hsa-miR-27a和hsa-miR-451在恶性肿瘤耐药细胞中的表达及耐药关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究卵巢癌细胞及乳腺癌细胞中hsa-miR-27a和hsa-miR-451的表达差异。
     方法:用浓度递增法建立卵巢癌耐紫杉醇细胞系A2780/Taxol; Western blot检测卵巢癌和乳腺癌细胞中P-糖蛋白(P-glycoprotein, P-gp)的表达;Stem-loop real-time PCR检测卵巢癌耐紫杉醇细胞A2780/Taxol和亲本细胞A2780以及乳腺癌耐阿霉素细胞MCF-7/ADM和亲本细胞MCF-7中hsa-miR-27a和hsa-miR-451的表达。
     结果:成功建立了卵巢癌耐紫杉醇细胞株A2780/Taxol; P-gp在卵巢癌耐紫杉醇细胞A2780/Taxol和乳腺癌耐阿霉素细胞MCF-7/ADM中明显高表达,在卵巢癌和乳腺癌亲本细胞A2780和MCF-7中均未检测到P-gp蛋白的表达;miR-27a在A2780/Taxol细胞中高表达,与A2780细胞相比,表达增高2.2±0.30倍,差异有统计学意义(p<0.05)。在A2780和A2780/Taxol细胞中未检测出miR-451表达的差异。miR-451在MCF-7/ADM细胞中低表达,与MCF-7细胞相比,表达降低16±0.21倍,差异有统计学意义(p<0.05)。在MCF-7和MCF-7/ADM中未检测出miR-27a表达的差异。
     结论:在P-gp高表达的卵巢癌耐紫杉醇细胞和乳腺癌耐阿霉素细胞中,miR-27a和miR-451分别特异性的表达异常。
     目的:研究hsa-miR-27a与卵巢癌耐紫杉醇细胞耐药的关系。
     方法:利用脂质体Lipofectamine 2000将成熟miR-27a的模拟物mimtcs、阻遏物inhibitors及阴性对照negative control RNA (NC)转染A2780和A2780/Taxol细胞;Real-time PCR技术检测细胞多药耐药-1(MDR1)基因表达;蛋白印迹法检测转染后A2780/Taxol细胞P-gp和同源结构域相关的蛋白激酶2(homeodomain-interacting protein kinase 2, HIPK2)蛋白表达;MTT检测细胞增殖;Annexin-V FITC/PI双标法流式细胞术检测细胞凋亡率;流式细胞术检测细胞内罗丹明123(Rh-123)蓄积量。
     结果:1. A2780/Taxol细胞转染miR-27a inhibitors后(1)MDR1 mRNA表达明显下降,与转染NC组相比,表达下降(39±0.14)%,差异有统计学意义(P<0.05);(2)P-gp蛋白相对表达量((26±5.3)%)与转染NC组的P-gp蛋白相对表达量((43±6.7)%)比较,下降39%,差异有统计学意义(P<0.05);(3)HIPK2蛋白相对表达量((30±5.9)%)与转染NC组的HIPK2蛋白相对表达量((19±3.8)%)比较,增高59%,差异有统计学意义(P<0.05);(4)对紫杉醇的敏感性增加,半数抑制浓度(IC50)为0.53μM,与转染NC组IC50 6.8μM相比,差异有统计学意义(P<0.05);(5)细胞凋亡率明显升高,凋亡率达(32.5±3.6)%,与转染NC组凋亡率(5.6±2.1)%比较,差异有统计学意义(P<0.05);(6)细胞内Rh-123荧光强度增高为5.10±0.35,与转染前A2780/Taxol细胞的2.95±0.39和转染NC的A2780/Taxol细胞的3.30±0.45相比,均有显著性差异(P<0.05)。2.转染miR-27a mimics后,(1)A2780细胞的MDR1 mRNA表达升高,与转染NC组相比,升高(121±0.11)%,差异有统计学意义(P<0.05);(2)A2780细胞对紫杉醇的敏感性下降,IC50为0.2μM,与转染NC组IC50 0.06μM相比,差异有统计学意义(P<0.05);(3) A2780/Taxol细胞的HIPK2蛋白相对表达量((8.1±4.9)%)与转染NC组HIPK2蛋白相对表达量((19±3.8)%)比较,下降53%,差异有统计学意义(P<0.05)。
     结论:miR-27a在卵巢癌耐紫杉醇细胞中高表达,可能通过调控靶基因HIPK2,间接调节MDR1/P-gp的表达和功能,参与耐药。转染miR-27a inhibitors后,可以下调P-gp表达和功能,增加A2780/Taxol细胞对紫杉醇的敏感性,部分逆转耐药。
     目的:研究hsa-miR-451与乳腺癌耐阿霉素细胞耐药关系的研究。
     方法:利用脂质体Lipofectamine 2000将成熟miR-451的模拟物mimics及阴性对照negative control RNA (NC)转染MCF-7/ADM细胞;Real-time PCR技术和western blot技术分别检测转染后MCF-7/ADM细胞的MDR1 mRNA和P-gp蛋白表达;MTT检测细胞增殖;流式细胞术检测细胞内阿霉素蓄积量。
     结果:MCF-7/ADM细胞转染1miR-451 mimics后(1)MDR1 mRNA表达明显下降,与转染NC组细胞相比,表达下降(65±12)%,差异有显著性(P<0.05);(2)P-gp蛋白相对表达量((31±19)%)与转染NC组细胞P-gp蛋白相对表达量((83±12)%)相比,下降62%,差异有显著性(P<0.05);(3)对阿霉素的敏感性增加,IC50为4.61μM,与转染NC组细胞IC5026μM相比,有显著性差异(P<0.05);(4)细胞内的阿霉素荧光强度增加为28.98±2.9,与转染NC组细胞的11.64±2.6相比有显著性差异(P<0.05)。
     结论:miR-451在乳腺癌耐阿霉素细胞MCF-7/ADM中低表达,它可能通过负性调控靶基因P-gp蛋白参与乳腺癌耐阿霉素的发生。转染miR-451 mimics后,可以增加MCF-7/ADM细胞对阿霉素的敏感性,部分逆转耐药。
Objective To investigate the expression of miR-27a and miR-451 in ovarian cancer and breast cancer cells.
     Methods A2780/Taxol cells were established using stepwise selection. The expression of P-gp protein levels of ovarian cancer and breast cancer cells were measured by western blot. Stem-loop real-time PCR was used to detect expression of miR-27a and miR-451 in ovarian cancer and in breast cancer cells.
     Results A2780/Taxol cell line was established successfully. The expression levels of P-gp were high in A2780/Taxol and MCF-7/ADM cells and it did not detected in A2780 and MCF-7 cells. The expression of miR-27a was an average of (2.2±0.30)-fold higher in A2780/Taxol cells than in A2780 cells, with a significant difference between the two groups (P<0.05).The expression of miR-451 was an average of (16±0.21)-fold lesser in MCF-7/ADM cells than in MCF-7 cells, with a significant difference between the two groups (P<0.05).
     Conclusion The expressions of miR-27a and miR-451 were deregulation in A2780/Taxol and MCF-7/ADM cells respectively.
     Objective To investigate the relationship between miR-27a and drug resistant in paclitaxel-resistant ovarian cancer cells.
     Methods The A2780 and A2780/Taxol cells were transfected with the mimics or inhibitors of miR-27a or negative control RNA (NC) by Lipofectamine 2000. The expressions of MDR1 mRNA, P-gp and HIPK2 protein levels were measured by real-time PCR and western blot respectively. MTT was used to analyze drug sensitivity. Apoptosis analysis and the fluorescence of remaining Rh-123 were measured by fluorescence activated cell sorter (FACS).
     Results (1) A2780/Taxol cells transfection with inhibitors of miR-27a showed that the levels of MDR1 mRNA was decreased by (39±0.14)%, P-gp protein level((26±5.3)%) decreased than the NC group ((43±6.7)%), HIPK2 protein level ((30±5.9)%) increased than the NC group ((19±3.8)%), the IC50 (0.53μM) was less than the NC group (6.8μM), apoptosis rate ((32.5±3.6)%) was higher than the NC group ((5.6±2.1)%), the fluorescence intensity of Rh-123 (5.10±0.35) was increased than the NC group (3.30±0.45), and there was a significant difference between two groups (P<0.05). (2) Transfection of A2780 cells with mimics of miR-27a led to increase MDR1 mRNA expression by (121±0.11)% and decrease the sensitivity to paclitaxel (IC50 0.2μM vs.0.06μM). (3) HIPK2 protein level ((8.1±4.9)%) in A2780/Taxol cells management with mimics of miR-27a was decreased than the NC group ((19±3.8)%). There was a significant difference between two groups (P<0.05).
     Conclusion The expression of miR-27a is upregulated in A2780/Taxol cells, and miR-27a may regulate MDR1/P-gp expression by targeting HIPK2. Transfection with miR-27a inhibitors can downregulate the P-gp expression and activation, and reverse drug resistance in A2780/Taxol cells.
     Objective To study the role of miR-451 in the development of adriamycin-resistance in breast cancer cells.
     Methods The mimics of miR-451 and negative control (NC) were transfected into MCF-7/ADM cells by Lipofectamine 2000. The expression levels of MDR1 mRNA and P-gp protein were examined using real time quantitative PCR and western blot respectively. Half-inhibitory concentration (IC50) of doxorubicin was determined by MTT method and the intracellular accumulation of doxorubicin was measured by FACS.
     Results Transfection of MCF-7/ADM cells with mimics of miR-451 showed that expression of MDR1 mRNA was decreased by (65±12)%, P-gp protein ((31±19)%) was less than the NC group ((83±12)%), the sensitivity of cells to adriamycin enhanced and the IC50 of adriamycin (4.61μM) was less than the NC group (26μM), and the fluorescence intensity of intracellular doxorubicin (28.98±2.9) was increase than the NC group (11.64±2.6). There was a significant difference between two groups (P<0.05).
     Conclusion The deregulation of miR-451 may be involved in the development of adriamycin-resistance, at least in part, by negatively regulating expression and activation of MDR1/P-gp in MCF-7/ADM cells.
引文
1. Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Discov.2006; 5:219-234.
    2. Gadducci A, Cosio S, Muraca S, Genazzani AR. Molecular mechanisms of apoptosis and chemosensitivity to platinum and paclitaxel in ovarian cancer:biological data and clinical implications. Eur J Gynaecol Oncol.2002; 23:390-396.
    3. Roberti A, La Sala D, Cinti C. Multiple genetic and epigenetic interacting mechanisms contribute to clonally selection of drug-resistant tumors:current views and new therapeutic prospective. J Cell Physiol.2006; 207:571-581.
    4. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell.1993; 75:843-854.
    5. Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Muller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G.Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature.2000; 408:86-89.
    6. Bartel DP.MicroRNAs:genomics, biogenesis, mechanism, and function.Cell.2004; 116:281-297.
    7. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science.2001; 294:853-858.
    8. Esquela-Kerscher A, Slack FJ. Oncomirs-microRNAs with a role in cancer.Nat Rev Cancer.2006; 6:259-269.
    9. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer.2006; 6:857-866.
    10. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A.2002;99:15524-15529.
    11. Dong JT, Boyd JC, Frierson HF Jr. Loss of heterozygosity at 13q14 and 13q21 in high grade, high stage prostate cancer. Prostate.2001; 49:166-171.
    12. anchez-Beato M, Sanchez-Aguilera A, Piris MA. Cell cycle deregulation in B-cell lymphomas. Blood.2003;101:1220-1235.
    13. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A.2005;102:13944-13949.
    14. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM.A microRNA polycistron as a potential human oncogene. Nature.2005;435:828-833.
    15. Knutsen T, Rao VK, Ried T, Mickley L, Schneider E, Miyake K, Ghadimi BM, Padilla-Nash H, Pack S, Greenberger L, Cowan K, Dean M, Fojo T, Bates S. Amplification of 4q21-q22 and the MXR gene in independently derived mitoxantrone-resistant cell lines. Genes Chromosomes Cancer.2000; 27:110-116.
    16. Sorrentino A, Liu CG, Addario A, Peschle C, Scambia G, Ferlini C. Role of microRNAs in drug-resistant ovarian cancer cells. Gynecol Oncol.2008; 111:478-486.
    17. Barbarotto E, Schmittgen TD, Calin GA. MicroRNAs and cancer:profile, profile, profile. Int J Cancer.2008; 122:969-977.
    18. Esquela-Kerscher A, Trang P, Wiggins JF, Patrawala L, Cheng A, Ford L, Weidhaas JB, Brown D, Bader AG, Slack FJ. The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle.2008; 7:759-764.
    19. Yang H, Kong W, He L, Zhao JJ, O'Donnell JD, Wang J, Wenham RM, Coppola D, Kruk PA, Nicosia SV, Cheng JQ. MicroRNA expression profiling in human ovarian cancer:miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res.2008; 68:425-433.
    20. Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY. miR-21-mediated tumor growth. Oncogene. 2007; 26:2799-2803.
    21. Xia L, Zhang D, Du R, Pan Y, Zhao L, Sun S, Hong L, Liu J, Fan D. miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int J Cancer.2008; 123:372-379.
    1. Barbarotto E, Schmittgen TD, Calin GA. MicroRNAs and cancer:profile, profile, profile. Int J Cancer.2008; 122:969-977.
    2. Alvarez-Garcia 1, Miska EA, MicroRNA functions in animal development and human disease. Development.2005; 132:4653-4662.
    3. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA.2006; 103:2257-2261.
    4. Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E. Phylogenetic shadowing and computational identification of human microRNA genes. Cell.2005;120:21-24.
    5.沈月兰,蒋义国.microRNA与癌症发生相关性研究的现状.中华肿瘤防治.2008;15:68-71.
    6. Zheng T, Wang J, Chen X, Liu L. Role of microRNA in anticancer drug resistance. Int J Cancer.2010; 126:2-10.
    7. Gottesman MM, Ling V. The molecular basis of multidrug resistance in cancer:the early years of P-glycoprotein research. FEBS Lett.2006; 580:998-1009.
    8. Johnstone RW, Ruefli AA, Smyth MJ. Multiple physiological functions for multidrug transporter P-glycoprotein? Trends Biochem Sci.2000; 25:1-6.
    9. Hede K. Studies define role of microRNA in cancer. J Natl Cancer Inst.2005; 97:1114-1115.
    1. Piccart MJ, Bertelsen K, James K, Cassidy J, Mangioni C, Simonsen E, Stuart G, Kaye S, Vergote I, Blom R, Grimshaw R, Atkinson RJ, Swenerton KD, Trope C, Nardi M, Kaern J, Tumolo S, Timmers P, Roy JA, Lhoas F, Lindvall B, Bacon M, Birt A, Andersen JE, Zee B, Paul J, Baron B, Pecorelli S. Randomized intergroup trial of cisplatin-paclitaxel versus cisplatin-cyclophosphamide in women with advanced epithelial ovarian cancer:three-year results. J Natl Cancer Inst.2000;92:699-708.
    2. Zhu H, Wu H, Liu X, Evans BR, Medina DJ, Liu CG, Yang JM. Role of MicroRNA miR-27a and miR-451 in the regulation of MDR1/P-glycoprotein expression in human cancer cells. Biochem Pharmacol.2008; 76:582-588.
    3.马雪莲,查晓,张国楠.卵巢癌紫杉醇耐药机制的研究进展木.肿瘤预防与治疗.2008;21:436-439。
    4. Ohishi Y, Oda Y, Basaki Y, Kobayashi H, Wake N, Kuwano M, Tsuneyoshi M. Expression of beta-tubulin isotypes in human primary ovarian carcinoma. Gynecol Oncol.2007;105:586-592.
    5. Sparreboom A, Danesi R, Ando Y, Chan J, Figg WD. Pharmacogenomics of ABC transporters snd its role in cancer chemotherapy. Drug Resis Updat.2003;6:71-84.
    6. Yang H, Kong W, He L, Zhao JJ, O'Donnell JD, Wang J, Wenham RM, Coppola D, Kruk PA, Nicosia SV, Cheng JQ. MicroRNA expression profiling in human ovarian cancer:miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res.2008; 68:425-433.
    7. Sorrentino A, Liu CG, Addario A, Peschle C, Scambia G, Ferlini C. Role of microRNAs in drug-resistant ovarian cancer cells. Gynecol Oncol.2008; 111:478-486.
    8. D'Orazi G, Cecchinelli B, Bruno T, Manni I, Higashimoto Y, Saito S, Gostissa M, Coen S, Marchetti A, Del Sal G, Piaggio G, Fanciulli M, Appella E, Soddu S. Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nature Cell Biol.2002;4:11-19.
    9. Hofmann TG, Moller A, Sirma H, Zentgraf H, Taya Y, Droge W, Will H, Schmitz ML. Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2. Nauret Cell Biol.2002; 4:1-10.
    10. Puca R, Nardinocchi L, Pistritto G, D'Orazi G Overexpression of HIPK2 circumvents the blockade of apoptosis in chemoresistant ovarian cancer cells. Gynecol Oncol. 2008;109:403-410.
    11. Comerford KM, Wallace TJ, Karhausen J, Louis NA, Montalto MC, Colgan SP. Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res.2002; 62:3387-3394.
    12. Liu L, Ning X, Sun L, Zhang H, Shi Y, Guo C, Han S, Liu J, Sun S, Han Z, Wu K, Fan D. Hypoxia-inducible factor-la contributes to hypoxia-induced chemoresistance in gastric cancer. Cancer Sci.2008; 99:121-128.
    13. Nardinocchi L, Puca R, Guidolin D, Belloni AS, Bossi G, Michiels C, Sacchi A, Onisto M, D'Orazi G Trancriptional regulation of hypoxia-inducible factor 1alpha by HIPK2 suggests a novel mechanism to restrain tumor growth. Biochim Biophys Acta. 2009;1793:368-377.
    1. Miller TE, Ghoshal K, Ramaswamy B, Roy S, Datta J, Shapiro CL, Jacob S, Majumder S. MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem.2008; 283:29897-29903.
    2. Cox MC, Dan TD, Swain SM. Emerging drugs to replace current leaders in first-line therapy for breast cancer. Expert Opin Emerg Drugs.2006;11:489-501.
    3. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer:role of ATP-dependent transporters. Nat Rev Cancer.2002; 2:48-58.
    4. Leslie EM, Deeley RG, Cole SP. Multidrug resistance proteins:role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol Appl Pharmacol. 2005;204:216-237.
    5. Xin F, Li M, Balch C, Thomson M, Fan M, Liu Y, Hammond SM, Kim S, Nephew KP. Computational analysis of microRNA profiles and their target genes suggests significant involvement in breast cancer antiestrogen resistance. Bioinformatics.2009; 25:430-434.
    6. Miller TE, Ghoshal K, Ramaswamy B, Roy S, Datta J, Shapiro CL, Jacob S, Majumder S. MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27 Kip1. J Biol Chem.2008; 283:29897-29903.
    7. Kovalchuk O, Filkowski J, Meservy J, Ilnytskyy Y, Tryndyak VP, Chekhun VF, Pogribny IP. Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther.2008; 7:2152-2159.
    1. Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Discov.2006; 5:219-234.
    2. Lippert T H, Ruoff H J, Volm M. Intrinsic and acquired drug resistance in malignant tumors. The main reason for therapeutic failure. Arzneimittelforschung.2008; 58: 261-264.
    3. Roberti A, La Sala D, Cinti C. Multiple genetic and epigenetic interacting mechanisms contribute to clonally selection of drug-resistant tumors:current views and new therapeutic prospective. J Cell Physiol.2006; 207:571-581.
    4. Glasspool RM, Teodoridis JM, Brown R. Epigenetics as a mechanism driving polygenic clinical drug resistance. Br J Cancer.2006; 94:1087-1092.
    5. Duesberg P, Li R, Sachs R, Fabarius A, Upender MB, Hehlmann R. Cancer drug resistance:the central role of the karyotype. Drug Resist Updat.2007;10:51-58.
    6. Iwasa Y, Nowak MA, Michor F. Evolution of resistance during clonal expansion. Genetics.2006; 172:2557-2566.
    7. Bushati N, Cohen SM. microRNAs functions. Annu Rev Cell Dev Biol.2007; 23:175-205.
    8. Sevignani C, Calin GA, Siracusa LD, Croce CM. Mammalian microRNAs:a small world for fine-tuning gene expression. Mamm Genome.2006; 17:189-202.
    9. Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell 2004; 116:281-297.
    10. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J,Bartel DP, Linsley PS, Johnson JM. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature.2005; 433:769-773.
    11. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nature Reviews Cancer. 2006; 6:857-866.
    12. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR. MicroRNA expression profiles classify human cancers. Nature.2005;435:834-838.
    13. Tricoli JV, Jacobson JW. MicroRNA:potential for cancer detection, diagnosis, and prognosis. Cancer Res.2007; 67:4553-4555.
    14. Ferretti E, De Smaele E, Po A, Di Marcotullio L, Tosi E, Espinola MS, Di Rocco C, Riccardi R, Giangaspero F, Farcomeni A, Nofroni I, Laneve P, Gioia U, Caffarelli E, Bozzoni I, Screpanti I, Gulino A. MicroRNA profiling in human medulloblastoma. Int J Cancer.2009; 124:568-577.
    15. Du T, Zamore PD. microPrimer:the biogenesis and function of microRNA. Development.2005; 132:4645-4652.
    16. Zhao Y, Srivastava D. A developmental view of microRNA function. Trends Biochem Sci.2007; 32:189-197.
    17. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase:tools for microRNA genomics. Nucleic Acids Res.2008; 36:D154-158.
    18. Ambros V. MicroRNA pathways in flies and worms:growth, death, fat, stress, and timing. Cell.2003; 113:673-676.
    19. Alvarez-Garcia 1, Miska EA. MicroRNA functions in animal development and human disease. Development.2005; 132:4653-4662.
    20. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA.2006; 103:2257-2261.
    21. Wightman B, Ha I, Ruvkun G Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans.Cell. 1993;75:855-862.
    22. Johnston RJ, Hobert O. A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans.Nature.2003;426:845-849.
    23. Chang S, Johnston RJ Jr, Fr?kjaer-Jensen C, Lockery S, Hobert O. MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode.Nature.2004;430:785-789.
    24. Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science.2004;303:83-86.
    25. Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, Stoffel M. A pancreatic islet-specific microRNA regulates insulin secretion.Nature.2004;432:226-30.
    26. Esau C, Kang X, Peralta E, Hanson E, Marcusson EG, Ravichandran LV, Sun Y, Koo S, Perera RJ, Jain R, Dean NM, Freier SM, Bennett CF, Lollo B, Griffey R. MicroRNA-143 regulates adipocyte differentiation.J Biol Chem. 2004;279:52361-52365.
    27. Hornstein E, Mansfield JH, Yekta S, Hu JK, Harfe BD, McManus MT, Baskerville S, Bartel DP, Tabin CJ. The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development.Nature.2005;438:671-4.
    28. Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis.Nature.2005;436:214-20.
    29. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell.1993;75:843-854.
    30. Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell.2003;113:25-36.
    31. Hipfner DR, Weigmann K, Cohen SM. The bantam gene regulates Drosophila growth. Genetics.2002; 161:1527-1537.
    32. Xu P, Vernooy SY, Guo M, Hay BA. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol.2003;13:790-795.
    33. Leaman D, Chen PY, Fak J, Yalcin A, Pearce M, Unnerstall U, Marks DS, Sander C, Tuschl T, Gaul U. Antisense-mediated depletion reveals essential and specific functions of microRNAs in Drosophila development. Cell.2005;121:1097-1098.
    34. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature.2000;403:901-906.
    35. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers.Proc Natl Acad Sci U S A.2004;101:2999-3004.
    36. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T, Takahashi T. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival.Cancer Res.2004;64:3753-3756.
    37. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, Calin GA, Liu CG, Croce CM, Harris CC. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis.Cancer Cell. 2006;9:189-198.
    38. Malumbres M, Barbacid M. RAS oncogenes:the first 30 years. Nat Rev Cancer. 2003;3:459-465.
    39. Cho WC. OncomiRs:the discovery and progress of microRNAs in cancers. Molecular Cancer.2007; 6:60.
    40. Caldas C, Brenton J D. Sizing up miRNAs as cancer genes. Nat Med.2005;11: 712-714.
    41. Zhang L, Huang J, Yang N, Greshock J, Megraw MS, Giannakakis A, Liang S, Naylor TL, Barchetti A, Ward MR, Yao G, Medina A, O'brien-Jenkins A, Katsaros D, Hatzigeorgiou A, Gimotty PA, Weber BL, Coukos G. microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci USA.2006; 103: 9136-9141.
    42. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA.2002; 99:15524-15529.
    43. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA.2005;102:13944-13949.
    44. Akao Y, Nakagawa Y, Kitade Y, Kinoshita T, Naoe T. Downregulation of microRNAs-143 and-145 in B-cell malignancies. Cancer Sci.2007; 98:1914-1920.
    45. Michael MZ, O' Connor SM, van Holst Pellekaan NG, Young GP, James RJ. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res. 2003;1:882-891.
    46. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Menard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM. MicroRNA gene expression deregulation in human breast cancer. Cancer Res.2005;65:7065-7070.
    47. Chang SS, Jiang WW, Smith I, Poeta LM, Begum S, Glazer C, Shan S, Westra W, Sidransky D, Califano JA. MicroRNA alterations in head and neck squamous cell carcinoma. Int J Cancer.2008; 123:2791-2797.
    48. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O'Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA.2008;105:10513-10518.
    49. Miller TE, Ghoshal K, Ramaswamy B, Roy S, Datta J, Shapiro CL, Jacob S, Majumder S. MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27 Kip1. J Biol Chem.2008; 283:29897-29903.
    50. Kovalchuk O, Filkowski J, Meservy J, Ilnytskyy Y, Tryndyak VP, Chekhun VF, Pogribny IP. Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther.2008; 7:2152-2159.
    51. Xin F, Li M, Balch C, Thomson M, Fan M, Liu Y, Hammond SM, Kim S, Nephew KP. Computational analysis of microRNA profiles and their target genes suggests significant involvement in breast cancer antiestrogen resistance. Bioinformatics.2009; 25:430-434.
    52. Murray CJ, Lopez AD. Alternative projections of mortality and disability by cause 1990-2020:global burden of disease study. Lancet.1997; 349:1498-504.
    53. Cunningham D, Allum WH, Stenning SP, Thompson JN, Van de Velde CJ, Nicolson M, Scarffe JH, Lofts FJ, Falk SJ, Iveson TJ, Smith DB, Langley RE, Verma M, Weeden S, Chua YJ, MAGIC Trial Participants. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med.2006; 355:11-20.
    54. Rivera F, Vega-Villegas ME, Lopez-Brea MF. Chemotherapy of advanced gastric cancer. Cancer Treat Rev.2007;33:315-24.
    55. Fan D, Zhang X, Chen X, Mou Z, Hu J, Zhou S, Ding J, Wu K. Bird's-eye view on gastric cancer research of the past 25 years. J Gastroenterol Hepatol.2005;20:360-5.
    56. Xia L, Zhang D, Du R, Pan Y, Zhao L, Sun S, Hong L, Liu J, Fan D. miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int J Cancer.2008; 123:372-379.
    57. Legge F, Ferrandina G, Salutari V, Scambia G Biological characterization of ovarian cancer:prognostic and therapeutic implications. Ann Oncol 2005; 16:95-101.
    58. Yang H, Kong W, He L, Zhao JJ, O'Donnell JD, Wang J, Wenham RM, Coppola D, Kruk PA, Nicosia SV, Cheng JQ. MicroRNA expression profiling in human ovarian cancer:miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res.2008; 68:425-433.
    59. Sorrentino A, Liu CG, Addario A, Peschle C, Scambia G, Ferlini C. Role of microRNAs in drug-resistant ovarian cancer cells. Gynecol Oncol.2008; 111:478-486.
    60. Schaefer U, Voloshanenko O, Willen D, Walczak H. TRAIL:a multifunctional cytokine. Front Biosci.2007; 12:3813-3824.
    61. Cho WC, Chow AS, Au JS. Restoration of tumour suppressor hsa-miR-145 inhibits cancer cell growth in lung adenocarcinoma patients with epidermal growth factor receptor mutation. Eur J Cancer.2009; 45:2197-2206.
    62. Koschny R, Walczak H, Ganten TM. The promise of TRAIL-potential and risks of a novel anticancer therapy. J Mol Med 2007; 85:923-935.
    63. Garofalo M, Quintavalle C, Di Leva G, Zanca C, Romano G, Taccioli C, Liu CG, Croce CM, Condorelli G MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer. Oncogene.2008; 27:3845-3855.
    64. Fujita Y, Kojima K, Hamada N, Ohhashi R, Akao Y, Nozawa Y, Deguchi T, Ito M. Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells. Biochem Biophys Res Commun.2008; 377:114-119.
    65. Gottesman MM, Ling V. The molecular basis of multidrug resistance in cancer:the early years of P-glycoprotein research. FEBS Lett.2006; 580:998-1009.
    66. Zhu H, Wu H, Liu X, Evans BR, Medina DJ, Liu CG, Yang JM. Role of MicroRNA miR-27a and miR-451 in the regulation of MDR1/P-glycoprotein expression in human cancer cells. Biochem Pharmacol.2008; 76:582-588.
    67. Allikmets R, Schriml LM, Hutchinson A, Romano-Spica V, Dean M. A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res.1998; 58:5337-5339.
    68. To KK, Zhan Z, Litman T, Bates SE. Regulation of ABCG2 expression at the 3'untranslated region of its mRNA through modulation of transcript stability and protein translation by a putative microRNA in the S1 colon cancer cell line. Mol. Cell. Biol.2008; 28,5147-5161.
    69. Pan YZ, Morris ME, Yu AM. MicroRNA-328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells. Mol Pharmacol. 2009; 75:1374-1379.
    70. Yu AM. Small interfering RNA in drug metabolism and transport. Current Drug Metabolism 2007; 8:700-708.
    71. Tsuchiya Y, Nakajima M, Takagi S, Taniya T, Yokoi T. MicroRNA regulates the expression of human cytochrome P450 1B1. Cancer Res.2006; 66:9090-9098.
    72. Yang N, Coukos G, Zhang L. MicroRNA epigenetic alterations in human cancer:one step forward in diagnosis and treatment. Int J Cancer.2008; 122:963-968.
    73. Deng S, Calin GA, Croce CM, Coukos G, Zhang L. Mechanisms of microRNA deregulation in human cancer. Cell Cycle 2008; 7:2643-2646.
    74. Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, Bentwich Z, Oren M. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell.2007; 26:731-743.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700