淡水蛭弧菌的分离鉴定及其裂解大肠杆菌作用机制的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛭弧菌作为一种依靠裂解宿主菌使自身得以繁殖的寄生微生物,它可以裂解大多数科、属的革兰氏阴性细菌,尤其是对病原弧菌具有良好的裂解作用。本实验采用DNB双层平板法以Escherichia coli DH5α作为宿主菌从湖南省东江水域采集到淡水水样中筛选得到6株菌株(分别命名为HNAL,HNAS,HNBL,HNBS,HNCL和HNCS)。通过观测6株菌在DNB双层平板上形成的噬菌斑的形状,同时利用透射电子显微镜观察它们的形态,并对照《伯杰氏细菌鉴定手册》(第九版),最后进行16S rRNA基因和16S-23S rRNA ITS扩增鉴定、测序和系统进化学分析,可以鉴定这6株菌为蛭弧菌,同时经系统进化学分析认为菌株HNAL,HNAS,HNBL和HNBS属于蛭弧菌的一个新种(Bdellovibrio sp.nov)。我们系统研究了6株蛭弧菌对能导致水产养殖病害的30株致病或潜在致病菌的裂解谱。此外,我们首次以湖南淡水蛭弧菌(HNAS)为研究对象,先在电镜下初步观察蛭弧菌与大肠杆菌的作用方式,之后利用超薄切片技术结合透射电子显微镜,初步研究淡水蛭弧菌作用大肠杆菌的裂解机制。
     本研究结果表明,6株淡水蛭弧菌对30株致病或潜在致病菌具有较好的裂解能力,HNAL,HNAS,HNBL,HNBS,HNCL和HNCS的裂解率分别为70%、73.3%、66.7%、66.7%、50%和60%,如果考虑不同蛭弧菌株间的协同作用,它们的裂解率则达93.3%;通过负染法对菌体染色,在电镜下观察到蛭弧菌HNAS以机械钻孔的形式侵染大肠杆菌;同时通过电镜观察比较,确定蛭弧菌与大肠杆菌最适浓度比为1:1;在电镜下观察蛭弧菌作用大肠杆菌过程的超微结构,根据所观测到电镜图可进一步确认该株淡水蛭弧菌是以机械钻孔的方式对宿主菌进行裂解的,同时观察到了蛭弧菌附着、侵染、蛭质体和释放的阶段。
Bdellovibrio is a kind of parasitic bacteria which can reproduce itslf by lysing gram negative host microoganisims, and especially Bdellovibrio have good lysis ability on vibrios. In our investigation on fresh specimen obtained from Dongjiang river in Hunan provience, six strains (named HNAL,HNAS,HNBL,HNBS,HNCL和HNCS respectively) which could prey on Escherichia coli DH5αwere isolated through DNB double layer agar plating technique. These six strains were primarily identified, according to“Bergey's manual identification of bacteria”(ninth edition), as Bdellovibrio spp. through observing the plaques formed in the DNB double layer agar plate and their morphological properties by transmission electron microscopy. The amplification, clone and phylogenetic analysis of 16S rRNA gene and 16S-23S rRNA ITS were utilized to further identify these strains and strain HNAL, HNAS, HNBL and HNBS should be placed in the genus Bdellovibrio as a member of a novel species for which we propose the name Bdellovibrio sp. nov. To step further, the lysis spectrums of the six Bdellovibrio strains to 30 pathogens or potential pathogens were systematically explored. Besides, we preliminarily studied the lytic mechanism of Bdellovibrio on E coli. With the help of Transmission Electron Microscope, we were to explore the interaction mode between strain HNAS and Escherichia coli, and we combined the thin action technology and TEM to primarily study on lysis mechanism of strain HNAS on Escherichia coli.
     The lysis experiments on 30 pathogens or potential pathogens showed that individual HNAL, HNAS, HNBL, HNBS, HNCL和HNCS lysed 70%、73.3%、66.7%、66.7%、50% and 60% of the total bacteria, respectively. In combination, they lysed 93.3% of the bacteria tested. The specimen (mix of strain HNAS and Escherichia coli) was negtively stained and examined by Transmission Electron Microscope, and we discovered strain HNAS was using the method of mechanical drill hole to lyse the Escherichia coli. After comparing the results of figures of Transmission Electron Microscope at different concentration ratios, we make sure the optimum ratio between strain HNAS and Escherichia coli is 1:1. The ultrastructures of Bdellovbrio (HNAS) lysed Escherichia coli were explored by Transmission Electron Microscope and we further confirm that Bdellovbrio used the method of mechanical drill hole to lyse the Escherichia coli; meanwhile, we also could find the stages of attach, attack, bdelloplast and release.
引文
[1] Klontz K.C. Fatalities associated with Vibrio parahaemolyticus and Vibrio cholerae non-O1 infections in Florida (1981–1988)[J]. South. Med. J., 1990, 83(5): 500–502.
    [2] Ko W.C., Chuang Y.C., Huang G.C., et al. Infections due to non-O1Vibrio cholerae in southern Taiwan: Predominance in cirrhotic patients[J]. Clin. Infect. Dis., 1998, 27(4): 774–780.
    [3] Depaola A., Kaysner C.A., Bowers J., et al. Environmental investigations of Vibrio parahaemolyticus in oysters after outbreaks in Washington, Texas, and New York (1997 and 1998)[J]. Appl. Environ. Microbiol., 2000, 66(11): 4649–4654.
    [4] Wong H.C., Liu S.H., Wang T.K., et al. Characteristics of Vibrio parahaemolyticus O3:K6 from Asia[J]. Appl. Environ. Microbiol., 2000, 66(9): 3981–3986.
    [5] Gooch J.A., Depaolar A., Kaysner C.A., et al. Evaluation of two direct plating methods using nonoradioactive probes for enumeration of Vibrio parahaemolyticus in oysters[J]. Appl. Environ. Microbiol., 2001, 67(2): 721.
    [6] Iida T., Park K.S., Suthienkul O., et al. Close proximity of tdh, trh and ure genes on the chromosone of Vibrio parahaemolyticus[J]. Microbiol., 1998, 144(9): 2517–2523.
    [7] Arias C.R., Macian M.C., Aznar R., et al. Low incidence of V. vulnificus among vibrio isolates from seawater and shellfish of the western Mediterranean coast[J]. J. App. Microbiol., 1999, 86(1): 125–134.
    [8] Wright A.C., Powell J.L., Tanner M.K., et al. Differential expression of Vibrio vulnificus capsular polysaccharide[J]. Infect. Immun., 1999, 67(5): 2250–2257.
    [9] Strom M.S., Parnjpye R.N. Epidemiology and pathogenesis of Vibrio vulnificus [J].Microbes. Infect., 2000, 2(2): 177–188.
    [10] Klolntz K.C., Lieb S., Schreiber M., et al. Syndromes of Vibrio vulnificus infection-clinical and epidemiologic features in Florida cases,1981~1987[J]. Ann. Intern. Med., 1988, 109(4): 318–323.
    [11] Jackson J.K., Murphree R.L. and Tamplin M.L. Evidence that mortality from Vibrio vulnificus infection results from single strains among heterogeneous populations in shellfish[J]J. clin. Microbiol., 1997, 35(8): 2098–2101.
    [12] Han J.H., Lee J.H., Choi Y.H., et al. Purification, characterization and molecular cloning of Vibrio fluvialis hemolysin[J]. Biochim. Biophys. Acta., 2002, 1599(1): 106–114.
    [13] Campos E., Bolanos H., Acuna M.T., et al. Vibrio mimicus diarrhea following ingestion of raw turtle eggs. Appl[J]. Environ. Microbiol., 1996, 62(4): 1141–1144.
    [14] Reina J., Fernandez-baca V., Lpoez A. Acute gastroenteritis caused by Vibrio alginolyticus in an immunocompetent patient[J]. Clin. Infect. Dis., 1995, 21(4): 1044–1045.
    [15] Oliver J.D. and Kaper J.B. Fundamentals of Food Microbiology[M]. In: Doyle M.P., Beuchat L.R., Montville T.J. Vibrio species. Washington, DC: ASM Press, 1997: 228–264.
    [16] Caccamese S.M. and Rasteger D.A. Chronic diarrhea associated with Vibrio alginolyticus in an immunocompromised patient[J]. Clin. Infect. Dis., 1999, 29(4): 946–947.
    [17] Whittaker P., Mossoba M.M., Al-khaldi S., et al. Identification of foodborne bacteria by infrared spectroscopy using cellular fatty acid methyl esters[J]. J. Microbiol. Methods., 2003, 55(3): 709–716.
    [18] Hall R.H. Biosensor technologies for detecting microbiological foodborne hazards[J]. Microbes. Infect., 2002, 4(4): 425–432.
    [19] Duan J. and Su Y.C. Comparison of a chromogenic medium with thiosul-fate-citrate-bile salts-sucrose agar for detecting Vibrio parahaemolyticus[J]. J. Food. Sci., 2005, 70(2): 125–128.
    [20] Duan J., Liu C. and Su Y.C. Evaluation of a double layer agar plate for direct enumeration of Vibrio parahaemolyticus[J]. J. Food. Sci., 2006, 71(2): 77–82.
    [21] Romestand B. An ELISA technique for rapid diagnosis of vibriosis in sea base Dicentarchus labrax[J]. Dis. Acpiar. Org., 1993, 15(3): 137–143.
    [22] Hasan J.A.K., Huq A. and Tamplin M.L. A novel kit for rapid detection of Vibrio cholerae O1[J]. J. Clin. Microbiol., 1994, 32(1): 249–252.
    [23] Michae C.L., Vickery A.L., Smith A.D., et al. Optimization of the arbitratily-primed polymerase chain reaction (AP-PCR) for intra-species differentiation of Vibrio vulnificus[J]. J. Microbiological. Methods., 1998, 33(2): 181–189.
    [24] Venkatewaran K. and Harayana N.D.S. Cloning and nucleotide sequence of the gyrB gene of Vibrio parahaemolyticus and its application in detection of this pathogen in shrimp[J].Appl. Environ. Microbiol., 1998, 64(2): 681–687.
    [25] Panicker G., Call D.R., Krug M.J., et al. Detection of pathogenic Vibrio spp. in shellfish by using multiplex PCR and DNA microarrays[J]. Appl. Environ. Microbiol., 2004, 70(12): 7436–7444.
    [26] Kaufman G.E. Real-time PCR quantification of Vibrio parahaemolyticus in oysters using an alternative matrix[J]. J. Food. Prot., 2004, 67(11): 2424–2429.
    [27] Andrews L.S., Park D.L. and Chen Y.P. Low temperature pasteurization to reduce the risk of vibrio infections from raw shell-stock oysters[J]. J. Food. Addit. Contam., 2000, 19(7): 787–791.
    [28] Calik H., Morrissey M.T., Reno P., et al. Effect of high-pressure processing on Vibrio parahaemolyticus strains in pure culture and Pacific oysters[J]. J. Food. Sci., 2002, 67(4): 1506–1510.
    [29] Cook D.W. Sensitivity of Vibrio species in phosphate-buffered saline and in oysters to high-pressure processing[J]. J. Food. Prot., 2003, 66(12): 2276–2282.
    [30] Andrews L., Jahnckes M. and Mallidarjunan K. Low dose Gamma irradiation to reduce pathogenic Vibrios in live oysters (Crassostrea virginica)[J]. J. Aquatic. Food. Product. Tech., 2003, 12(3): 71–82.
    [31] Jakabi M, Burge W.D. and Enkiri N.K. Inactivation by ionizing radiation of Salmonella enteritidis, Salmonella infantis and Vibrio parahaemolyticus in oysters (Crassostrea brasiliana)[J]. J. Food. Prot., 2003, 66(6): 1025–1029.
    [32] Fratamico, P.M. and Whiting, R.C. Ability of Bdellovibrio bacteriovorus 109J to lyse gram-negative food-borne pathogenic and spoilage bacteria[J]. J. Food. Prot., 1995, 58(2): 160–164.
    [33] Jackson L. and Whiting R.C. Reduction of an Escherichia coli K12 population by Bdellovibrio bacteriovorus under various in vitro conditions of parasite:host ratio, temperature or pH [J]. J. Food. Prot., 1992, 55(11): 859–861, 870.
    [34] O'Flynn G., Ross R.P., Fitzgerald G.F., et al. Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli O157:H7[J]. Appl. Environ. Microbiol., 2004, 70(6): 3417–24.
    [35] Birkenhauer J.M. and Oliver J.D. Use of diacetyl to reduce the load of Vibrio vulnificusin the Eastern oyster (Crassostrea virginica)[J]. J. Food. Prot., 2003, 66(1): 38–43.
    [36] Andrews L.S., DeBlanc S., Veal C.D., et al. Response of Vibrio parahaemolyticus 03:K6 to a hot water/cold shock pasteurization process[J]. Food. Addit. Contam., 2003, 20(4): 331–334.
    [37] Ramos M. and Lyon W.J. Reduction of endogenous bacteria associated with catfish fillets using the Grovac process[J]. J. Food. Prot., 2000, 63(9): 1231–1239.
    [38] Shemesh Y. and Jurkevitch E. Plastic phenotypic resistance to predation by Bdellovibrio and like organisms in bacterial prey[J]. Environ. Microbiol., 2004, 6(1): 12–18.
    [39]孙志明,栾会妮,姚维志.微生态制剂在水产养殖中的作用[J].水利渔业, 2004, 24 (1): 1–3.
    [40]张梁.蛭弧菌在水产养殖中的应用[J].内陆水产, 2003, 28(3): 41.
    [41]李永文.鱼类病原菌蛭弧菌的研究[D].四川大学硕士学位论文. 2006.
    [42]王秀茹.噬菌蛭弧菌在北京市不同水体的分布及其对革兰氏阴性菌的净化作用[J].中国消毒学杂志, 1992, 9(4): 205–210.
    [43]薛恒平,刘宏霓.不同活菌制剂饲喂肉用仔鸡效果比较[J].中国饲料, 1994, 6: 16–17.
    [44]李楠.鸡源蛭弧菌的分离、生物学特性研究及对鸡白痢的治疗研究[D].四川农业大学硕士学位论文. 2005.
    [45] Hall-Stoodley L., Stoodley P. and Costerton J.W. Bacterial biofilms: from the natural environment to infectious diseases[J]. Nat. Rev. Microbiol., 2004, 2(2): 95–108.
    [46] Markelova N.Y. Effect of toxic pollutants on Bdellovibrio[J]. Process. Biochem., 2002, 37(10): 1177–1181.
    [47] Lenz R. and Hespell R.B. Attempts to grow bedellovibrios surgically injected into animal cell[J]. Arch. Microbiol., 1978, 119(3): 245–248.
    [48] Schwudke D., Linscheid M., Strauch E., et al. The obligate predatory Bdellovibrio bacteriovorus possesses a neutral lipid a containingα-D-mannoses that replace phosphate residues-Similarities and differences between the lipid as and the lipopolysaccharides of the wild type strain B-bacteriovorus HD100 and its host-independent derivative HI100[J]. J. Biol. Chem., 2003, 278(30): 27502–27512.
    [49] Rendulic S., Jagtap P., Rosinus A., et al. A predator unmasked: life cycle of Bdellovibriobacteriovorus from a genomic perspective[J]. Science, 2004, 303(5658): 689–692.
    [50] Ferguson M.A., Schmitt J.L., Sindhurakar A.R., et al. Rapid isolation of host-independent Bdellovibrio bacteriovorus[J]. J. Microbiol. Met., 2008, 73(3): 279–281.
    [51] Gordon R.F., Stein M.A., Diedrich A.L., et al. Heat shock-induced axenic growth of Bdellovibrio bacteriovorus[J]. J. Bacteriol., 1993, 175(7): 2157–2161.
    [52]徐恒,岑英华.大豆根瘤菌蛭弧菌的发现[J].微生物学研究与应用, 1992, 20(1): 5–7.
    [53]杨淑专,黄庆辉.海洋噬菌蛭弧菌的分布[J].福建环境, 1996, 13(2): 22–36.
    [54] Wilkinson M.H. Predation in the presence of decoys: an inhibitory factor on pathogen control by bacteriophages or bdellovibrios in dense and diverse ecosystems[J]. J. Theor. Biol., 2001, 208(1): 27–36.
    [55] Sanchez A.A. and Torella F. Formation of stable bdelloplasts as a starvation-survival strategy of marine bdellovibrios[J]. Appl. Environ. Microb., 1990, 56(9): 2717–2725.
    [56] Fry J.C. and Staples D.G. Distribution of Bdellovibrio bacteriovorus in Sewage Works, River Water, and Sediments[J]. Appl. Environ. Microb., 1976, 31(4): 469–474.
    [57]张梁.蛭弧菌在草鱼养殖中的应用研究[D].华中农业大学硕士学位论文. 2005.
    [58] Herwing R.P. Ecology and properties of marine bdellovibrios[D]. Seattle :University of Washington, Seattle, WA. 1989.
    [59] Varon M. and Shilo M. Interaction of Bdellovibrio bacteriovorus and host bacteria. I. Kinetic studies of attachment and invasion of Escherichia coli B by Bdellovibrio bacteriovorus[J]. J. Bacteriol., 1968, 95(3): 744–753.
    [60] Miyamoto S. and Kuroda K. Lethal effect of fresh sea water on Vibrio parahaemolyticus and isolation of Bdellovibrio parasitic against the organism[J]. Japan. J. Microbiol., 1975, 19(4): 309–317.
    [61] Ishiguro E.E. A growth initiation factor for Host-Independent derivatives of Bdellovibrio bacteriovorus[J]. J. Bacteriol., 1973, 115(1): 243–252.
    [62] Tudor J.J., McCann M.P. and Acrich I.A. A new model for the penetration of prey cells by Bdellovibrio[J]. J. Bacteriol., 1990, 172(5): 2421–2426.
    [63] Nunez M., Martin M.O., Duong L.K., et al. Investigations into the life cycle-of the bacterial predator Bdellovibrio bacteriovorus 109J at an interface by atomic forcemicroscopy[J]. Biophys. J., 2003, 84(5): 3379–3388.
    [64] Venosa A.D. Lysis of Sphaerotilus natans Swarm Cells by Bdellovibrio bacteriovorus[J]. Appl. Microbiol., 1975, 29(5): 702–705.
    [65] Starr M.P. and Nancy L.B. Parasitic interaction of Bdellovibrio bacteriovorus with other bacteria[J]. J. Bacteriol., 1966, 91(5): 2006–2017.
    [66] Seidler R.J. and Starr M.P. Structure of the Flagellum of Bdellovibrio bacteriovorus[J]. J. Bacteriol., 1968, 95(5): 1952–1955.
    [67] Burnham J.C., Hashimoto T. and Conti S.F. Electron Microscopic Observations on the Penetration of Bdellovibrio bacteriovorus into Gram-negative Bacterial Hosts[J]. J. Bacteriol., 1968, 96(4): 1366–1381.
    [68] Abram D. and Davis B.K. Structural Properties and Features of Parasitic Bdellovibrio bacteriovorus[J]. J. Bacteriol., 1970, 104(2): 948–965.
    [69] Kessel M. and Shilo M. Relationship of Bdellovibrio Elongation and Fission to Host Cell Size[J]. J. Bacteriol., 1976, 128(1): 477–480.
    [70] Tudor J.J. and Conti S.F. Ultrastructural Changes During Encystment and Germination of Bdellovibrio sp[J]. J. Bacteriol., 1977, 131(1) 323–330.
    [71] Abram DA., e Melo J.C. and Chou D. Penetration of Bdellovibrio bacteriovorus into Host Cells[J]. J. Bacteriol., 1974, 118(2): 663–680.
    [72] Varon M. and Zeigler B.P. Bacterial Predator-Prey Interaction at Low Prey Density[J]. Appl. Environ. Microbiol., 1978, 36(1): 11–17.
    [73] Tudor J.J., Mccann M.P. and Acrich I.A. A New Model for the Penetration of Prey Cells by Bdellovibrios[J]. J. Bacteriol., 1990, 172(5): 2421–2426.
    [74] Koval S.F. and Hynes S.H. Effect of Paracrystalline Protein Surface Layers on Predation by Bdellovibrio bacteriovorus[J]. J. Bacteriol., 1991, 173(7): 2244–2249.
    [75] Tudor J.J. and Karp M.A. Translocation of an Outer Membrane Protein into Prey Cytoplasmic Membranes by Bdellovibrios[J]. J. Bacteriol., 1994, 176(4): 948–952.
    [76] Koval S.F. and Bayer M.E. Bacterial capsules: no barrier against Bdellovibrio[J]. Microbiol., 1997, 143(3): 749–753.
    [77] Jurkevitch E. The genus Bdellovibrio[M]. In: Dworkin M., Flakow S., Rosenberg E., et al. The prokaryotes. New York: Springer-Verlag, 2000: 3401–3412.
    [78]宋志萍,蔡俊鹏,王志,等.蛭弧菌的分离及其生长条件和裂解能力的研究[J].微生物学报, 2005, 45(4): 571–575.
    [79]蔡俊鹏,韩韫,王志,等.蛭弧菌消除海产品中潜在致病性弧菌的研究[J].食品科学, 2006, 27(1): 75–78.
    [80] Jurkevitch E., Minz D., Ramati B., et al. Prey range characterization, ribotyping, and diversity of soil and rhizosphere Bdellovibrio spp. isolated on phytopathogenic bacteria[J]. Appl. Environ. Microbiol., 2000, 66(6): 2365–2371.
    [81] Schwudke D., Strauch E., Krueger M., et al. Taxonomic studies of predatory bdellovibrios based on 16S rRNA analysis, ribotying and the hit locus and characterization of isolates from the gut of animals[J]. Syst. Appl. Microbiol., 2001, 24(3): 385–394.
    [82] Stolp H. and Petzhold H. Untersuchugenüber einen obligat parasitischen milroorganismus mit lytischer activit?r für Pseudomonas-bakterien[J]. Phytopathol. Z., 1962, 45(4): 364–390.
    [83] Perea E.J. Oral flora in the age of molecular biology[J]. Med. Oral. Patol. Oral. Cir. Bucal., 2004, 9(Suppl): 1–10.
    [84] Woo P.C., Ng K.H., Lau S.K., et al. Usefulness of the MicroSeq 50016S ribosomal DNA-based bacterial identification system for identification of clinically significant bacterial isolates with ambiguous biochemical profiles[J]. J. Clin. Microbiol., 2003, 41(5): 1996–2001.
    [85] Lau S.K., Woo P.C., Woo G.K., et al. Catheter-related Microbacterium bacteremia identified by 16S rRNA gene sequencing[J]. J. Clin. Microbiol., 2002, 40(7): 2681–2685.
    [86] Rumpf R.W., Griffen A.L., Wen B.G., et al. Sequencing of theribosomal intergenic spacer region for strain identification of Porphyromonas gingivalis[J]. J. Clin. Microbiol., 1999, 37 (8): 2723–2725.
    [87] Leblond-Bourget N., Philippe H., Mangin I., et al. 16S rRNA and 16S to 23S internal transcribed spacer sequence analyses reveal inter and intraspecific Bifidobacterium phylogeny[J]. Int. J. Syst. Bacteriol., 1996, 46(1): 102–111.
    [88] Marchesi J.R., Sato T., Weightman A.J., et al. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA[J]. Appl. Environ. Microbiol., 1998, 64(2): 795–799.
    [89] Lambert C. A genetic approach to predator-prey interactions in Bdellovibrio bacteriovorus[D]. Nottingham: Nottingham University, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700