氧化高密度脂蛋白对内皮祖细胞功能影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:高密度脂蛋白(high density lipoprotein, HDL)除了具有促进胆固醇逆转运、保护血管内皮、抗炎、抗氧化和抗血栓形成等多方面有益作用外,还有研究发现,HDL可以通过改善内皮祖细胞(endothelial progenitor cells, EPCs)数量及功能,从而有助于血管损伤后的修复。然而,在许多情况下HDL水平升高却并不介导保护作用,相反会导致心血管事件发生增加,造成这种现象的原因可能在于升高的HDL并不具备心血管保护作用,此时“高水平HDL”反而促进心血管事件的发生。目前已知,在糖尿病、冠心病等条件下,HDL易氧化修饰生成氧化高密度脂蛋白(ox-HDL)而发生功能逆转成为致病因素,但ox-HDL对EPCs功能的作用以及机制如何并不清楚。
     研究目的:本研究旨在在前期有关EPCs研究的基础上,进一步观察ox-HDL对EPCs功能的影响并探讨其中的作用机制,为针对HDL功能改善的治疗以及减少EPCs功能损害奠定基础。
     研究方法:首先采用密度梯度离心法从人外周血中分离、培养、鉴定得到EPCs。接下来,我们从三个方面研究ox-HDL对EPCs功能的影响及机制:(1)ox-HDL对EPCs相关表面受体基因表达的筛选:采用人基因表达芯片检测ox-HDL干预后EPCs基因表达的变化,并通过realtime PCR和Western Blot方法进一步验证差异基因;(2)ox-HDL对EPCs功能的影响:在第一部分研究结果的基础上,将EPCs分为对照组、HDL干预组(50ug/ml)、不同浓度ox-HDL干预组(10ug/ml、20ug/ml、50ug/ml)、CD36中和抗体阻断组和CD36中和抗体阻断加ox-HDL干预组,其中CD36中和抗体于干预前2小时提前加入,然后采用MTT法检测细胞增殖情况、ANNEXIN V/PI法检测细胞凋亡水平、ROS荧光法检测细胞内氧化应激水平、Transwell小室迁移实验检测EPCs迁移能力、Matrigel方法检测体外血管形成能力,ELISA方法检测细胞培养上清中的细胞因子(VEGF和TSP-1),此外,通过结扎离断右侧股动脉建立裸鼠单侧下肢缺血模型,模型建立后通过尾静脉输注给予干预后的EPCs,继续喂养2周后采用血管造影、免疫组织荧光的方法观察EPCs体内血管修复能力。(3) ox-HDL对EPCs功能影响的信号通路研究:干预分组的情况同第二部分,在干预结束后,收集细胞总蛋白和核蛋白,采用Western Blot方法检测MAPK通路(p38、JNK、ERK)相关蛋白的磷酸化水平,采用凝胶迁移实验(Electrophoretic Mobility Shift Assay, EMSA)方法检测NF-κB活性。
     研究结果:(1)ox-HDL对EPCs相关表面受体基因表达的筛选:ox-HDL干预EPCs后,与细胞运输、转录调控、信号转导、应激反应、代谢、运动、分化、细胞周期、粘附等相关的基因表达均有变化,其中在与HDL或ox-HDL相关的受体中,ox-HDL干预后CD36表达显著增加,为未干预组2.3751倍,其余受体表达无显著变化。随后的realtime PCR和Western Blot的结果进一步验证了ox-HDL可以呈浓度依赖性促进CD36表达增加(P<0.05),而相对应的是HDL并无此作用。(2)ox-HDL对EPCs功能的影响:ox-HDL呈浓度依赖性促进EPCs凋亡,抑制其迁移、体外血管新生以及裸鼠肢体缺血后体内血管新生能力,促进EPCs内ROS水平(P<0.05),而对血管新生相关因子的影响主要表现在促进TSP-1表达及分泌(P<0.05),但对VEGF表达影响不显著,这些损害作用在预先给予CD36抗体处理后均有部分减轻。(3)ox-HDL对EPCs功能影响的信号通路研究:ox-HDL呈浓度依赖性促进p38 MAPK的磷酸化,而对MAPK通路的其他两方面ERK和JNK的磷酸化则无显著的影响,EMSA结果提示,ox-HDL呈浓度依赖性提高NF-κB的活性,且在预先给予CD36中和抗体处理后,ox-HDL对p38 MAPK和NF-κB的促进作用显著降低。
     研究结论:我们的结果揭示了与HDL相反,ox-HDL具有损害EPCs功能的作用,该损害作用通过CD36受体途径介导,与p38 MAPK和NF-κB信号通路密切相关,这可能是缺血性疾病血管新生功能受损的重要机制之一。
Background:High density lipoprotein (HDL) levels inversely correlate with cardiovascular events due to the protective effects on the vascular wall. Endothelial progenitor cells (EPCs) play an important role in neovascularization in chronic ischemic disease. EPCs number and functions are influenced by a lot of factors and EPCs number and functions are important predictors for cardiovascular events. Recent studies demonstrated that HDL could directly stimulate EPCs differentiation and enhance ischemia-induced angiogenesis. However, a number of reports have indicated that HDL is susceptible to oxidation and structural modifications in case of atherosclerosis and diabetes. Unlike HDL, oxidized HDL (oxHDL) lose the important protective functions and impacts neovascularization negatively. However, the effect of oxHDL on EPCs is still unclear.
     Objective:The objective of this study is to investigate the effect of oxHDL on EPCs and the underlying mechanism.
     Method:EPCs were isolated from human peripheral venous blood. Then the whole study were divided into three parts:(1) The human oligonucleotide microarray was applied to isolate and classify the differentially expressed genes between untreated EPCs and ox-HDL treated EPCs. Quantitative real-time PCR and Western blot were used to confirm the results from the microarray.(2) Cells were cultured and stimulated with different concentrations of oxHDL (0-50μg/mL), HDL (50μg/mL) in the absence and presence anti-CD36 neutralizing antibody. EPCs apoptosis and migration, angiogenesis and intracellular reactive oxygen species (ROS) levels were assayed. And the expression of thrombospondin-1(TSP-1) and vascular endothelial growth factor (VEGF) were measured by real-time PCR and ELISA. (3)The expression of mitogen-activated protein kinase (MAPK) family proteins (p38, ERK and JNK) and NF-κB were measured by by Western blot and EMSA.
     Results:(1) The results of human oligonucleotide microarray showed oxHDL promoted the gene expression of CD36. Quantitative real-time PCR and Western blot results confirmed the results from the microarray. (2) oxHDL increased apoptosis and intracellular ROS levels and reduced the ability of migration and angiogenesis of EPCs in a dose dependent manner (all P<0.05). oxHDL also upregulated the expression of TSP-1 without affecting VEGF expression of EPCs. All oxHDL-mediated effects on EPCs could be significantly attenuated by pretreatment with anti-CD36 neutralizing antibody. (3) P38 MAPK and NF-κB were activated post oxHDL stimulation. All oxHDL-mediated effects on EPCs could be significantly attenuated by pretreatment with anti-CD36 neutralizing antibody.
     Conclution:These findings suggest that oxHDL promote apoptosis and inhibit migration and angiogenesis function of EPCs. These effects were mainly mediated via scavenger receptor CD36 and P38/MAPK, NF-κB signaling pathways. The ability of oxHDL to negatively influence EPCs biology may represent a novel pathological mechanism for the development and progression of cardiovascular disease.
引文
1. Krenning G, van Luyn MJ, Harmsen MC. Endothelial progenitor cell-based neovascularization: implications for therapy. Trends Mol Med. Apr 2009; 15(4):180-189.
    2. Werner N, Kosiol S, Schiegl T, et al. Circulating endothelial progenitor cells and cardiovascular outcomes. NEng J Med. Sep 8 2005;353(10):999-1007.
    3. Schmidt-Lucke C, Rossig L, Fichtlscherer S, et al. Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events:proof of concept for the clinical importance of endogenous vascular repair. Circulation. Jun 7 2005; 111 (22):2981-2987.
    4. Florentin M, Liberopoulos EN, Wierzbicki AS, et al. Multiple actions of high-density lipoprotein. Curr Opin Cardiol. Jul 2008;23(4):370-378.
    5. Petoumenos V, Nickenig G, Werner N. High density lipoprotein exerts vasculoprotection via endothelial progenitor cells. J Cell Mol Med. Aug 14 2008.
    6. Barter PJ, Caulfield M, Eriksson M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. Nov 22 2007;357(21):2109-2122.
    7. Nissen SE, Tardif JC, Nicholls SJ, et al. Effect of torcetrapib on the progression of coronary atherosclerosis. N Engl J Med. Mar 29 2007;356(13):1304-1316.
    8. Kastelein JJ, van Leuven SI, Burgess L, et al. Effect of torcetrapib on carotid atherosclerosis in familial hypercholesterolemia. N Engl J Med. Apr 19 2007;356(16):1620-1630.
    9. Sorrentino SA, Besler C, Rohrer L, et al. Endothelial-vasoprotective effects of high-density lipoprotein are impaired in patients with type 2 diabetes mellitus but are improved after extended-release niacin therapy. Circulation. Jan 5;121(1):110-122.
    10. deGoma EM, deGoma RL, Rader DJ. Beyond high-density lipoprotein cholesterol levels evaluating high-density lipoprotein function as influenced by novel therapeutic approaches. J Am Coll Cardiol. Jun 10 2008;51(23):2199-2211.
    11. Duffy D, Rader DJ. Update on strategies to increase HDL quantity and function. Nat Rev Cardiol. Jul 2009;6(7):455-463.
    12. Undurti A, Huang Y, Lupica JA, et al. Modification of high density lipoprotein by myeloperoxidase generates a pro-inflammatory particle. J Biol Chem. Nov 6 2009;284(45):30825-30835.
    13. Nakajima T, Origuchi N, Matsunaga T, et al. Localization of oxidized HDL in atheromatous plaques and oxidized HDL binding sites on human aortic endothelial cells. Ann Clin Biochem. Mar 2000;37 (Pt 2):179-186.
    14. Feng H, Li XA. Dysfunctional high-density lipoprotein. Curr Opin Endocrinol Diabetes Obes. Apr 2009;16(2):156-162.
    1. Krenning G, van Luyn MJ, Harmsen MC. Endothelial progenitor cell-based neovascularization: implications for therapy. Trends Mol Med. Apr 2009;15(4):180-189.
    2. Werner N, Kosiol S, Schiegl T, et al. Circulating endothelial progenitor cells and cardiovascular outcomes. NEngl J Med. Sep 8 2005;353(10):999-1007.
    3. Florentin M, Liberopoulos EN, Wierzbicki AS, et al. Multiple actions of high-density lipoprotein. Curr Opin Cardiol. Jul 2008;23(4):370-378.
    4. Petoumenos V, Nickenig G, Werner N. High density lipoprotein exerts vasculoprotection via endothelial progenitor cells. J Cell Mol Med. Aug 14 2008.
    5. Barter PJ, Caulfield M, Eriksson M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. Nov 22 2007;357(21):2109-2122.
    6. Nissen SE, Tardif JC, Nicholls SJ, et al. Effect of torcetrapib on the progression of coronary atherosclerosis. NEngl J Med. Mar 29 2007;356(13):1304-1316.
    7. Kastelein JJ, van Leuven SI, Burgess L, et al. Effect of torcetrapib on carotid atherosclerosis in familial hypercholesterolemia. NEngl J Med. Apr 19 2007;356(16):1620-1630.
    8. Sorrentino SA, Besler C, Rohrer L, et al. Endothelial-vasoprotective effects of high-density lipoprotein are impaired in patients with type 2 diabetes mellitus but are improved after extended-release niacin therapy. Circulation. Jan 5;121(1):110-122.
    9. deGoma EM, deGoma RL, Rader DJ. Beyond high-density lipoprotein cholesterol levels evaluating high-density lipoprotein function as influenced by novel therapeutic approaches. J Am Coll Cardiol. Jun 10 2008;51(23):2199-2211.
    10. Duffy D, Rader DJ. Update on strategies to increase HDL quantity and function. Nat Rev Cardiol. Jul 2009;6(7):455-463.
    11. Undurti A, Huang Y, Lupica JA, et al. Modification of high density lipoprotein by myeloperoxidase generates a pro-inflammatory particle. J Biol Chem. Nov 6 2009;284(45):30825-30835.
    12. Nakajima T, Origuchi N, Matsunaga T, et al. Localization of oxidized HDL in atheromatous plaques and oxidized HDL binding sites on human aortic endothelial cells. Ann Clin Biochem. Mar 2000;37 (Pt 2):179-186.
    13. Feng H, Li XA. Dysfunctional high-density lipoprotein. Curr Opin Endocrinol Diabetes Obes. Apr 2009;16(2):156-162.
    14. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis.Science. Feb 14 1997;275(5302):964-967.
    15. Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res. Aug 6 1999;85(3):221-228.
    16. Schmidt-Lucke C, Rossig L, Fichtlscherer S, et al. Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events:proof of concept for the clinical importance of endogenous vascular repair. Circulation. Jun 7 2005; 111 (22):2981-2987.
    17. Boden WE. High-density lipoprotein cholesterol as an independent risk factor in cardiovascular disease:assessing the data from Framingham to the Veterans Affairs High-Density Lipoprotein Intervention Trial. Am J Cardiol. Dec 21 2000;86(12A):19L-22L.
    18. Khovidhunkit W, Kim MS, Memon RA, et al. Effects of infection and inflammation on lipid and lipoprotein metabolism:mechanisms and consequences to the host. J Lipid Res. Jul 2004;45(7):1169-1196.
    19. Van Lenten BJ, Hama SY, de Beer FC, et al. Anti-inflammatory HDL becomes pro-inflammatory during the acute phase response. Loss of protective effect of HDL against LDL oxidation in aortic wall cell cocultures. J Clin Invest. Dec 1995;96(6):2758-2767.
    20. Ferretti G, Bacchetti T, Negre-Salvayre A, et al. Structural modifications of HDL and functional consequences. Atherosclerosis. Jan 2006; 184(1):1-7.
    21. Kalogerakis G, Baker AM, Christov S, et al. Oxidative stress and high-density lipoprotein function in Type Ⅰ diabetes and end-stage renal disease, Clin Sci (Lond). Jun 2005;108(6):497-506.
    22. Thome RF, Mhaidat NM, Ralston KJ, et al. CD36 is a receptor for oxidized high density lipoprotein: implications for the development of atherosclerosis. FEBS Lett. Mar 20 2007;581(6):1227-1232.
    23. Endemann G, Stanton LW, Madden KS, et al. CD36 is a receptor for oxidized low density lipoprotein. JBiol Chem. Jun 5 1993;268(16):11811-11816.
    24. Podrez EA, Poliakov E, Shen Z, et al. Identification of a novel family of oxidized phospholipids that serve as ligands for the macrophage scavenger receptor CD36. J Biol Chem. Oct 11 2002;277(41):38503-38516.
    25. Jimenez B, Volpert OV, Crawford SE, et al. Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med. Jan 2000;6(1):41-48.
    26. Febbraio M, Hajjar DP, Silverstein RL. CD36:a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest. Sep 2001;108(6):785-791.
    27. Febbraio M, Silverstein RL. CD36:implications in cardiovascular disease. Int J Biochem Cell Biol. 2007;39(11):2012-2030.
    28. Sun C, Liang C, Ren Y, et al. Advanced glycation end products depress function of endothelial progenitor cells via p38 and ERK 1/2 mitogen-activated protein kinase pathways. Basic Res Cardiol. Jan 2009; 104(1):42-49.
    29. Liang C, Ren Y, Tan H, et al. Rosiglitazone via upregulation of Akt/eNOS pathways attenuates dysfunction of endothelial progenitor cells, induced by advanced glycation end products. Br J Pharmacol. Dec 2009; 158(8):1865-1873.
    1. Krenning G, van Luyn MJ, Harmsen MC. Endothelial progenitor cell-based neovascularization: implications for therapy. Trends Mol Med. Apr 2009; 15(4):180-189.
    2. Tepper OM, Galiano RD, Capla JM, et al. Human endothelial progenitor cells from type Ⅱ diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation. Nov 26 2002;106(22):2781-2786.
    3. Petoumenos V, Nickenig G, Werner N. High density lipoprotein exerts vasculoprotection via endothelial progenitor cells. J Cell Mol Med. Aug 14 2008.
    4. Sorrentino SA, Besler C, Rohrer L, et al. Endothelial-vasoprotective effects of high-density lipoprotein are impaired in patients with type 2 diabetes mellitus but are improved after extended-release niacin therapy. Circulation. Jan 5;121(1):110-122.
    5. deGoma EM, deGoma RL, Rader DJ. Beyond high-density lipoprotein cholesterol levels evaluating high-density lipoprotein function as influenced by novel therapeutic approaches. J Am Coll Cardiol. Jun 10 2008;51(23):2199-2211.
    6. Duffy D, Rader DJ. Update on strategies to increase HDL quantity and function. Nat Rev Cardiol. Jul 2009;6(7):455-463.
    7. Undurti A, Huang Y, Lupica JA, et al. Modification of high density lipoprotein by myeloperoxidase generates a pro-inflammatory particle. J Biol Chem. Nov 6 2009;284(45):30825-30835.
    8. Nakajima T, Origuchi N, Matsunaga T, et al. Localization of oxidized HDL in atheromatous plaques and oxidized HDL binding sites on human aortic endothelial cells. Ann Clin Biochem. Mar 2000;37 (Pt 2):179-186.
    9. Feng H, Li XA. Dysfunctional high-density lipoprotein. Curr Opin Endocrinol Diabetes Obes. Apr 2009;16(2):156-162.
    10. Werner N, Kosiol S, Schiegl T, et al. Circulating endothelial progenitor cells and cardiovascular outcomes. NEngl J Med. Sep 8 2005;353(10):999-1007.
    11. Schmidt-Lucke C, Rossig L, Fichtlscherer S, et al. Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events:proof of concept for the clinical importance of endogenous vascular repair. Circulation. Jun 7 2005;11l(22):2981-2987.
    12. Ma FX, Zhou B, Chen Z, et al. Oxidized low density lipoprotein impairs endothelial progenitor cells by regulation of endothelial nitric oxide synthase. J Lipid Res. Jun 2006;47(6):1227-1237.
    13. Di Santo S, Diehm N, Ortmann J, et al. Oxidized low density lipoprotein impairs endothelial progenitor cell function by downregulation of E-selectin and integrin alpha(v)beta5. Biochem Biophys Res Commun. Sep 5 2008;373(4):528-532.
    14. Florentin M, Liberopoulos EN, Wierzbicki AS, et al. Multiple actions of high-density lipoprotein. Curr Opin Cardiol. Jul 2008;23(4):370-378.
    15. Barter PJ, Caulfield M, Eriksson M, et al. Effects of torcetrapib in patients at high risk for coronary events. NEngl J Med. Nov 22 2007;357(21):2109-2122.
    16. Nissen SE, Tardif JC, Nicholls SJ, et al. Effect of torcetrapib on the progression of coronary atherosclerosis. N Engl J Med. Mar 29 2007;356(13):1304-1316.
    17. Kastelein JJ, van Leuven SI, Burgess L, et al. Effect of torcetrapib on carotid atherosclerosis in familial hypercholesterolemia. N Engl J Med. Apr 19 2007;356(16):1620-1630.
    18. Bergt C, Pennathur S, Fu X, et al. The myeloperoxidase product hypochlorous acid oxidizes HDL in the human artery wall and impairs ABCA1-dependent cholesterol transport. Proc Natl Acad Sci U S A. Aug 312004;101(35):13032-13037.
    19. Marsche G, Hammer A, Oskolkova O, et al. Hypochlorite-modified high density lipoprotein, a high affinity ligand to scavenger receptor class B, type I, impairs high density lipoprotein-dependent selective lipid uptake and reverse cholesterol transport. J Biol Chem. Aug 30 2002;277(35):32172-32179.
    20. Matsunaga T, Hokari S, Koyama I, et al. NF-kappa B activation in endothelial cells treated with oxidized high-density lipoprotein. Biochem Biophys Res Commun. Mar 28 2003;303(1):313-319.
    21. Assihger A, Schmid W, Eder S, et al. Oxidation by hypochlorite converts protective HDL into a potent platelet agonist. FEBS Lett. Mar 5 2008;582(5):778-784.
    22. Thorne RF, Mhaidat NM, Ralston KJ, et al. CD36 is a receptor for oxidized high density lipoprotein: implications for the development of atherosclerosis. FEBS Lett. Mar 20 2007;581(6):1227-1232.
    23. Endemann G, Stanton LW, Madden KS, et al. CD36 is a receptor for oxidized low density lipoprotein. JBiol Chem. Jun 5 1993;268(16):11811-11816.
    24. Podrez EA, Poliakov E, Shen Z, et al. Identification of a novel family of oxidized phospholipids that serve as ligands for the macrophage scavenger receptor CD36. J Biol Chem. Oct 11 2002;277(41):38503-38516.
    25. Jimenez B, Volpert OV, Crawford SE, et al. Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med. Jan 2000;6(l):41-48.
    26. Febbraio M, Silverstein RL. CD36:implications in cardiovascular disease, Int J Biochem Cell Biol. 2007;39(11):2012-2030.
    27. Febbraio M, Hajjar DP, Silverstein RL. CD36:a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest. Sep 2001;108(6):785-791.
    28. Kang SY, Watnick RS. Regulation of tumor dormancy as a function of tumor-mediated paracrine regulation of stromal Tsp-1 and VEGF expression. Apmis. Jul-Aug 2008;116(7-8):638-647.
    1. Febbraio M, Silverstein RL. CD36:implications in cardiovascular disease. Int J Biochem Cell Biol. 2007;39(11):2012-2030.
    2. Febbraio M, Hajjar DP, Silverstein RL. CD36:a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest. Sep 2001;108(6):785-791.
    3. Silverstein RL, Febbraio M. CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci Signal.2009;2(72):re3.
    4. Chen K, Febbraio M, Li W, et al. A specific CD36-dependent signaling pathway is required for platelet activation by oxidized low-density lipoprotein. Circ Res. Jun 20 2008; 102(12):1512-1519.
    5. Jimenez B, Volpert OV, Crawford SE, et al. Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med. Jan 2000;6(1):41-48.
    6. Matsunaga T, Hokari S, Koyama I, et al. NF-kappa B activation in endothelial cells treated with oxidized high-density lipoprotein. Biochem Biophys Res Commun. Mar 28 2003;303(1):313-319.
    7. Norata GD, Banfi C, Pirillo A, et al. Oxidised-HDL3 induces the expression of PAI-1 in human endothelial cells. Role of p38MAPK activation and mRNA stabilization. Br J Haematol. Oct 2004;127(1):97-104.
    8. Sun C, Liang C, Ren Y, et al. Advanced glycation end products depress function of endothelial progenitor cells via p38 and ERK 1/2 mitogen-activated protein kinase pathways. Basic Res Cardiol.
    Jan 2009;104(1):42-49.
    9. Seeger FH, Sedding D, Langheinrich AC, et al. Inhibition of the p38 MAP kinase in vivo improves number and functional activity of vasculogenic cells and reduces atherosclerotic disease progression. Basic Res Cardiol. Nov 13 2009.
    10. Zhang Y, Herbert BS, Rajashekhar G, et al. Premature senescence of highly proliferative endothelial progenitor cells is induced by tumor necrosis factor-alpha via the p38 mitogen-activated protein kinase pathway. Faseb J. May 2009;23(5):1358-1365.
    11. Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature. Mar 1 2001;410(6824):37-40.
    12. Boutros T, Chevet E, Metrakos P. Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation:roles in cell growth, death, and cancer. Pharmacol Rev. Sep 2008;60(3):261-310.
    13. Cagnol S, Chambard JC. ERK and cell death:mechanisms of ERK-induced cell death-apoptosis, autophagy and senescence. Febs J. Jan;277(1):2-21.
    14. Huang G, Shi LZ, Chi H. Regulation of JNK and p38 MAPK in the immune system:signal integration, propagation and termination. Cytokine. Dec 2009;48(3):161-169.
    15. Yong HY, Koh MS, Moon A. The p38 MAPK inhibitors for the treatment of inflammatory diseases and cancer. Expert Opin Investig Drugs. Dec 2009;18(12):1893-1905.
    16. Coulthard LR, White DE, Jones DL, et al. p38(MAPK):stress responses from molecular mechanisms to therapeutics. Trends Mol Med. Aug 2009;15(8):369-379.
    17. Wagner EF, Nebreda AR. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer. Aug 2009;9(8):537-549.
    18. Wan F, Lenardo MJ. The nuclear signaling of NF-kappaB:current knowledge, new insights, and future perspectives. Cell Res. Jan;20(1):24-33.
    19. Lin Y, Bai L, Chen W, et al. The NF-kappaB activation pathways, emerging molecular targets for cancer prevention and therapy. Expert Opin Ther Targets. Jan;14(1):45-55.
    20. Wolf G. New insights into the pathophysiology of diabetic nephropathy:from haemodynamics to molecular pathology. Eur J Clin Invest. Dec 2004;34(12):785-796.
    21. Yang Z, Song L, Huang C. Gadd45 proteins as critical signal transducers linking NF-kappaB to MAPK cascades. Curr Cancer Drug Targets. Dec 2009;9(8):915-930.
    22. Wong CK, Wang CB, Ip WK, et al. Role of p38 MAPK and NF-κB for chemokine release in coculture of human eosinophils and bronchial epithelial cells. Clin Exp Immunol. Jan 2005;139(1):90-100.
    23. Silverstein RL. Inflammation, atherosclerosis, and arterial thrombosis:role of the scavenger receptor CD36. Cleve Clin J Med. Apr 2009;76 Suppl 2:S27-30.
    1. Boden WE. High-density lipoprotein cholesterol as an independent risk factor in cardiovascular disease:assessing the data from Framingham to the Veterans Affairs High-density lipoprotein intervention trial. Am. J. Cardiol.2000;86:19L-22L.
    2. Barter P. HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events. N.
    Engl. J. Med.2007;357:1301-1310.
    3. Silver DL, Jiang XC, Arai T, et al. Receptors and lipid transfer proteins in HDL metabolism. Ann N Y Acad Sci. May 2000;902:103-111; discussion 111-102.
    4. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. Apr21 2005;352(16):1685-1695.
    5. Ley K, Laudanna C, Cybulsky MI, et al. Getting to the site of inflammation:the leukocyte adhesion cascade updated. Nat Rev Immunol. Sep 2007;7(9):678-689.
    6. Clay MA, Pyle DH, Rye KA, et al. Time sequence of the inhibition of endothelial adhesion molecule expression by reconstituted high density lipoproteins. Atherosclerosis. Jul 2001;157(1):23-29.
    7. Calabresi L, Franceschini G, Sirtori CR, et al. Inhibition of VCAM-1 expression in endothelial cells by reconstituted high density lipoproteins. Biochem Biophys Res Commun. Sep 8 1997;238(1):61-65.
    8. Park SH, Park JH, Kang JS, et al. Involvement of transcription factors in plasma HDL protection against TNF-alpha-induced vascular cell adhesion molecule-1 expression, Int J Biochem Cell Biol Feb 2003;35(2):168-182.
    9. Xia P, Vadas MA, Rye KA, et al. High density lipoproteins (HDL) interrupt the sphingosine kinase signaling pathway. A possible mechanism for protection against atherosclerosis by HDL. JBiol Chem. Nov 12 1999;274(46):33143-33147.
    10. Navab M, Imes SS, Hama SY, et al. Monocyte transmigration induced by modification of low density lipoprotein in cocultures of human aortic wall cells is due to induction of monocyte chemotactic protein 1 synthesis and is abolished by high density lipoprotein. J Clin Invest. Dec 1991;88(6):2039-2046.
    11. Mackness B, Hine D, Liu Y, et al. Paraoxonase-1 inhibits oxidised LDL-induced MCP-1 production by endothelial cells. Biochem Biophys Res Commun. Jun 4 2004;318(3):680-683.
    12. Dimayuga P, Zhu J, Oguchi S, et al. Reconstituted HDL containing human apolipoprotein A-1 reduces VCAM-1 expression and neointima formation following periadventitial cuff-induced carotid injury in apoE null mice. Biochem Biophys Res Commun. Oct 22 1999;264(2):465-468.
    13. Rong JX, Li J, Reis ED, et al. Elevating high-density lipoprotein cholesterol in apolipoprotein E-deficient mice remodels advanced atherosclerotic lesions by decreasing macrophage and increasing smooth muscle cell content. Circulation. Nov 13 2001;104(20):2447-2452.
    14. Nicholls SJ, Dusting GJ, Cutri B, et al. Reconstituted high-density lipoproteins inhibit the acute pro-oxidant and proinflammatory vascular changes induced by a periarterial collar in normocholesterolemic rabbits. Circulation. Mar 29 2005;111(12):1543-1550.
    15. Garner B, Waldeck AR, Witting PK, et al. Oxidation of high density lipoproteins. Ⅱ. Evidence for direct reduction of lipid hydroperoxides by methionine residues of apolipoproteins Al and AII. J Biol Chem. Mar 13 1998;273(11):6088-6095.
    16. Forte TM, Oda MN, Knoff L, et al. Targeted disruption of the murine lecithin:cholesterol acyltransferase gene is associated with reductions in plasma paraoxonase and platelet-activating factor acetylhydrolase activities but not in apolipoprotein J concentration. J Lipid Res. Jul 1999;40(7):1276-1283.
    17. Ng CJ, Shih DM, Hama SY, et al. The paraoxonase gene family and atherosclerosis. Free Radic Biol Med. Jan 15 2005;38(2):153-163.
    18. Jerlich A, Fabjan JS, Tschabuschnig S, et al. Human low density lipoprotein as a target of hypochlorite generated by myeloperoxidase. Free Radic Biol Med. May 1998;24(7-8):1139-1148.
    19. Kopprasch S, Leonhardt W, Pietzsch J, et al. Hypochlorite-modified low-density lipoprotein stimulates human polymorphonuclear leukocytes for enhanced production of reactive oxygen metabolites, enzyme secretion, and adhesion to endothelial cells. Atherosclerosis. Feb 1998; 136(2):315-324.
    20. Navab M, Hama SY, Anantharamaiah GM, et al. Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein:steps 2 and 3. J Lipid Res. Sep 2000;41(9):1495-1508.
    21. McMahon M, Grossman J, FitzGerald J, et al. Proinflammatory high-density lipoprotein as a biomarker for atherosclerosis in patients with systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum. Aug 2006;54(8):2541-2549.
    22. Ribas V, Sanchez-Quesada JL, Anton R, et al. Human apolipoprotein A-II enrichment displaces paraoxonase from HDL and impairs its antioxidant properties:a new mechanism linking HDL protein composition and antiatherogenic potential. Circ Res. Oct 15 2004;95(8):789-797.
    23. Navab M, Hama SY, Cooke CJ, et al. Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein:step 1. J Lipid Res. Sep 2000;41(9):1481-1494.
    24. Liao XL, Lou B, Ma J, et al. Neutrophils activation can be diminished by apolipoprotein A-I. Life Sci. Jun 3 2005;77(3):325-335.
    25. Blackburn WD, Jr., Dohlman JG, Venkatachalapathi YV, et al. Apolipoprotein A-I decreases neutrophil degranulation and superoxide production. J Lipid Res. Dec 1991;32(12):1911-1918.
    26. Mineo C, Yuhanna IS, Quon MJ, et al. High density lipoprotein-induced endothelial nitric-oxide synthase activation is mediated by Akt and MAP kinases. J Biol Chem. Mar 14 2003;278(11):9142-9149.
    27. Nofer JR, van der Giet M, Tolle M, et al. HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3. J Clin Invest. Feb 2004; 113(4):569-581.
    28. Ong AC, Jowett TP, Moorhead JF, et al. Human high density lipoproteins stimulate endothelin-1 release by cultured human renal proximal tubular cells. Kidney Int. Nov 1994;46(5):1315-1321.
    29. Kimura T, Sato K, Kuwabara A, et al. Sphingosine 1-phosphate may be a major component of plasma lipoproteins responsible for the cytoprotective actions in human umbilical vein endothelial cells. J Biol Chem. Aug 24 2001;276(34):31780-31785.
    30. Okajima F. Plasma lipoproteins behave as carriers of extracellular sphingosine 1-phosphate:is this an atherogenic mediator or an anti-atherogenic mediator? Biochim Biophys Acta. May 23 2002;1582(1-3):132-137.
    31. Sumi M, Sata M, Miura S, et al. Reconstituted high-density lipoprotein stimulates differentiation of endothelial progenitor cells and enhances ischemia-induced angiogenesis. Arterioscler Thromb Vasc Biol. Apr 2007;27(4):813-818.
    32. Mineo C, Deguchi H, Griffin JH, et al. Endothelial and antithrombotic actions of HDL. Circ
    Res. Jun 9 2006;98(11):1352-1364.
    33. O'Connell BJ, Genest J, Jr. High-density lipoproteins and endothelial function. Circulation. Oct 16 2001;104(16):1978-1983.
    34. Nofer JR, Walter M, Kehrel B, et al. HDL3-mediated inhibition of thrombin-induced platelet aggregation and fibrinogen binding occurs via decreased production of phosphoinositide-derived second messengers 1,2-diacylglycerol and inositol 1,4,5-tris-phosphate.Arterioscler Thromb Vasc Biol. Jun 1998; 18(6):861-869.
    35. Mallat Z, Tedgui A. Current perspective on the role of apoptosis in atherothrombotic disease. Circ Res. May 25 2001;88(10):998-1003.
    36. Athyros VG, Kakafika AI, Papageorgiou AA, et al. Statin-Induced Increase in HDL-C and Renal Function in Coronary Heart Disease Patients. Open Cardiovasc Med J.2007;1:8-14.
    37. Abrass CK. Cellular lipid metabolism and the role of lipids in progressive renal disease. Am J Nephrol. Jan-Feb 2004;24(1):46-53.
    38. Robbesyn F, Auge N, Vindis C, et al. High-density lipoproteins prevent the oxidized low-density lipoprotein-induced epidermal [corrected] growth factor receptor activation and subsequent matrix metalloproteinase-2 upregulation. Arterioscler Thromb Vasc Biol. Jun 2005;25(6):1206-1212.
    39. Rose JR, Mullarkey MA, Christ WJ, et al. Consequences of interaction of a lipophilic endotoxin antagonist with plasma lipoproteins. Antimicrob Agents Chemother. Mar 2000;44(3):504-510.
    40. Poelvoorde P, Vanhamme L, Van Den Abbeele J, et al. Distribution of apolipoprotein L-I and trypanosome lytic activity among primate sera. Mol Biochem Parasitol. Mar 2004;134(1):155-157.
    41. Vaisar T, Pennathur S, Green PS, et al. Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. J Clin Invest. Mar 2007;117(3):746-756.
    42. Swain J, Gutteridge JM. Prooxidant iron and copper, with ferroxidase and xanthine oxidase activities in human atherosclerotic material. FEBS Lett. Jul 24 1995;368(3):513-515.
    43. Undurti A, Huang Y, Lupica JA, et al. Modification of high density lipoprotein by myeloperoxidase generates a pro-inflammatory particle. J Biol Chem. Nov 6 2009;284(45):30825-30835.
    44. Artola RL, Conde CB, Bagatolli L, et al. High-density lipoprotein from hypercholesterolemic animals has peroxidized lipids and oligomeric apolipoprotein A-I:its putative role in atherogenesis. Biochem Biophys Res Commun. Oct 20 1997;239(2):570-574.
    45. Nakano T, Nagata A. Immunochemical detection of circulating oxidized high-density lipoprotein with antioxidized apolipoprotein A-1 monoclonal antibody. J Lab Clin Med. Jun 2003;141(6):378-384.
    46. Matsunaga T, Koyama I, Hokari S, et al. Detection of oxidized high-density lipoprotein. J Chromatogr B Analyt Technol Biomed Life Sci. Dec 5 2002;781(1-2):331-343.
    47. Nakajima T, Origuchi N, Matsunaga T, et al. Localization of oxidized HDL in atheromatous plaques and oxidized HDL binding sites on human aortic endothelial cells. Ann Clin Biochem. Mar 2000;37(Pt 2):179-186.
    48. Khovidhunkit W, Kim MS, Memon RA, et al. Effects of infection and inflammation on lipid and lipoprotein metabolism:mechanisms and consequences to the host. J Lipid Res. Jul 2004;45(7):1169-1196.
    49. Greene DJ, Skeggs JW, Morton RE. Elevated triglyceride content diminishes the capacity of high density lipoprotein to deliver cholesteryl esters via the scavenger receptor class B type I (SR-BI). JBiol Chem. Feb 16 2001;276(7):4804-4811.
    50. Van Lenten BJ, Hama SY, de Beer FC, et al. Anti-inflammatory HDL becomes pro-inflammatory during the acute phase response. Loss of protective effect of HDL against LDL oxidation in aortic wall cell cocultures. J Clin Invest. Dec 1995;96(6):2758-2767.
    51. Ferretti G, Bacchetti T, Marchionni C, et al. Effect of glycation of high density lipoproteins on their physicochemical properties and on paraoxonase activity. Acta Diabetol. Dec 2001;38(4):163-169.
    52. Kalogerakis G, Baker AM, Christov S, et al. Oxidative stress and high-density lipoprotein function in Type I diabetes and end-stage renal disease. Clin Sci (Lond). Jun
    2005;108(6):497-506.
    53. Bergt C, Pennathur S, Fu X, et al. The myeloperoxidase product hypochlorous acid oxidizes HDL in the human artery wall and impairs ABCA1-dependent cholesterol transport. Proc Natl Acad Sci USA. Aug 31 2004;101(35):13032-13037.
    54. Marsche G, Hammer A, Oskolkova O, et al. Hypochlorite-modified high density lipoprotein, a high affinity ligand to scavenger receptor class B, type Ⅰ, impairs high density lipoprotein-dependent selective lipid uptake and reverse cholesterol transport. J Biol Chem. Aug 30 2002;277(35):32172-32179.
    55. Favari E, Lee M, Calabresi L, et al. Depletion of pre-beta-high density lipoprotein by human chymase impairs ATP-binding cassette transporter A1-but not scavenger receptor class B type I-mediated lipid efflux to high density lipoprotein. J Biol Chem. Mar 12 2004;279(11):9930-9936.
    56. Gauster M, Oskolkova OV, Innerlohinger J, et al. Endothelial lipase-modified high-density lipoprotein exhibits diminished ability to mediate SR-BI (scavenger receptor B type Ⅰ)-dependent free-cholesterol efflux. Biochem J. Aug 15 2004;382(Pt 1):75-82.
    57. Matsunaga T, Hokari S, Koyama I, et al. NF-kappa B activation in endothelial cells treated with oxidized high-density lipoprotein. Biochem Biophys Res Commun. Mar 28 2003;303(1):313-319.
    58. Matsunaga T, Iguchi K, Nakajima T, et al. Glycated high-density lipoprotein induces apoptosis of endothelial cells via a mitochondrial dysfunction. Biochem Biophys Res Commun. Sep 28 2001;287(3):714-720.
    59. Carlson LA. Nicotinic acid:the broad-spectrum lipid drug. A 50th anniversary review. J. Intern. Med. 2005;258:94-114.
    60. Brown BG. Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease.N. Engl. J. Med.2001;345:1583-1592.
    61. Martinez LO. Ectopic [beta]-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis. Nature.2003;421:75-79.
    62. Zhang LH, Kamanna VS, Zhang MC, et al. Niacin inhibits surface expression of ATP synthase [beta] chain in HepG2 cells:implications for raising HDL. J. Lipid Res.2008;49:1195-1201.
    63. van der Hoorn JW.Niacin increases HDL by reducing hepatic expression and plasma levels of cholesteryl ester transfer protein in APOE*3Leiden.CETP mice. Arterioscler. Thromb. Vasc. Biol.2008;28:2016-2022.
    64. Tunaru S. PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect. Nat.Med 2003;9:352-355.
    65. Zhang Y. Niacin mediates lipolysis in adipose tissue through its G-protein coupled receptor HM74A. Biochem. Biophys. Res. Commun.2005;334:729-732.
    66. Cefali EA, Simmons PD, Stanek EJ, et al. Improved control of niacin-induced flushing using an optimized once-daily, extended-release niacin formulation. Int. J. Clin. Pharmacol. Ther. 2006;44:633-640.
    67. Cheng K. Antagonism of the prostaglandin D2 receptor 1 suppresses nicotinic acid-induced vasodilation in mice and humans. Proc. Natl Acad. Sci. USA.2006;103:6682-6687.
    68. Lai E. Suppression of niacin-induced vasodilation with an antagonist to prostaglandin D2 receptor subtype 1. Clin. Pharmacol. Ther.2007;81:849-857.
    69. Inazu A. Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation. N. Engl. J. Med.1990;323:1234-1238.
    70. Barter PJ, Caulfield M, Eriksson M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. Nov 22 2007;357(21):2109-2122.
    71. Kastelein JJ, van Leuven SI, Burgess L, et al. Effect of torcetrapib on carotid atherosclerosis in familial hypercholesterolemia. NEngl J Med Apr 19 2007;356(16):1620-1630.
    72. Nissen SE, Tardif JC, Nicholls SJ, et al. Effect of torcetrapib on the progression of coronary atherosclerosis. N Engl J Med. Mar 29 2007;356(13):1304-1316.
    73. Barter PJ. Effects of torcetrapib in patients at high risk for coronary events. N. Engl. J. Med. 2007;357:2109-2122.
    74. Matsuura F, Wang N, Chen W, et al. HDL from CETP-deficient subjects shows enhanced ability to promote cholesterol efflux from macrophages in an apoE-and ABCG1-dependent pathway. J. Clin. Invest.2006;116:1435-1442.
    75. Yvan-Charvet L. Inhibition of cholesteryl ester transfer protein by torcetrapib modestly increases macrophage cholesterol efflux to HDL. Arterioscler. Thromb. Vasc. Biol. 2007;27:1132-1138.
    76. Bloomfield D. Efficacy and safety of the cholesteryl ester transfer protein inhibitor anacetrapib as monotherapy and co-administered with atorvastatin in dyslipidemic patients. Am. Heart J. 2009;157:352-360.
    77. Kuivenhoven JA. Effectiveness of inhibition of cholesteryl ester transfer protein by JTT-705 in combination with pravastatin in type Ⅱ dyslipidemia. Am. J. Cardiol.2005;95:1085-1098.
    78. Santamarina-Fojo S, Lambert G, Hoeg JM, et al. Lecithin-cholesterol acyltransferase:role in lipoprotein metabolism, reverse cholesterol transport and atherosclerosis. Curr. Opin. Lipidol. 2000; 11:267-275.
    79. Hoeg JM. Overexpression of lecithin:cholesterol acyltransferase in transgenic rabbits prevents diet-induced atherosclerosis. Proc. Natl Acad. Sci. USA.1996;93:11448-11453.
    80. Foger B. Cholesteryl ester transfer protein corrects dysfunctional high density lipoproteins and reduces aortic atherosclerosis in lecithin cholesterol acyltransferase transgenic mice. J. Biol. Chem.1999;274:36912-36920.
    81. Mertens A. Increased low-density lipoprotein oxidation and impaired high-density lipoprotein antioxidant defense are associated with increased macrophage homing and atherosclerosis in dyslipidemic obese mice:LCAT gene transfer decreases atherosclerosis. Circulation. 2003; 107:1640-1646.
    82. Plump A, Scott C, Breslow J. Human apolipoprotein A-I gene expression increases high density lipoprotein and suppresses atherosclerosis in the apolipoprotein E-deficient mouse. Proc. Natl Acad. Sci. USA.1994;91:9607-9611.
    83. Tangirala RK. Regression of atherosclerosis induced by liver-directed gene transfer of apolipoprotein A-I in mice. Circulation.1999;100:1816-1822.
    84. Zhang Y. Overexpression of apoA-I promotes reverse transport of cholesterol from macrophages to feces in vivo. Circulation.2003; 108:661-663.
    85. Jaye M. A novel endothelial-derived lipase that modulates HDL metabolism. Nat. Genet. 1999;21:424-428.
    86. Jin W, Millar JS, Broedl U, et al. Inhibition of endothelial lipase causes increased HDL cholesterol levels in vivo. J. Clin. Invest.2003;111:357-362.
    87. Badellino K.O, Wolfe ML, Reilly MP, et al. Endothelial lipase concentrations are increased in metabolic syndrome and associated with coronary atherosclerosis. PLoS Med.2006;3:e22.
    88. Badellino KO, Wolfe ML, Reilly MP, et al. Endothelial lipase is increased in vivo by inflammation in humans. Circulation.2008; 117:678-685.
    89. Goodman KB. Discovery of potent, selective sulfonylfuran urea endothelial lipase inhibitors. Bioorg. Med. Chem. Lett.2009; 19:27-30.
    90. Roberts CK, Ng C, Hama S, et al. Effect of a short-term diet and exercise intervention on inflammatory/anti-inflammatory properties of HDL in overweight/obese men with cardiovascular risk factors. J Appl Physiol. Dec 2006;101(6):1727-1732.
    91. Nicholls SJ, Lundman P, Harmer JA, et al. Consumption of saturated fat impairs the anti-inflammatory properties of high-density lipoproteins and endothelial function. J Am Coll Cardiol. Aug 15 2006;48(4):715-720.
    92. Rust S, Rosier M, Funke H, et al. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat Genet. Aug 1999;22(4):352-355.
    93. Hobbs HH, Rader DJ. ABC1:connecting yellow tonsils, neuropathy, and very low HDL. J. Clin. Invest.1999;104:1015-1017.
    94. Wang N, Lan D, Chen W, et al. ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc. Natl Acad. Sci. USA. 2004;101:9774-9779.
    95. Naik SU. Pharmacological activation of liver X receptors promotes reverse cholesterol transport in vivo. Circulation.2006; 113:90-97.
    96. Bultel S. Liver X receptor activation induces the uptake of cholesteryl esters from high density lipoprotein in primary human macrophages. Arterioscler. Thromb. Vasc. Biol. 2008;28:2288-2295.
    97. Molteni V. N-acylthiadiazolines, a new class of liver X receptor agonists with selectivity for LXR[beta]. J. Med. Chem.2007;50:4255-4259.
    98. Chinetti G. PPAR[alpha] and PPAR[gamma] activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat. Med. 2001;7:53-58.
    99. Nissen SE. Effects of a potent and selective PPAR[alpha] agonist in patients with atherogenic dyslipidemia or hypercholesterolemia:two randomized controlled trials. JAMA. 2007;297:1362-1373.
    100. Millar JS. Potent and selective PPAR[alpha] agonist LY518674 upregulates both ApoA-I production and catabolism in human subjects with the metabolic syndrome. Arterioscler. Thromb. Vasc. Biol.2009;29:140-146.
    101. Nanjee MN. Intravenous apoA-I/lecithin discs increase pre-[beta]-HDL concentration in tissue fluid and stimulate reverse cholesterol transport in humans. J. Lipid Res.2001;42:1586-1593.
    102. Tardif JC. Effects of reconstituted high-density lipoprotein infusions on coronary atherosclerosis:a randomized controlled trial. JAMA.2007;297:1675-1682.
    103. Chiesa G, Sirtori CR. Apolipoprotein A-I Milano:current perspectives. Curr. Opin. Lipidol. 2003;14:159-163.
    104. Nissen SE. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes:a randomized controlled trial. JAMA.2003;290:2292-2300.
    105. Rader DJ. High-density lipoproteins as an emerging therapeutic target for atherosclerosis. JAMA.2003;290:2322-2324.
    106. Van Lenten BJ, Wagner AC, Anantharamaiah GM, et al. Apolipoprotein A-I mimetic peptides. Curr Atheroscler Rep. Jan 2009;11(1):52-57.
    107. Garber DW. A new synthetic class A amphipathic peptide analogue protects mice from diet-induced atherosclerosis. J. Lipid Res.2001;42:545-552.
    108. Navab M. Oral administration of an Apo A-I-mimetic peptide synthesized from D-amino acids dramatically reduces atherosclerosis in mice independent of plasma cholesterol. Circulation. 2002;105:290-292.
    109. Navab M. Oral D-4F causes formation of pre-[beta] high-density lipoprotein and improves high-density lipoprotein-mediated cholesterol efflux and reverse cholesterol transport from macrophages in apolipoprotein E-null mice. Circulation.2004; 109:3215-3220.
    110. Bloedon LT. Safety, pharmacokinetics, and pharmacodynamics of oral apoA-I mimetic peptide D-4F in high-risk cardiovascular patients. J. Lipid Res.2008;49:1344-1352.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700