Caine N. Burns S, Tait S, Wistow T et al. Transmyocardial laser revascularization in patients with refractory angina:a randomized controlled trial. Lancet 1999; 353:519-524.
    69. Klein HM, Ghodsizad A, Borowski A. Saleh A, Draganov J, Poll L et al. Autologous bone marrow-derived stem cell therapy in combination with TMLR. A novel therapeutic option for endstage coronary heart disease:report on 2 cases. Heart Surg Forum 2004; 7:E416-419.
    70. Li RK, Mickle DA, Weisel RD, Rao V, Jia ZQ. Optimal time for cardiomyocyte transplantation to maximize myocardial function after left ventricular injury. Ann Thorac Surg 2001; 72:1957-1963.
    71. Kornowski R, Hong MK, Leon MB. Current perspectives on direct myocardial revascularization. Am J Cardiol 1998; 81:44E-48E.
    72. Wang Y, Liu XC, Zhang GW, Zhao J. Zhang JM, Shi RF et al. A new transmyocardialdegradable stent combined with growth factor, heparin. and stem cells in acutemyocardial infarction. Cardiovasc Res (In press)
    73. Wang Y, Tang H, Wang D. Li R. Dong Y. Liu W et al. Pretreatment with transmyocardial revascularization might improve ischemic myocardial function performed with cell transplantation. Circ J 2006; 70:625-630.
    74. Liu MH, Jin H, Floten HS, Ren Z, Yim AP, He GW. Vascular endothelial growth factor-mediated, endothelium-dependent relaxation in human internal mammary artery. Ann Thorac Surg 2002; 73:819-824.
    75. Muraoka N, Shum L, Fukumoto S, Nomura T, Ohishi M, Nonaka K. Transforming growth factor-beta3 promotes mesenchymal cell proliferation and angiogenesis mediated by the enhancement of cyclin D1, Flk-1, and CD31 gene expression during CL/Fr mouse lip fusion. Birth Defects Res A Clin Mol Teratol 2005; 73:956-65.
    76. Mountain DJ, Singh M, Menon B, Singh K. Interleukin-lbeta increases expression and activity of matrix metalloproteinase-2 in cardiac micro vascular endothelial cells: role of PKCalpha/betal and MAPKs. Am J Physiol Cell Physiol 2007; 292:C867-875.
    77. Tang J, Xie Q, Pan G, Wang J, and Wang M. Mesenchymal stem cells participate in angiogenesis and improve heart function in rat model of myocardial ischemia with reperfusion. Eur J Cardiothorac Surg 2006; 30:353-361.
    78. Jiang S, Kh Haider H, Ahmed RP, Idris NM, Salim A, Ashraf M. Ahmed, transcriptional profiling of young and old mesenchymal stem cells in response to oxygen deprivation and reparability of the infarcted myocardium. J Mol Cell Cardiol 2008; 44:582-596.
    79. Al-Khaldi A, Al-Sabti H, and Galipeau J, Lachapelle K. Therapeutic angiogenesis using autologous bone marrow stromal cells:improved blood flow in a chronic limb ischemia model. Ann Thorac Surg 2003; 75:204-209.
    80. Gojo S, Gojo N, Takeda Y, Mori T, Abe H, Kyo S et al. In vivo cardiovasculogenesis by direct injection of isolated adult mesenchymal stem cells. Exp Cell Res 2003; 288:51-59.
    81. Guo Y, He J, Wu J, Yang L, Dai S, Tan X et al. locally overexpressing hepatocyte growth factor prevents post-ischemic heart failure by inhibition of apoptosis via calcineurin-mediated pathway and angiogenesis. Arch Med Res 2008; 39:179-188
    82. Wang XJ, Li QP. The roles of mesenchymal stem cells (MSCs) therapy in ischemic heart diseases. Biochem Biophys Res Commun 2007; 359:189-193.
    83. Miao HQ, Ishai-Michaeli R. Atzmon R et al. Sulfate moieties in the subendothelial extracellular matrix arc involved in basic flbro-blast growth factor sequestration, dimerizatlon, and stimulation of cell proliferation[J]. J Biol Chem.1996,271: 4879-4886.
    84. Zittermann SI. Issekutz AC. Endothelial growth factors VEGF and bFGF differentially enhance monocyte and neutrophil recruitment to inflammation [J]. J Leukoc Biol,2006,80(2):247—257.
    85. Krabatsch T, Schhpcr F, Leder C. et al. Kistological findings after transmyocardial laser revascul arization [J]. J Card Surgery,1996,11:326-331.
    86. Kinnaird T, Stabile E, Burnett MS, et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms [J]. Circulation.2004,109(12):1543-1549.
    87. Fang BJ, Shi M, Zhao RC, et al. Muhiorgan engraftment and muhilineage differentiation by human fetal bone marrow Flkl+/CD31-/CD34-Progenitors [J]. J Hematother Stem Cell Res.2003,12 (6):603—613.
    1. Braunwald E, Bristow MR. Congestive heart failure:50 years of progress. Circulation 2000; 102:IV14-23.
    2. D. Orlic, J. Kajstura, S. Chimenti, I. Jakoniuk, S.M. Anderson, B. Li, J. Pickel, Bone marrow cells regenerate infarcted myocardium, Nature 410 (6829) (2001) 701-705.
    3. Toma C, Pittenger MF, Cahill KS, et al. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 2002; 105:93-8.
    4. Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circulation Research 2004; 95:9-20.
    5. Kawada H, Fujita J, Kinjo K, et al. Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood 2004; 104:3581-3587.
    6. M. Heil, T. Ziegelhoeffer, B. Mees, and W. Schaper, A different outlook on the role of bone marrow stem cells in vascular growth:bone marrow delivers software not hardware, Circulation Research.94 (2004)573-574.
    7. A. Mathur, J.F. Martin, Stem cells and repair of the heart, Lancet 364(2004) 183-192.
    8. Weiss M, Orkin SH. In vitro differentiation of murine embryonic stem cells. New approaches to old problems [J]. J Clin Invest,1996,97:591-595.
    9.王勇, 王志伟,陆玉华,等.成人骨髓间充质干细胞的体外分离培养和生物学特性[J].南通大学学报(医学版),2005,25(3):157-160.
    10. Colter DC,Class R,Digirolamo CM,et al. Rapid expansion ofrecycling stem cells in culture of plastic-adherent cells formhuman bone marrow[J]. Proc Natl Acad Sci USA,2000,97(7):3213-3218.
    11.K.A. Jackson, S.M. Majka, H. Wang, J. Pocius, C.J. Hartley, M.W. Majesky, M.L Entman, L.H. Michael, K.K. Hirschi, M.A. Goodell, Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells, J. Clin. Invest.107 (2002)1395-1402.
    12. Y.S. Yoon, A. Wecker, L. Heyd. J.S. Park. T. Tkebuchava, K. Kusano, A. Hanley, H. Scadova, G.Qin, D.H. Cha, K.L. Johnson. R. Aikawa, T. Asahara. D.W. Losordo, Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. J. Clin. Invest.115 (2) (2005) 326-338.
    13. N. Hattan. H. Kawaguchi. K. Ando, E. Kuwabara, J. Fujita, M. Murata. M. Suematsu, H. Mori, K. Fukuda, Purified cardiomyocytes from bone marrow mesenchymal stem cells produce stable intracardiac grafts in mice, Cardiovasc. Res. 65 (2005)334-344.
    14. Y. Jiang, B. Jahagirdar, L. Reinhard, R.E. Schwartz, C.D. Keene, X. Ortiz, M. Reyes, T. Lenvik, T. Lund, M. Blackstad, J. Du, S. Aldrich, A. Lisberg, D.A. Largaespada, C.M. Verfaillie, Pluripotent nature of adult marrow derived mesenchymal stem cells, Nature 418 (2002) 41-49.
    15. K. Fukuda, Molecular characterization of regenerated cardiomyocytes derived from adult mesenchymal stem cells, Congenit. Anom.42 (2002) 1-9.
    16. K.C Wollert, H. Drexler, Mesenchymal stem cells for myocardial infarction: Promises and pitfalls, Circulation 112 (2005) 151-153.
    17. M.C. Galmiche, V.E. Koteliansky, J. Brie're, P. Herve', P. Charbord, Stromal cells from human long-term marrow cultures are mesenchymal cells that differentiate following a vascular smooth muscle differentiation pathway, Blood 82 (1) (1993) 66-76.
    18. N. Nagaya, T. Fujii, T. Iwase, H. Ohgushi, T. Itoh, M. Uematsu, M. Yamagishi, H. Mori, K. Kangawa, S. Kitamura, Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis, Am. J. Physiol. Heart Circ. Physiol.287 (6) (2004) 2670.
    19. N. Nagaya, K. Kangawai, T. Itoh, T. Iwase, S. Murakami, Y. Miyahara, T. Fujii, M. Uematsu, H. Ohgushi, M. Yamagishi, T. Tokudome, H. Mqri, K. Miyatakel, S. Kitamura, Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy, Circulation 112 (2005) 1128-1135.
    20. W.T. Tse, J.D. Pendleton, W.M. Beyer, M.C. Egalka, E.C Guinan, Suppression of allogeneic T-cell proliferation by human marrow stromal cells:implications in transplantation. Transplantation 75 (2003) 389-397.
    21. M. Krampera, S. Glennie. J. Dyson, D. Scott, R. Laylor, E. Simpson, F. Dazzi, Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 101 (2003) 3722-3729.
    22. M. Di Nicola, C. Carlo-Stella, M. Magni, M. Mi lanesi. P.D. Longoni, P. Matteucci, S. Grisanti, Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99 (2002) 3838-3843.
    23. K. Le Blanc, C. Tammi. K. Rosendahl, E. Zetterberg, O. Ringden, HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells, Exp. Hematol.31 (2003) 890-896.
    24. A. Corcione, F. Benvenuto, E. Ferretti, Human mesenchymal stem cells modulate B-cell functions, Blood 107 (2006) 367-372.
    25. A. Augello, R. Tasso, S.M. Negrini, A. Amateis, F. Indiveri, R. Cancedda, G.Pennesi, Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway, Eur. J. Immunol.35 (2005) 1482-1490.
    26. P.A. Sotiropoulou, S.A. Perez, A.D. Gritzapis, C.N. Baxevanis, M. Papami chail, Interactions between human mesenchymal stem cells and natural killer cells, Stem. Cells 24 (2006) 74-85.
    27. G.M. Spaggiari, A. Capobianco, S. Becchetti, M.C. Mingari, L. Moretta, Mesenchymal stem cell-natural killer cell interactions:evidence that activated NK cells are capable of killing MSCs whereas MSCs can inhibit IL-2-induced NK-cell proliferation, Blood 107 (2006) 1484-1490.
    28. X.X. Jiang, Y. Zhang, B. Liu, Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells, Blood 105 (2005) 4120-4126.
    29. S. Beyth, Z. Borovsky, D. Mevorach, M. Liebergall, Z. Gazit, H. Aslan, E. Galun, Rachmi lewitz, human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness, Blood 105 (2005) 2214-2219.
    30. T. Saito, J.Q. Kuang, B. Bittira, A. Al-Khaldi, R.C. Chiu, Xenotransplant cardiac chimera:immune tolerance of adult stem cells, Ann. Thorac. Surg.74 (2002) 19-24.
    31. J. Ma, S.H. Ge, A. Zhang, J. Sun, L. Shen, K. Chen, Wang, Y. Zou, Time course of myocardial stromal cell-derived factor 1 expression and beneficial effects of intravenously administered bone marrow stem cells in rats with experimental myocardial infarction, Basic Res. Cardiol.100 (2005) 1-7.
    32. S. Fukuhara, S. Tomita, T. Nakatani, Y. Ohtsu. M. Ishida, C. Yutani, S. Kitamura. G-CSF promotes bone marrow cells to mi grate into infarcted mice heart, and differentiate into cardiomyocytes. Cell Transplant.13 (2004) 741-748.
    33. A. Peled, I. Petit, O. Kollet, M. Magid, T. Ponomaryov. T. Byk, A. Nagler, H. Ben-Hur, A. Many. L. Shultz, O. Lider. R. Alon. D. Zipori. T. Lapidot. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283 (5403) (1999) 845.
    34. B. Heissig, K. Hattori, S. Dias, M. Friedrich, B. Ferris, N.R. Hackett, R.G Crystal, P. Besmer, D. Lyden, M.A. Moore, Z. Werb, S. Rafii, Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of Kit-Lingand, Cell 109 (5) (2002) 625-637.
    35. J.G. Shake, P.J. Gruber, W.A. Baumgartner, G. Senechal, J. Meyers, J.M. Redmond, M.F. Pittenger, B.J. Martin, Mesenchymal stem cell implantation in a swine myocardial infarct model:engraftment and functional effects, Ann. Thorac. Surg.73 (6) (2002) 1919-1925.
    36. C.E. Murry, M.H. Soonpaa, H. Reinecke, H. Nakajima, H.O. Nakajima, M. Rubart, K.B. Pasumarthi, J.I. Virag, S.H. Bartelmez, V. Poppa, G Bradford, J.D. Dowell, D.A. Williams, L.J. Field, Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts, Nature 428 (2004) 664-668.
    37. J.M. Nygren, S. Jovinge, M. Breitbach, P. Sawen, W. Roll, J. Hescheler, J. Taneera, B.K. Fleischmann, S.E. Jacobsen, Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not differentiation, Nat. Med.10 (5) (2004) 494-501.
    38. N. Terada, T. Hamazaki, M. Oka, M. Hoki, D.M. Mastalerz, Y. Nakano, E.M. Meyer, L. Morel, B.E. Petersen, E. W. Scott, Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion, Nature 416 (2002) 542-545.
    39. M. Alvarez-Dolado, R. Pardal, J.M. Garcia-Verdugo, J.R. Fike, H.O. Lee, K. Pfeffer, C. Lois, S.J. Morrison, A. Alvarez-Buylla, Fusion of bone-marrow-derived cells with Purkinje neurons.cardiomyocytes and hepatocytes, Nature 425 (69-61) (2003) 968-973.
    40. H. Oh, S.B. Bradfute, T.D. Gallardo, T. Nakamura, V. Gaussin, Y. Mishina, J. Pocius, L.H. Michael, R.R. Behringer, D.H. Garry, Cardiac progenitor cells from adult myocardium:homing, differentiation, and fusion after infarction, Proc. Natl. Acad. Sci. USA 100 (21) (2003) 12313-12318.
    41. Yoon et al., American Heart Association Meeting (2003) abstract 747.
    42. Gojo S, Gojo N, Takeda Y, et al. In vivo cardiovasculogenesis by direct injection of isolated adult mesenchymal stem cells[J]. Exp Cell Res,2003,288:51-59.
    43.韩雅玲,康建,李少华,等.成体鼠骨髓间充质细胞在体外培养中的分化为平滑肌细胞[J].中华医学杂志,2003,83:778-781.
    44. Takano H. Ohtsuka M. Akazawa H. et al. Pleiotropic effects of cytokines on acute myocardial infarction:G-CSF as a novel therapy for acute myocardial infarction [J]. Curr Pharm Des,2003,9(14):1121-1127.
    45. Mangi AA, Noiseux N, Kong D, et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts [J]. Nat Med,2003, 9(9):1195-1201.
    46. Gnecchi M, He H, Liang OD, et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells [J]. Nat Med,2005, 11(4):367-368.
    47. Gnecchi M, He H, Noiseux N, et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement [J]. Faseb J,2006,20(6):661-669.
    48. Dai W, Hale SL, Martin BJ, et al. Allogeneic mesenchymal stem cell transplan-tation in postinfarcted rat myocardium, short-and longterm effect [J].Circulation, 2005,112:214-223.
    49. A.I. Caplan, J.E. Dennis, Dennis. Mesenchymal stem cells as trophic mediators, J. Cell. Biochem.98 (2006) 1076-1084.
    50. Y.L. Tang, Q. Zhao, Y.C. Zhang, L. Cheng, M. Liu, J. Shi, Y.Z. Yang, C. Pan, J. Ge, M.I. Phillips, Autologous mesenchymal stem cell transplantation induce VEGF and neovascularization in ischemic myocardium, Regul. Pept.117(1) (2004) 3-10.
    51.I. Ono, T. Yamashita, T. Hida, H-Y Jin, Y. Ito, H. Hamada, Y. Akasaka, Y. Ishii, K. Jimbow, Local administration of hepatocyte growth factor gene enhances the regeneration of dermis in acute incisional wounds, J. Surg. Res.120 (2004) 47-55.
    52. T. Nakamura, S. Mizuno, K. Matsumoto, Y. Sawa, H. Matsuda, T. Nakamura, Myocardial protection from infarction by endogenous and exogenous hepatocyte growth factor, Clin. Invest.106 (2000) 1511-1519.
    53. J. Fuller, J.R. Mynett, P.H. Sugden, Stimulation of cardiac protein synthesis by insulin-like growth factors. Biochem. J.282 (1992) 85-90.
    54. J.R. Florini, D.Z. Ewton, S.A. Coolican, Growth hormone and the insulin-like growth factor system in myogenesis, Endocr. Rev.17 (1996) 481-517.
    55. R. Mazhari, J.M. Hare, Mechanisms of action of mesenchymal stem cells in cardiac repair:potential influences on the cardiac stem cell niche, Nat. Clin. Practice Cardiovasc. Med.4 (2007) S21-S26.
    56. E. Messina. L. De Angelis. G. Frati. S. Morrone. S. Chimenti. F. Fiordaliso. M. Salio. M. Battaglia. M.V.G. Latronico. M. Coletta. E. Vivarelli. L. Frati. G. Cossu. A. Giacomello. Isolation and expansion of adult cardiac stem cells from human and murine heart, Circ. Res.95 (9) (2004) 911-921.
    57. A.P. Beltrami, L. Barlucchi, D. Torella, M. Baker, F. Limana, S. Chimenti, H. Kasahara, M. Rota, E. Musso, K. Urbanek, A. Leri, J. Kajstura, B. Nadal-Ginard, P. Anversa, Adult cardiac stem cells are multipotent and support myocardial regeneration, Cell 114 (2003) 763-776.
    58. J.M. Zimmet, J.M. Hare, Emerging role for bone marrow derived mesenchymal stem cells in myocardial regenerative therapy, Basic Res. Cardiol.100 (2005) 471-481.
    59. Stature C, W estphal B, Kleine KD, et al. Bone marrow stem cell tran splantation for myocardial regeneration in Ix)st infarction CABG patients[J].Circulation,2002,106(suppl 11):375.
    60. Fuchs S, Satier LF, Komowski R.et al. Catheter-based autologous bone marrow myocardial injection in no option patients with advanced coronary artery disease:a feaslJfility study [J] J AmColl Cardiol,2003,41:172 L1724.
    61. Kang HJ, im HS, hang SY, et al.Lancet.2004:363.
    62. Tse HF, Kwong YL. Chan JK, et al. Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation [J]. Lancet, 2003,361(9351):47-49.
    63. Kocher AA, schuster MD, Szaboles MI.et al. Neovascularization of ischemic myocardium v hunmn Ixme marrow derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function [J] Nat Med,20017:430 —436.
    64. Christopherson KW, Hangoc G, Mantel CR, et al.Science,2004; 305(5686):1000-1003.
    1. Conway EM, Collen D, Carmeliet P. Molecular mechanisms of blood growth [J]. Cardiovasc Res 2001,49(3):507-521.
    2. Folkman J. The role of angiogenesis in tumor growth [J]. Semin Cancer Biol,1992, 3(2):65-71.
    3. Senger DR. Moleclar framework for angiogenesis:a complax web of interactions between extravasated plasma proteins and endothelial cell proteins induced by andiofenic cytokines [J]. Am J Pathol,1996,149(1):1-7.
    4. Gospodarowicz D, Jones KL, Sato G. Purification of a growth factor for ovarian cells from bovine pituitary glands[J]. Proc Natl Acad Sci USA.1974; 71(6):2295-2299.
    5. Miyataka M, Ishikama K, Katori R. Basic fibroblast growth factor increased regional myocardial blood flow and limited infarct size of acutely infarcted myocardium in dogs [J]. Anigology,1998,49(5):381-390.
    6. Nozaki K, Finklestein SP, Basic fibroblast growth factor protects against hypoxia-ischemia and NMD A neurotoxicity in neonatl rats [J]. J Cere Blood flow Metab,1993,13(2):221-228.
    7. Liu L,Pasumarthi KB, Padua RR, et al. Adult cardiomyocytes express functional high-affinity receptors for basic fibroblast growth factor [J]. Am J Physiol,1995, 268(5):1927-1938.
    8. Nugent MA, Karnovsky MJ, Edelman ER. Vasular cell-derived heparan sulfate shows coupled inhibition of basic fibroblast growth factor binding and mitogensis in vascular smooth muscle cells [J]. Circ Res,1993,73(6):1051-1060.
    9. Yasuda T, Grinspan J, Stern J, et al. Apotosis occurs in the oligodendroglial lineage, and is prevented by basic fibroblast growth factor [J]. J Neurosci Res,1995, 40(3):306-317.
    10. Padua RR, Sethi R. Dhalla NS, et al. Basic fibroblast growth fator is cardioprotective in ischemia-reperfusion injury [J]. Mol cell Biochem 1995, 23,143:129-135.
    11.周兰,常英姿,丘宗萌,等.碱性成纤维生长因子对缺血/再灌住大鼠心脏保护作用[J].基础医学与临床,1997,17(4):273-275.
    12. Cuevas P, Careceller F. Lozano RM. et al. Protection of rat myocardium by mitogenic and non-mitogenic fibroblast growth fator during post-ischemic reperfusion[J]. Growth Foctors,1997,15(1):29-40.
    13. Kent KC, Mii S, Harrington EO, et al. Requirement for protein kinase C cell proliferation [J]. Circ Res.1995,77(2):231-238.
    14.刘秀华,庞永政,唐朝枢等.碱性成纤维细胞生长因子对乳鼠心肌细胞缺氧复氧损伤的影响[J].生理学报,1997,49(4):445-458.
    15. Lindner V, Lappi DA, et al. Role of basic fibroblast growth fator in vascular lesion formation [J]. Circ Res,1991,68(1):106-113.
    16. Hughes SE, Crossman D, Hall PA. Expression of basic and acidic fibroblast growth factors and their receptor in normal and atherosclerotic human arteries [J]. Cardiocasc Res,1993,27(7):1214-1219.
    17. Unger EF, Banai S, Shou M, et al. Basic fibroblast growth factor enhances myocardial collateral flow in a canine model[J]. Am J Physiol,1994, 266(4):1588-1595.
    18. Wempe F, Lindner V, Augustin HG. Basic fibroblast growth fathor (bFGF) regulates the expression of the CC chemokine moncyte chemoattractant protein-1(MCP-1) in autocrine-activated endothelial cells [J]. Arterioscler Thromb
    Vasc Biol,1997,17(11):2471-2478.
    19. Kolomoets NM. Endothelial dysfunction and its clinical significance (new trend in cardilogy)[J]. Voen Med Ah,2001,322(5):29-35,96.
    20. Huang Z, Chen K, Huang PL, et al. bFGF ameliorates focal ischemic injury by blood flow-independent mechisms in eNOS mutant mice [J]. Am J Physiol,1997, 272(3):1401-1405.
    21. Pinsky DJ, Aji W, Szabolcs M, et al. Nitric oxide triggers programmed cell death (apoptosis) of adult rat ventricular myocytes in culture[J]. Am J Physiol.1999, 277(3):1189-1199.
    22. Stefanelli C, Pignatti C, Tantini B, et al. Nitric oxidecan function as either a killor molecule or an antiapoptotic effector in cardiomyocytes [J]. Biochim Biophys Acta, 1999,1450(3):406-413.
    23. Jiang ZS, Yang YZ, Zhao W, et al.Basic fibroblast growth factor increases nitric oxide and endothelin production in rat aorte[J]. Sheng Li Xue Bao,2000, 52(3):211-214
    24. Murphy PR, Limoges M. Dodd F, et al. Fibroblast growth factor-2 stimulates endothelial nitric oxide synthase expression and inhibits apoptosis by a nitric oxide-dependent in Nb2 lymphoma cell[J]. Endocrinology,2001.142(1):81-88.
    25. Cueva P, Reimers D, Gimenez-Gallego G. Loss of basic fibroblast growth factor in the subcommissural organ of old spontaneously hypertensive rats [J]. Neurosci Lett,1996,221(1):25-28.
    26. Lazarous DF, Shou M, and Stiber JA, et al. Pharmacodynamic of basic fibroblast growty factor:route of adminstration determines myocardial and systemic distribution [J]. Cardiovasc Res,1997,36(1):78-85.
    27. Rajanaygam MAS, Shou M, Thirmumrti V, et al. Intracoronary basic fibroblast growth factor enhances myocardial collateral perfusion in dogs[J]. J Am Coll Cardiol, 2000,35(2):519-526.
    28. Herry TD, Annex BH, McKendall GR, et al. The VIVA trial vascular endothelial growth factor in ischemia for vascular andiogenisis [J]. Circulation,2003,107(10): 1359-1365.
    29. Mazue G, Bertolero F, Garofano L, et al. Experience with the preclincal assessment of basic fibroblast growth factor (bFGF) [J]. Toxicol Lett,1992, 64-65:329-338.
    30. Sato K, Mu T, Laham RJ, et al. Efficacy of intracoronary or intravenous VEGF165 in a pig model of chronic myocardial ischemia [J]. J Am Coll Cardiol, 2001,37(2):616-623.
    31. Devlin GP, Fort S, Yu E, et al. Effect of a single bolus of intracoronary basic fibroblast growth fator on perfusion in an ischemic porcine model [J]. Can J Cardiol, 1999,15(6):676-682.
    32. Simons M, Annex BH, Laham RJ, et al. Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2 double-blind, randomized, controlled clinical trial [J]. Circulation 2002,105(7):788-793.
    33. Post MJ, Sellke FW, et al. Therapeutic angiogenesis in cardiology using protein formulations. Cardiovasc Res,2001,49(3):522-531.
    34. Harada K, Grossman W, Friedman M, et al. Basic Fibroblast growth factor improves myocardial function in chronically ischemic porcine heartes [J]. Clinical Invest,1994,94(2):623-630.
    35. Laham RJ, Sellke FW,Edelman ER, et al. Local pericascular delivery of basic fibroblast growth factor in patients undergoing coronary bypass surgery results of a phase I randomized. double-Blind, placebo-conteolled trial [J]. Circulation,1999, 100(18):1865-1871.
    36. Sakaibara Y, Tambara K. Sakaguchi G.et al. Tomard surgical andiogensis using slow-released basic fibroblast growth factor[J]. Eur J Caidio-thoracic Surgery.2003, 24(1):105-112.
    37. Teng CJ, Luo J, Chiu RJ, et al. Mssive mechanical loss of microspheres with direct intramyocardial injection in the beating heart:implications for cellular cardiomyoplasty [J]. J Thorac Cardiovasc Surg,2006,132(3):628-632.
    38. Dow J, Simkhovich BZ, Keddes L, et al. Washout of transplated cells from the heart:a potential new hurdle for cell transplantation therapy [J]. Cardiovasc Res, 2005,67(2):301-307.
    39. Yamamoto N, Kohmoto T, Roethy W, et al. Histologic evidence that basic fibroblast growth factor enhances the andiogenic effects of transmyocardial laser [J]. Basic Res Cardiol,2000,95(1):55-63.
    1.赵健刘晓程等。聚乳酸/乙醇酸复合bFGF降解支架在心肌血运重建中应用的研究。心脏杂志2009(3),383-404。
    2.赵健,刘晓程等。激光、机械心肌打孔血运重建机制的探讨及比较。《心血管病学进展》2007;28(6),927-930。
    3.孙磊,甘志华,徐梓香等。人工合成聚己内酯体降解的研究。中国医学工程学报,1999,16(2):169-174。
    4. Sun H, Mei L, and Song,C. The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials.2006 Mar; 27(9):1735-1740.
    5. Lemoine D, Francois C, Kedzierewicz F, Preat V, Hoffman M, Maincent P. Stability study of nanoparticles of poly(epsilon-carolactone), poly(D,L-lactide) and poly (D.L-lactide-co-glycolide). Biomaterials.1996, 17(22):2191-2197.
    6. Vaz CM, van Tui jI S, Bouten CV, Baaijens FP. Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique. Acta Biomater.2005 Sep; 1(5):575-582.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700